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Demi-linear analysis 11

—demi-distributions

LI Rong-lut ZHONG Shu-hui? KIM Do-han? WU Jun-de!

Abstract. In this paper, we develop the theory of demi-distributions which generalizes the
usual distribution theory. In particular, we show that many results on differentiations, Fourier

transforms, and convolutions can be generalized to demi-distributions theory.

81 Introduction

Let X be a topological vector space and A/ (X) the family of neighborhoods of 0 € X, and
C(0) the set of complex valued functions v satisfying

1. v:C—C;
2. lim; o v(t) = ~v(0) = 0;
3. (@) > ] i 1] < 1.

Let Y be a topological vector space, and K be R or C. A mapping f: X — Y is said to
be demi-linear if f(0) = 0 and there exist v € C(0) and U € N (X) such that every z € X,
ueUandte {t € K: |t <1} yield r, s € K for which |r — 1| < |y(t)], |s] < |y(¢)] and
Fo+tu) = rf(z) + s ().

We denote by %, 7(X,Y) the demi-linear mappings related toy € C(0) and U € N(X), and
by , v(X,Y) the subfamily of .Z, 7(X,Y") satisfying the following property: if z € X, u e U
and [t| <1 then

Fo+tu) = f(2) + 1 (u)

for some s with |s| < |v(¢)].

As stated in [1, 2], the family of demi-linear mappings is a natural and valuable extension
of the family of linear operators.
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For a > 0, 2, = {¢€ € CR" . ¢ is infinitely differentiable and &(x) = 0 whenever
lz| = a2+ +a2 > a} has the locally convex Fréchet topology which is given by the
norm sequence {[|¢|l, = sup|,|<, max|q <, [DE(z)[}7,-

Let 2 =J,°_, Zm be the strict inductive limit of {Z,,}.

Let . = {¢ € C*" : ¢ is infinitely differentiable and rapidly decreasing}. Equipped with

the norm sequence {[|€|l, = Supjy q1<prern [£¥DIE(@)[}52g, - is a locally convex Fréchet

kn

space, where k = (k1, ko, -+, k,) is a multi-index and z* = x’fl ’2“2 ceempn,

x T

The spaces {Z,, P, } are called the space of test functions.

The distributions of L. Schwartz, the generalized distributions of Beurling and the ultradis-
tributions of Roumieu are continuous linear functionals defined on some suitable spaces of test
functions.

In this paper, E € {Z,, 2,.7} is a space of test functions and a function f : E — C is called
a demi-distribution if f is continuous and demi-linear. Thus, the family of demi-distributions
includes all usual distributions and many nonlinear functionals ([1, 2]).

By using the equicontinuity results in [1], we show that the family of demi-linear mappings
can be used to develop the theory of distributions. For instance, in the case of the usual
distributions the simplest equation y’ = 0 has solutions y = constant only. However, we
will show that the equation y’ = 0 has extremely many solutions which are nonlinear demi-
linear functionals, and the equation ¢’ = f also has extremely many solutions which are demi-
distributions. Moreover, we will show that the family of demi-distributions is closed with respect

to extremely many of nonlinear transformations such as |f(-)], sin|f(-)], e/Ol =1, etc.

§2 Demi-distributions

Firstly, note that the space 2 is an (LF') space and so 2 is both barrelled and bornological
([3, p- 222]). Thus, 2 is C — sequential ([3, p. 118]). There is an important result which
says that every sequentially continuous linear operator from a C' — sequential locally convex
space to a locally convex space must be continuous ([3, p. 118]). Now, we improve this result

as following:

Theorem 2.1. Let X,Y be locally convex spaces, U € N(X) and yo(t) =1t, Vi € C. If X s
C — sequential and f € J,, y(X,Y) is sequentially continuous, then f must be continuous.

Proof. Let V € N(Y). Pick balanced convex neighborhoods Uy € N(X) and Vo € N(Y)
such that Uy c U, Vo C V.

Let W = f=Y(Vp). For u,w € Uy(\W and scalars o, B with |a| + |B| < 1, it follows from
fe o, u(X,Y) that

flau+ pw) = flauw) + sf(w) = s1f(u) + sf(w) € s1Vo + sV,

where Js1] < bo(@)] = lal, Is| < ho(8)| = I8l Then [s1] + |s| < lal + 18] < 1 and so
flau+ pw) € Vg, au+ pw € Uy (\W. This shows that Uy (VW is both balanced and convez.

Let v, — 0 in X. Then xzy € Uy eventually. Since f is sequentially continuous, f(xj) —
f(0) =0 and f(xx) € Vo eventually, i.e., v, € W eventually. Thus, xp € Uy (W eventually
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and so Uy (W is a sequential neighborhood of 0 € X. Since X is C — sequential, Uy(\W €
N(X) and f(Ug(W) C Vo C V. This shows that f is continuous at 0.

Suppose (To)acr s a net in X such that x,, — x € X. Pick an oy € I for which zo — 2 €
U, Va > ag. For a > ag,

f(@a) = f@+ 20 —2) = f(2) + 50 f (20 — ), |sal < [0(1)]=1.
But f(zq —x) — f(0) =0 and so f(zq) — f(z). O

Theorem 2.2. Suppose that E € {%,, 2,7}, v € C(0), U € N(E) and Y is a topological
vector space. If f, f, € £, u(E,Y) are continuous (v =1,2,3,---) and f,(§) = f(§) at each
& € E, then for every bounded B C E, lim, f,(§) = f(§) uniformly for £ € B.

Proof. Since both D, and ¥ are Fréchet spaces having the Montel property, we only need
to consider 9. Suppose that B C 2 is bounded but lim,, f,(§) = f(£) is not uniform for £ € B.
Then there exist V € N(Y), {&} C B and integers vy < vy < --- such that

Joi(€e) = f(&) €V, k=1,2,3,---.

Pick a balanced W € N(Y') for which W +W +W C V. Since B is bounded in 9, B C D,
for some m € N ([38, p. 219]) and B is relatively compact in the Fréchet space Dy, ([4, Th.
1.6.2]). By passing to a subsequence if necessary, we say that & — £ € Dy, Since f,(n) — f(n)
at each 1 € Dy, {f,}5° is pointwise bounded on Dy, and so {f,}5° is equicontinuous on Dy,
by Th. 3.1 of [1]. By Cor. 3.1 of [1], limy f, (&) = f.(&) uniformly for v € N and so there
is a kg € N such that f,(&) — fu(§) € W for allv € N and k > ko. Since f: 9 — Y is
continuous and f,(§) — f(§), there exist vy, k1 € N such that f(§) — f(&x) € W for all k > Kk
and [, (&) — f(&) e W for allv > vyp.

Pick an integer ko > ko + k1 for which vy, > vy whenever k > ky. Then for every k > ko we
have that

fon (&) = F(&k) = fur (&) = fu (&) + fur (&) — F() + f(&) — f(&)
EW+W+WcCW
This is a contradiction and so lim, f,(§) = f(&) uniformly for £ € B. O

In general, 2, y(X,Y) G #,u(X,Y) where Y is locally convex. Using Th. 4.1 of [1]
instead of Th. 3.1 of [1], the above proof gives an improved result as follows.

Theorem 2.3. Let E € {Z,, 2,7}, v € C(0) and U € N(E). LetY be a locally convex space
and f, f, € #,u(E,Y) are continuous, v =1,2,3,---. If f,(§) = f(&) at each & € E, then for
every bounded B C E, lim, f,(§) = f(&) uniformly for £ € B.

For 2, v(X,Y), we have a much stronger result as follows.

Theorem 2.4. Let E € {9,,2,}, U € N(E) and Y be a locally convex space. Let f, €
Hoo v (EY) be continuous, Vv € N. Iflim, f,(§) = f(§) exists at each € E, then f is also a
continuous mapping in A5, v (E,Y) and for every bounded B C E, lim, f,(§) = f(§) uniformly
for € € B.
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Proof. Only need to consider E = 2. Let £ € E, n € U and |t| < 1. Then f(§ +tn) =
lim, f, (& + tn) = lim, (.. (&) + su fu(n)), where |s,| < |y (t)| = |t| < 1. Say that s,, — s. Then
Is| = limy |y, | < |v0(t)| and

J(€+1tn) =lim f,, (€ +tn) = lm(fo, () + su fun (1) = F(€) + 51 (n)-
Thus, f € Xy, uv(E,Y).

Let & — € in 9. Then & — & in Dy, for some m € N ([3, p. 219]). Since f,(-) — f(),

{f,}5° is pointwise bounded on Dy, and, by Cor. 8.1 of [1], limy f, (&) = fu.(§) uniformly

for v € N. Then limy, f(&) = limg lim, f, (&) = lim, limg f, (&) = lim, f,(&) = f(§). Thus,
f:9 =Y is sequentially continuous and so f is continuous by Th. 2.1.

Now the desired follows from Th. 2.2. O
Henceforth, F € {Z,, 92,7 }.

Definition 2.1. f: E — C is called a demi-distribution if f is continuous and f € Z, y(E,C)
for some v € C(0) and U € N(E).

Let EU) be the family of demi-distributions related to v € C(0) and U € N(E). Let
[EC-Y)] be the span (EO"Y)) in CF, ie., [E™V)] = {finite sum Y txfy : ty € C, fr € EOU}

Let E’ be the space of usual distributions, i.e., E’ is the space of continuous linear function-
als. Obviously, E' ¢ EOY) YU € N(E), v € C(0).

Example 2.1. (1) For every f € L, (R™) define [f] : Z — R by [f1(§) = [z [f(2)é(z)|dz, £ €
9.
Let v € C(0) and §,m € 2, |t| < 1. For every x € R™ there exists a(x) € [—|t|, |t]] such that

@) + tn(a)] = ()] + a(@)n(z)]| and
€+t = [ 1£G@E + i)l do

= [ 15@Iléa) + tafa)| do
= [ 1F@I@) + a@lata)] ds

- [ f@e@lde+ [ a@lr@n)]de

— 1116 + / (@) (@)n()| de

If Joo f@n@lde = 0. then 0 < | [, o)l f@in@)]de] < [ o) (@n(a)lds
<1l fy 1f@(@)] dz = 0 and s0 [y, a(@)|f(x)n(z)|do = 0 = 0f)(n), where 0 < [1(1)].
If [on |f(@)n(x)|dz # 0, then
fRn f@)n(z)| da
fer FeTaT:
0 Jon 0@\ f(@(@)| dz = s fe | f@in@)] de = s[f](n) where s = L lOHalmle s <
1< h(0)]. Thus,

| <[t <@

[F1E +tn) = [£1(6) + s[f1(m), |s| < [v(D)],
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i.e., [f] € #5.0(2,R) 27 but [f] is not a usual distribution.

(2) Let 71(R) = {& € R® : & is infinitely differentiable and &(z) = O for |z| > 1}. Let
y(t) =5t forteR and U = {£€ € Z1(R) : max;)<1 |£(z)| < 1}. Define f: Z1(R) — R by

f@r:/mmmamwmgegum.

—0o0

It is easy to show that if a € R and u,t € [—1,1] then sin(a + tu) = sina + ssinu with
|s| < Z|t]. Hence, for & € Z1(R), n € U and |t| <1 we have that

oo

ﬂaum:/ |sinfe () + tn(a)]| de

— 00

= [ Jsing@) +a)snn@lds (@) < 3

—00

= [ sine@) + p@lsnn@lds (156 <o) < 3l

— 00

:/_Oo |sin§(m)|dm—+—/_Oo B(x)|sinn(x)| dz
= [ ismeldets [ lsmu@lde (sl < 2 = b))

—00 — 00

= F©+sfm), sl < Sl = .
Thus, f € #,0(Z1(R),R)N(2:(R))Y) but f is not a usual distribution.

(3) For the case of R" = R, we write that ¥ = #(R). LetU = {n € S(R) : sup,cg |n(x)| <
1} and y(t) = et fort € C. Then define g: /(R) — C by

1
= \/_1/ (@ _1)dz, € € Z(R).
-1
Forée YR),neU and |t| <1,
1
g€ +1tn) = 1/_1/ (el€@F+n@I _ 1) dy
-1
1
_ ,El/ (@@ _ 1) ay  (a(x) € [l 1E])
-1
1
_ ,ﬁ_l/ (€@l +a@in@)] _ ga@)n@)| 4 ga@)n@)| _ 1) gy

1 1
:,ﬁ_l/ (@) (@) _1)d$+1ﬁ_1/ (@M@ _ 1Y g

]ff el€@ — 1) dx = 0, then 0 < f e@@) (@] — 1) dg < el f (€@l —1)dz =0

and so \/— f ea(@)n( I)I( €@ — 1) de =0 = /= f (€@ — 1) dx = g(&) = rg(€), where
r=1,r=1=0< |y Iff (elf@ — 1) dx # 0, then v/— f e@@)(elE@) 1) dz =
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1 ga(@)n(@)] (gl&(@)] -
f71 fl (e\&(wg\ 1) dzl)d Ff |£(I)‘ — 1) d$, where

f11 @M@ (els@)] _ 1) dy |fi1(ea(r)\n(m)l — 1) (@I = 1) da|

_ 1l
| [ (@l — 1) dar | [ (elE@! — 1) da

| @@ la(a) ()] (@) 1) da
f_l(e‘f(x)‘ — 1) dx
1 xr
<Lle\tl|t|(e\£( N 1)dx
[ (@ — 1) da

(0<b(z) <1)

(o fa(a)] <[t In(2)] < 1)

=elljt| <elt| = y(1). (ol <1)
Thus, \/7f1 0‘(””"(3”)'( €@ 1) da = rﬁfil(e‘f(x)|—l) dr = rg(€), where [r—1] < |y(t)|.
If g( \/7f N —1)de = 0, then n(x) = 0 a.e. in [~1,1] and g(& + tn) =

\/7f e\g x)+tn(z)| _ 1) do — \/7f e\& z)| _ 1) dx = g(&) =rg(§) + sg(n) where r =1 and
s=0, [r=1[=0< ()], [s| =0 < [y(£)].
Suppose that g(n) = /-1 f_ll(e‘"(””)‘ —1)dx #0. Then

1 (et @@ 1) dg

1
,Cl/ @@ _ 1) gy — I= o),
,1( ) I (e@] — 1) da )

where
L (ea(@)n(@)| _ " S(x)a(z)n(2)l,, T
I Dir | @@)ldel o <)
I (em@)! — 1) da f oA (z)| dz
If @@l |a(z)||n(z)| dzl
- J2) In(z)| dz
- f_lti‘t'ltlln(x)\dw
J21 In(2)| da

= elflft] < eft] = |y(#)]-
Then g(& + tn) = rg(&) + sg(n), where [r — 1] < [y(#)], |s| < [y(2)], ie., g € £, u(L(R),C).
Since &, — & in S implies that || — &llo = supger [Ek(x) — &(x)] = 0 and so g(&) =
V-1 f_ll(e‘&"'(““)| —1)de — /-1 f_ll(e|5(’”)| —1)dx = g(§), i.e., g: L (R) = C is continuous.
Thus, g € (Z(R))V),

For every C > 1 and € > 0, #¢(R,R) includes a lot of nonlinear functions. Pick an
h e o (R,R) and let f(xz +iy) = ih(|Jz + iy|), Ve +iy € C. If |[u +iv| < £ and |t| < 1, then
flz+iy+t(utiv)] = ih(lz+iy+t(utiv)|) = ih(|z+iy|+alutiv|) = ih(|z+iy|)+sih(ju+iv]) =
flz +1iy) + sf(u+ iv), where a € [—|t],[t]] C [-1,1] and |s| < Cla| < C|t|. This shows that
f € #c(C,C) and, therefore, #¢ - (C,C) also includes a lot of nonlinear functions.

Let EDUl = {f € #, y(E,C) : f is continuous}. Then ED-VI ¢ EO:U),

Theorem 2.5. If A C E’ is an equicontinuous family of distributions and € > 0, then there is
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a U € N(E) such that
{hof:he.Z (C,C),feA}Cc EMY), Vye (),
{hof:heH.(C,C),feAc EMY vye ().
Proof. Since A is equicontinuous, there is a U € N'(E) such that |f(n)| <e, Vfe AneU.
Let¢ e E, neUand |t| <1. Forhe Z,.(C,C) and f € A,
(ho £)(E+1tn) = h(f(&) +tf(n))
=r(ho f)() +s(hof)(n), [r=1 <@ |s| <@l
Thus, ho f € Z, y(E,C).
Suppose that h € £, .(C,C) and wy, — w in C. Then

liin h(wg) = li]1€n h(w 4wy, — w) = lilgn h(w+ ——=2)
= lim[reh(w) + sih(5)),

where |rp — 1] < |’y(@)| — 0 and |sg] < |’y(@)| — 0, e, 1, = 1, s — 0.
Thus, h(wy) — h(w), h is continuous. But A C E' and so ho f : E — C is continuous for
he Z,.(C,C)and fe A. O

Theorem 2.6. Let 1 € C(0) for which supj <y |71 ()] = 1, [vi(a)| < [v1(B8)| whenever |af <
18] <1, e.g., 71(t) = \/]t]. For every U € N(E), f € EDvUl and e > 0 there is a V € N(E)
such that v1 o y1 € C(0) and
hofe EmemV) vhe # (C,C),
ho f e BEmenVl vhe #, .(C,C).
Proof. Pick a W € N(E) for which |f(n)] < e, Vn € W. Let h € 4, .(C,C), £ € E,
neV=UNW and |t| < 1. Then
(ho /)& +1tn) =h(f(E+1tn) =h(f(&)+af(n) (ol <) <1)
=rh(f(§)) + sh(f(n) = r(ho [)(§) + s(he f)(n),
where [r — 1] < [y ()] < [y (@) [s] < ()] < (@)l
As in the proof of Th. 2.5, h is continuous and so ho f € EOem.V),
Similarly, ho f € BVl whenever h € H,.(C,C). O

Example 2.2. (1) Let h(z) = |z|, Yz € C. Then h € J, c(C,C) where v(t) = t. Let
U e N(E) and v1 € C(0) as in Th. 2.6. Then for every f € EOU) and a > 0 there is a
V. € N(E) such that V, C U and |f(n)| < a, Vn € V,.

Leta>0,§ € E,neV, and |t| < 1. Then

[fE€+tn)| = Irf(&) +af ()| = Ir|[f ()] + slf ()],
where ||[r| =1] < [r = 1] < [y (D], [s] < |e| < [y (D). Thus, yoov =y and [f(-)] = ho f €
EO1Va) Ya > 0.
(2) Let m(t) = /]t], 72(t) = Zt, Vt € C. Let U € N(E) and f € EMYl. There
is a Ve N(E) such that V.C U and |f(n)] < 1, Vn € V. Define sin|f(-)] : E — C by
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sin|[f(-)[(€) =sin|f(§)|, E€E. Foré € E,neV and |t| <1,
sin | f()I(€ + tn) = sin | f(€ +tn)| = sin|[f(&) + af()] (ol < Im@)] = V] <1)
= sinf[f(E)[+BlF] (6] <ol <1)

in|£()] + ssin|£()] (Is < 5181 < Sl < VIt = (2 0 7) @)
(

=sin |f(-)|(€) + ssin | f(-)](n).
Thus, ya 0y € C(0) and sin|f(-)] € Elv2om,V]
(3) If h(2) = eIl =1, V2 € C, 1 (t) = V|t| and 7(t) = *, then h € £, 1(C,C) and for
every f € BVl there is a V € N(E) such that Ol Z1 = ho f e BOon V),

Even f is a nonzero usual distribution, each of |f(-)|, sin |f(-)] and ef()l — 1 can not be a
usual distribution. However, Th. 2.6 shows that the family of demi-distributions is closed with
respect to infinitely many of nonlinear transformations.

Henceforth, in the notations EO-Y) and EU! we always confess that 4 € C'(0) and U €
N(E).

Definition 2.2. f, =5 f in EOY) means that fi, f € EOY) for all k € N and f,(€) — f(€)
at each &€ € E, and fr, — f in EOY) means that f, f € EOU) for all k € N and for every
bounded B C FE, limy, fr(&) = f(&) uniformly for £ € B.

Now Th. 2.2 gives the following
Theorem 2.7. f, — f in EOY) if and only if fr, — f in EOU),

Definition 2.3. A sequence {fi} € EOU) (resp., EU1) is wx Cauchy if limy, fi(€) exists at
each € € E. EOY) (resp., E['Y’U]) is said to be sequentially complete if for every wx Cauchy
sequence { fr} in EOU) (resp., EU) there exists f € EOU) (resp., EY1) such that fi, — f,
i.e., for every bounded B C E, limy, f1(§) = f(&) uniformly for £ € B.

Theorem 2.8. Both @,EW’U) and .7 V) are sequentially complete for every v € C(0), U €
N(Z.) and V € N(&). Moreover, 210V is also sequentially complete for vo(t) = t and
W e N(2).

Proof. Let E € {9,,.}, U € N(E) and v € C(0). If {fi.} € E™Y) and limy, f1(€) = f(€)
exists at each £ € E, then {fi} is equicontinuous by Th. 3.1 of [1]. If &, — & in E, then
lim, fx(&,) = fx (&) uniformly for k € N and lim,, f(&,) = lim, limy, fx(£,) = limg lim,, fx (&) =
limyg, fx (&) = f(£). Thus, f: E — C is continuous.

Let £ € E, n € U and [t| < 1. Then f(§+ tn) = limg fr(§ + tn) = limg[ry fu(§) + skfr(n)]
where |ry — 1| < |v(®)|, Isk] < |v(t)|. By passing to a subsequence if necessary, we assume that
re — 1 and s — s. Then |r—1] < |y(@t)|, |s| < |[v(t)] and f(€+tn) = limg[rk fx (&) + sk fr(n)] =
rf(&) +sf(n), f € L, u(E,C). Thus, f € EMY).

Now fi, = f in EOY) and so f, — f in EOU) by Th. 2.7.

The completeness of 20V follows from Th. 2.4. O
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For E € {2,.7} and G C R", let Eg = {£ € E : suppé C G}. Each f € EOY) yields
flEe : Eg — C by flpg(€) = f(€), V€ € Eg. Then Ey = {0} and f|g, =0, Vf € EOU).
Definition 2.4. E = 2. For f € EOY) [et

supp f = R™\ [ U{G CR": G is open, flg, =0}|.

Theorem 2.9. E = 9. For every f € EOU) there is an open Gy C R™ such that f|EcO =0
and supp [ = R™\Gp.

Proof. Let Gy = R"\supp f and {G,, : « € I} = {G C R" : G is open, flg, = 0}. Then
Go = Uner Ga is open and supp f = R™"\Gy.

Suppose that f‘EGO # 0. There is a £ € E such that supp& C Go but f(§) # 0. Then
R™\supp& D R™"\Go = supp f and R" = (R"\supp&) (J(Unc;r Ga). By the partition of unity,
there is a sequence {&} C P such that > poy &x(z) = 1 for all x € R™ and each supp&, C
(R™\supp&) or some Gy, and each x € supp & has a neighborhood which intersects finitely many
of supp & only. But supp€ is compact and so there is an open G C R™ such that supp& C G
and G intersects finitely many of supp& only. Hence, £ = 0 for all but finitely many of
K's. Say that {k : & # 0} = {1,2,--- ,m}. Then &(z) = > 1, &(z)ék(x), Yo € R™. For
k < m, & # 0 shows that supp &, ¢ R™\supp& and so suppér C G for some o € 1. Thus,
f(ggk) =0, k=1,2,---,m

Pick a p € N such that %ffk el, k=1,2,--- ,m. Since supp(%fgk) C supp& C Gy for
some o € 1, f(%ﬁgk) =0, k=1,2,---,m. Then

m m—1

=f(2§£k) Zggm ££m+ §§m>

m—1

= £+ (o )%é“ﬁm)Jrslf(%me) (Ir =11 < (), Js1] < DD

k

Il
,_.)—A

m—

—nf (Y e+ (o - )%Efm)

~
Il
-

3

=rira - rpf( 5&)

i
wb—‘

SR e+ (p— %&m_l%&m)

1

o~
Il

m—2
=g o f(Y €6

mp—1

H rl/ 561

This contmdzcts that f(f) # 0. Hence, f|p,, =0. O
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83 Differentiation
Ec{9.,2,7}, [EVY)]=span(E™Y))in CF.

Definition 3.1. Let f = Y0, apfx € [EOY)] where each ay, € (C fk e EU) - Observing
each € € E is a function defined on R™, for j € {1,2,--- ,n} define 2 W :E—C by
of 23
5y &) =fl=5 ), E€B.
J j
Then 3%(22”:1 arfr)(§) = (Zk 10k fi)(— 617) Zk 1ok fr(— 31;]) = Z;fnzl akng?(g) =
(Z;::1 O‘kng’;)(f) and so %(Zk 1 agfr) = Zk:l O‘kach Jor Zk:l arfr € [E(FY’U)]-

For a multi-index o = (a1, - ,a,) let || = a1 + -+ + a, and D* = 31?1‘91#?. As
in the case of usual distributions, for f € [E(Y)] and every multi-index a = (v, , ),
(D2))(E) = J(-1)"ID2¢), V¢ € B. Bvidently, we have that 50 = 524 amlgi’ia% =
%, etc.

Lemma 3.1. For every multi-index oo, D% : E — E is a continuous linear operator.

Proof. For E = 9, or ., the conclusion is obvious.

Let & — 0 in 2. Then {&} C D for some m € N and & — 0 in Dy, since Dp, s a
subspace of 7 ([3, p. 219]). Then [|[D*&|lp < ||k llja|+p for allp € N and so D*E — 0 in Dy,
i.e., D, — 0 in P. Thus, D : 9 — 2 is sequentially continuous. Then D : 9 — P is

continuous since 2 is bornological and C — sequential. See also Th. 2.1. O

Theorem 3.1. Let o be a multi-index. For every U € N (E) there is a V € N(E) such that
{Def: fe EOUVY c EOY) | vy e C(0),
{Df: f € BTN} € [BOV), ¥y € C(0).
Moreover, if fi, f € EOY) and fi, =5 f, i.e., fu(€) = f(€) at each & € E, then for every
bounded B C E, limg (D f)(§) = (D*f)(&) uniformly for £ € B.
Proof. Let U € N(E). By Lemma 3.1, there is a V € N(E) for which (—1)!*/Dp € U,
VneV.
Let fe EOV) ¢ c E,neV and|t| <1. Then
(DYf)(E+tn) = F((=1)*ID*¢ + t(~1)!*! D)
= rf((=1)*ID%¢) + s f((=1)1*| D*n)
=r(D*f)(&) + s(D*f)(n),
where |r — 1| < |v(t)], |s| < |v(t)|. Thus, D*f € £, v(E,C).
Since both (—=1)1*\D* : B — E and f : E — C are continuous, D*f = fo(-=1)I*ID*: E = C
is also continuous and so D*f € EO:V),
Suppose that fr,f € EU . fi.(&) — f(€), Y& € E, and B C E is bounded. Then
(-1)l*lD*(B) = {(-1)l*ID*¢ : ¢ € B} is bounded and, by Th. 2.7, limy(D® fi)(€) =
limy, fi.((~=1)1*ID*¢) = F((=1)*1D*€) = (D*)(€) uniformly for € B. O
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Example 3.1. (1) Let f € L}, .(R™), v € C(0) and

loc

1O = [ k@l ¢e o
Then [f] € 21?1 (see Exam. 2.1(1)), and

DN = [ @)D 6)(a) do. Ve € 2.
(2) v and U as in Exam. 2.1(2), and

f& = /OO |siné(z)|dx, V& € 21(R).

—0o0

Then f € (21(R))Y] and
(DpE©) = [ Jsinl(-1) D) (@) do

= /00 |sin(D*E) ()| dx, VE € 21(R).

(3) Let U € N(E) and y(t) = \/|t|, YVt € C. For every f € EDUL both sin|f(-)| and
elfOl — 1 are demi-distributions, see Exam. 2.2. Then for every multi-index o,
Dsin|f(-)] =sin|DYf(-)|, DO —1) =P Ol _7q,
In general, Th. 2.6 shows that ho f is a demi-distribution for every h € 2, .(C,C). Then
D%ho f)=hoD"f.
In fact, (D*(ho f))(€) = (ho f)((~1)I*ID*¢) = h[f((-1)*'D*€)] = h{(D*f)(€)] = (ho
Df)(€), VE€ E.
(4) E € {%a, 7} and {|| - |lp};20 is the usual norm sequence on E. For p € N and ¢ > 0,
let Uy ={n € E:|nl, <e}. Then for every multi-index o and £ > 0,
Df € EOUrtiore) v f e EOUre) 5 € C(0), peN,
D f € [ECUrrield)] v f e [EOUre)] 4 € C(0), peN
In fact, |1llp+1a) < & implies [|(=1)1*\Dn]l, < [0]lp4ja <e-

Definition 3.2. ( : R" — C is called a multiplier in E if for every & € E the pointwise product
CE € E and C& — 0 in E whenever &, — 0. For a multiplier ¢ in E and f € [E™V)], define

CfE—=Cby (¢f)§) =f(CE), VE€E.

Theorem 3.2. If  is a multiplier in E, then for every U € N(FE) there is a V € N(E) such
that
{¢f: fe EODYc EOY) vy e C(0),
{¢f: felED) B, vy e ).
Proof. The correspondence & — (€ is a continuous linear operator from E into E and so
there is a V € N(E) such that {n € U for alln € V.
Let fc EOU) and ¢ € E, neV, |t| < 1. Then

(C)E +1tn) = f(CE +tn) = rf(CE) + sf(Cn)
r(CHE) +s(CHm), r =1 < (@), [s] < ()]
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Thus, (f € £, v(E,C). The continuity of (f : E — C follows from the continuity of f and the
continuity of the correspondence & — C&. Hence, (f € EOV). O

Lemma 3.2. Let E € {2,(R), 2(R),.#(R)} be a space of test functions defined on R, i.e.,
n = 1. Pick a { € E for which ffooog(x)d:c =1 and define A : E — E by A(&) = £ —
(ffooo &(x)dx)C, £ € E. Then A is a conlinuous linear operator, ffooo A(&)(z)dx = 0 for all
EcEand A(EW)=¢®) Ve B, keN.

Proof. For &n € E and t € C, A(§+1tn) = &+1tn— ([T (E+tn)(z)da)¢ = & —
(%, €(2) do)C + tn — t(J%, n(w) dz)C = A(€) + tA(n).

Since 1 €EEif& — &inE, then [7_ &(x)de — [ &(x)dx, A(&) = &— ([ &(x) dx)(
— & — (ffooo &(x)dx)¢ = A(E) and so A is sequentmlly contmuous. Since E is bornological, A
18 continuous.

Foré € E and k> 1, A(€®) = ¢®) (ffooo R (z) dx)¢ = &F)

For usual distributions, the equation y’ = 0 has solutions y = const only. However, for
demi-distributions in E(™U), the equation 3’ = 0 has extremely many solutions which are
not constants, and the equation 3’ = f also has extremely many solutions which are demi-

distributions.

Lemma 3.3. Let E be a space of test functions defined on R. Let v € C(0) and U € N(E).
Fory € EOY) o/ =0 if and only if y(€) = 0 whenever ffooo &(z)dx =0.

Proof. Suppose that y' = 0 and £ € E for which ffooo &(x)dx = 0. Letting n(x) =
JE @) dt, e B and € =1 Then y(€) = y(—(-n)’) = y'(—n) = 0.

The converse is obvious. U

In general, we have

Theorem 3.3. Let E € {Z,(R),Z2(R),.7(R)}, a space of test functions defined on R. Let
UeN(E), vy € C(0). Then for every & € E and fo € EY) there is a V € N(E) such that
the equation y' = 0 has a solution f € EOY) which is given by f(£) = fo[(foO &(x) dx)&o)
for & € E. If fo = 1, then fo € E' and f(&) = fol(f7, &(x) dx)éo] = (72 &(x) dz) fo(&o) =
(Joo &) da)([7 () dr) = [T (J7 €o(7) dT)é(x) da, VE € E, ice., | = f,ooio( T)dT €

E’, a constant which is a usual solution of the equation y' = 0.
The solutions of the equation ¢’ = 0 have an interesting property as follows.

Theorem 3.4. Let E € {Z,(R), Z(R)}, a space of test functions deﬁned onR. LetU € N(E),

v € C(0) andy € EWUL Ify' =0, then for every ¢ € E with f x)dr =1,
&) = l( / () da)c], VE € .
e, if (1,6 € E such that [%_ Ci(x)dx = [% C(a)de = 1, then y[(J7 &(x)dx)¢i] =

f E(x)dx)C]) = y(&) forallé € E cmd, n partzcular,

o)

9 = y(o) uhencver [~ ewydn = [ @y =1,

—0Q0
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é— B 77 [e.¢] oo
y(ffooo ) dx) _y(ffooo ") dx) whenever /_OO &(z)dx #0 and /_O<> n(z) dzx # 0.
Proof. If ( € E such that ¢ # &', V& € E, i.e., ffooo ¢(x) # 0, then m( e FE

HOX
(f7 & )dx)( for £ € E. By Lemma 3.2, A: E — E is a continuous linear operator and
f A(&)(x)dx =0, V& € E. Moreover,

and [ fof(“’) de = 1. Pick a ¢ € E for which [*_((z)de = 1 and let A() = € —

/ A vgeE z eR.

Let £ € E and pick a p € N for which %A(g) € U. Then

@zyK[%é@ﬁhK+A@H
—ym[:amdmc+@—n;ma+;A@n

—yKK%fwﬁmxﬁwp—D;A@H+ay§A@»

e 1
=m/ €(a) da)(] + sy(A©).
But SA(E (I% [EA©)(t)dt) forallz € R and so y(%A(f) =y[— (-2 f_ (t)dt)] =
f A )(t) dt) = 0 since y' = 0. Therefore,
:ym[rzuwmevseE
If [2 &) de = [7 n(z) de =1, theny(€) = y[(/7, &(x) dz)(] = y(C) = yl(J=, n(x) dx)(]
=y(n). O
For E € {Z,(R), 2(R)} let
Elz{feE:/_ &(x)dx = 1}.

If y € E’ is a usual distribution such that 3’ = 0, then y must be a constant C' € R, i.e.,
= ffooo C&(x)dx for all £ € E. Hence, y(§) = C, V€ € Ey. Th. 3.3 shows that the same
fact holds for the case of EMUl,

Corollary 3.1. E € {Z,(R),2(R)}, U € N(E) and v € C(0). If y € EDUl such that y =0,

then y(-) is an invariant on Ey, i.e., there is a C € R such that

y(f) = Ca Vf S E1~

Although Th. 3.3 gives a lot of various solutions of the equation y* = 0 for the case of
E™U) Th. 3.3 does not give all solutions. However, for the case of E"U] we can give all

solutions of 4 = 0.

Theorem 3.5. Let E € {Z7,(R), 2(R)} be a space of test functions defined on R, U € N(E)
and v € C(0). Then for every & € E and fo € EDV! there is a V. € N(E) such that the
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equation y' = 0 has a solution f € EMV] which is given by f(&) = fol f_ x) dx)&o] for
€ € E. Conversely, if f € EUl is a solution of the equation y' = O then there erist & € E
and fo € EDU) such that f(€) = fol([, &(z) dz)&o), V€ € E.

Proof. Let & € E, fo € EWUL There is a V. € N(E) such that ([ n(z)dz)&
€U for alln € V. Let f(&) = fol(J7o &(x)da)éo) for € € E. If& € E, n €V and
<1, then F(6+tn) = fol([. (€ + tn)(x) d] = Fol(J5 E(x) di)ei + H([ % n(ir) di)t] =
fol(f 250 (@) dx)éo] + sfol(J 75, n(x) dx)éo] = f(€) + sf(n), where |s| < |y(t)]. Thus, f € EMY]
and ' =0: .

FO=1-)=pl[ €@ )= 1) =0, vEeE.

Conversely, suppose that f € EUl and f/ = 0. Pick a & € E with ffooo &o(x) dzx
=1, andlet fo = f. By Th. 3.4,

- f " (@) dn)el = foll / " @) dn)el, vee B.O

We now consider the equation v/ = f where f € E™U),

Theorem 3 6. Let E € {2,(R), 2(R)} be a space of test functions defined on R, Eq = {§ €
E: [ &@)de =1}, U € N(E) and v € C(0). Let f € EOU) be arbitrary. Then every
¢ € E; gives Ug € N(E) and yc € EOYS) such that ye = f and

w© =1 [ ([ ewacmiam, vee r.

Proof Only need to consider E = Z(R). Pick a ( € Ey and define A¢ : 2(R) — Z(R) by
Ac(¢ f_ 7)dr)¢, V& € Z(R). By Lemma 3.2, A¢ is a continuous linear operator and
1= T)dr = o VE € D(R). Forevery & € Z(R), Ac(€)(x) = L[[*  Ac(&)(r)dr], YV €
R. Smce Ac(f) 2(R), V& € P(R), there ia an ag > 0 such that A¢(§)(x) =0, V|z| > as and
so [T Ac&)(r)dr =0 for v < —ag and [*__ Ac(&)(T)dr = [7_Ac(&)(7)dT =0 for x > ac.
Thus, [*_ AC &) (r )dT gz’ves a test function in 2(R), V¢ € Z2(R).

LetT(&)(x) = [* T)dr, V¢ € Z(R), x € R. Since A¢ is linear, T : 2(R) — 2(R) is
a linear opemtor Let fk — O in 2(R). By Lemma 8.2, Ac(&) — 0 in Z2(R) and so Ac(§) — 0
in Dmo(R) for some mog € N ([3, p. 219]). Then {T (&)} C :@mo( ). In fact, {Ac(&)} C

Do (R), d.e., Ac(&x)(x) =0, V|z| > mg, k €N, hence T(&)(z) = [*_ Ac(&)(T)dr =0 for
x < —mg, k€N and T(&)(x) = [*  Ac(&)(r)dm = [T, Aggk 7)dr = 0 whenever T > myg
and k € N. Since A¢ (&) — 0 in @mo( ),
1T k)0 = sup [T'(&)(x)| = sup | A¢(&e)(T) dr|
|z|<mo |z|<mo J—mo

= /_ 0 |A¢ (k) (T)] dr < 2mo|[A¢(&k)llo = 0, ice., [T(Ek)llo = 0.

Moreover, dgg(f) () = Ac(§)(x), V€ € Z2(R), = € R, i.e, 4z o = Ac(§), V& € Z(R). Since
{T(&k)} C Do (R) and Ac() = 0 in Doy (R), [ T(Ek)llp < maX{IIT(ﬁk)Ilo, [Ac(ER)llp—1} =0
for each p € N. Thus, T(&) — 0 in Dy (R), d.e., T(&) — 0 in 2(R). Therefore, T :

P2(R) — Z(R) is sequentially continuous. Since T is linear and Z(R) is bornological, i.e.,
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P (R) is C — sequential, T is continuous and so there is a balanced U: € N(2(R)) such that
T(Ug) cU.
Define y. : 2(R) — C by

we€) = F-T(@) = £ [ el = (| ewasicmian), vé e 7).
Since both f and T are continuous, y¢ is continuous.
Let ¢ € Z(R), n € Us and |t| < 1. Since U; is balanced and f € 2(R)V), T(—n) €
T(U¢) CU and
yc(§+tn) = f(=T (€ +tn) = f(=T(§) + tT(=n)) =rf(=T()) + sf(T(-n))
=rf(=T() + sf(=T(n) = ryc(&) + syc(n), |r =1 < @), Is| < [ (B)].
Thus, ye € 2(R)Ue),
For every & € 2(R), T(€)(x) = [T Ac&)(r)dr = [T _[€(T) — (J2o € (s)ds)((T)]
dr = [*__&(r)dr = &(), VxGR ie., T(E)=¢ VE€ P(R). Then
Ye(§) = ye(=¢) = fF(=T(=€)) = F(T(§) = f(£), V€ € 2(R),
ie,yo=f. 0O
Theorem 3.7. Let E € {2,(R),2(R)} and f € E™U). For every & € E, fo € EY) and
¢ € E with [%_((x)dx #0 let

— Al / st dnjal + 1 [ letn) -

then g € [EW)] for some W € N(E) and g’ = f.
Proof. Let & € E, fo € EOY) and ¢ € E with f°° C(x)dr #0. Let

f0/§ Ydz)&ol, €€ E,

i ds
ve() = (- / () - f fi) ((Ndr), €€ E.

Then go € EOV) for some V. € N(E) and g = 0 by Th. 3.3, and yo € EOYS for some
balanced U; € N(E) and yi = f by Cor. 3.3.

Let W = V(O U;. Then W € N(E) and EOV)|JEOYS) ¢ EOW). Thus, go € EOW),
ye € EOW) g =go+yc € [EOW)] and g’ = (90 +yc) = g0 +y, = f. O

S0 E(s) ds

mf(ﬂ] dr), V§E€ E,

Further discussions of ordinary and partial differential equations of demi-distributions will

be interesting but we reserve these discussions for another paper.

84 Fourier Transform

Let * +iy = (1 + Y1, ,Tn +iyn) € C*, |yl = lyal + -+ + |yn]. For ¢ > 0 and

a= (a1, o), a multi-index, let (z +iy)* = [Ti_, (@x + iyx)** and
a)={¢e CC" : ¢ is entire; for every multi-index o, |(x + iy)*¢(z + iy)| < Ca(g)e“‘y‘},
||<||P = sup |(x+7’y)aC(x+7’y)|e_alylu p= 07172737"' )

z+iyeCn,|a|<p
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z={cCe C" : ¢ is entire, Fa(¢) > 0 such that |(z + iy)*C(z + iy)| < CQ(C)ea(O‘y‘}.
The Fourier transform F'(§) of £ € Z is given by

F(&)(o +1it) = ((0 +i1) = / §(@)e’ @ dy, (3,0) =Y wjoy, (v,7) =Y T
j=1 j=1

Then F[%,]| = Z,, F|9] = Z, and operators
F:9,—-Zy, F: 92, F':12,-59, F':Z7-59
are both continuous and linear ([4, 3.1.1—3.1.2]).
For &€ € .77 let
F(¢)(o) =<((o) = /f(m)ei(x"’) dz, Vo € R™.
Then F(.) = . and both F and F~! are continuous and linear.

Definition 4.1. Let E € {2,,2,}, U € N(E) and v € C(0). For f € E™Y) define
f:F(E) = C by f(¢) = 2n)"f(F~Y(C)), V¢ e F(E). We write f = F(f) and so

F(N)(F©) = 2m)"f(€), V[ e B, e E.
Henceforth, F € {2,, 2,7}, U € N(E) and v € C(0).

Theorem 4.1. F(E™Y)) = (F(E))FU),
Proof. Since both F' and F~1' are continuous linear operators, F(U) € N(F(E)). Let
feEYY) ¢ e F(E),ne F(U) and |t| < 1. Then
F(f)(CHtn) = 2m)" f(F7H¢ + 1) = 2m)" F(ETHO) + tF ™ ()
= @2m)"[rfF(E7HQ) + sf(F ()]
= r(2m)" f(F7H(C)) + s(2m)" f(F ™ (n))
=rE()Q) +sF(f)m),  Ir=1 <@l [s| < ()]
Thus, F(f) € £, pw)(F(E),C).
Let (o, — ¢ in F(E). Then F7Y((y) — F~Y¢) in E and so F(f)(¢a) = 2m)" f(F~1(¢a)) —
2m)"f(F~1(¢)) = F(f)(¢). This shows that F(f) is continuous and F(f) € (F(E))™-FU)),
Conwersely, for g € (F(E))"FW) define
f(&) = (@2m)""g(F(¢)), V€€ E.
If¢ e E, nelU and|t| <1, then
f(€+1tn) = 2m)""g(F (& +tn)) = 2m)"g(F (&) + tF(n))
= (2m)""rg(F(&)) + sg(F(n))]
=rf(&)+sfn),  [r=1<h@®)] Is| < (@),
i.e., f e 2, u(E,U).
Since both g and F are continuous, f is continuous so f € EU) and
F(f)(Q) = 2m)" fF(F7H(Q)) = 9(¢), V¢ € F(E),
ie.,, g=F(f). O
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Definition 4.2. Let [(F(E))"FU)] = span (F(E))F©) jn CFE) . For f e [ECV)] define
F(f): F(E) = C by
F(AEFEE) = @n)"f(E), vEe E.

Theorem 4.2. If f =3 1" | ay fr where ay, € C and fi, € EOF) | then F(f) = S0, arF(fx)
€ [(F(E)FUN], and

F(EC) = [(F(E)0F O]
Moreover, F : [EU)] — [(F(E))FUN] is w x —wx continuous and linear.

Now we consider the case of n = 1. Let .(R) be the space of infinitely differentiable but
rapidly decreasing functions defined on R. Then F(7(R)) = .(R), F((-*(R))) = (Y (R))".

A constant C € (Z(R)) means that C(¢) = [ C(¢(0)do for all { € .#(R) ([4, 3.2.1]), and
C = F(Ca) CF(5). Infact, CF(8)(F(€)) = 2rCH(&) = 2nCE(0) = 2nC 5= [7_ e 07 F(&)(0)do
= [~ o)do = C(F(§)) for all £ € S (R).
Lemma 4.1. Lety € (L (R)), a usual distribution. Then

y(ioC(o)) =0 for all ¢ € L (R)

if and only if y = C5, where C is a constant.

Proof.  Suppose that y € (Z(R)) and y(ic((o)) = 0, V¢ € F(R). Since (L (R)) =
F((Z(R))"), there is a usual distribution f € (L (R)) such thaty = F(f) and

7€) = 1(-€) = 5-F(N(F((-6))) = 5= F(H)(~ioF(~€)(2)

27
1 .
= 5 y(ioF()(0)) =0, V€ € Z(R),
i.e., ' = 0. But f is a usual distribution so f = C, a constant. Thus, y = F(f) = F(C) =

CF(1) =C6¢.

Conversely, if y = Cd where C is a constant, then

y(io((o)) = Co(ic¢(0)) =0, V(¢ € L(R). O

However, there exists a lot of various demi-distributions on . (R) which satisfy the condition
y(io¢(o)) =0, V¢ € L(R).
Theorem 4.3. Let U e N(Z[R)) and v € C(0). Pick an arbitrary fo € (Z(R))Y) and
& € F(R) and let f(£) = fol(J7o @) dt)&o], VE € F(R). Then f € (F(R)Y) for some
V e N(Z(R)) and F(f) (5”(1&))("Y W) such that

F(f)(io¢(0)) =0, V(€ L (R).

Proof. By Th. 3.3, there is a V € N(Z(R)) such that f € (L(R))™"Y) and f' = 0. If

¢ € SR), then ( = F(§) for some £ € (R) and
F(f)(io¢(0)) = F(f)(icF(§)(0)) = F(f)(—ioc F(=£)(0))
= F(f)(F((=¢))) =2nf(=¢) =2nf'(§) = 0.0

85 Convolutions

In this section, F € {2,.7}, U € N(E) and v € C(0).



204 Appl. Math. J. Chinese Univ. Vol. 36, No. 2

Definition 5.1. ([4, 3.3.2]) A distribution fy € E’ is called a convolution multiplier on E if
the following (i) and (ii) hold for fy:
(i) if for each & € E define fox&:R™ = C by

(fox&)(x) = fol§(z +)), Vo € R,
then fox& € E;
(i1) if & — 0 in E, then fox &, — 0 in E.

Lemma 5.1. If fy is a convolution multiplier on E, then fo*-: E — E is a continuous linear

operator.

§o1+ - +an

[e3
n 9z oA

Following [4], P(D) = Y aaD* = 3 aq,,. is a finite sum, where a, € C

and a = (a1, , @) is a multi-index. For £ € F and = € R, aggijﬂ = g(éz(f::j)) 6(15:;73-) -
gé(f::j)) (gir-; g—:;) = gfw(fi:j)) and, by induction, it is easy to see that

olelg(x 4+ 7) B olelg(x 4+ 7)
oryt - O Oz + 1) O(zy + TR)
for every multi-index « and so there is no any ambiguity for the notation D*¢(x + -), i.e.,
olelg(x +7) ollg(x + 1)
D® D) = =
e+ ot - O™ Oay +71)% - 0Ty + T )

= (D) (x + ).

Theorem 5.1. If fy € E' is a convolution multiplier on E, then P(D)fo is also a convolution

multiplier on E, and

O aaDfo) # €= aa(~1)1*Ifo x D¢, V& € E.

Definition 5.2. For every convolution multiplier fo € E' and f € [EOV)] define the convolu-
tion fox f: E— C by
(fox [)(&) = f(foxE), VEEE.

Example 5.1. (1) For every € € E, § & = &, (D) x £ = (=1)I*ID*¢, and for every
fE[EDD], 6 f=f, (DY) *f=Df.

In fact, for € € E and x € R", (§ x&)(x) = 6(&(x + ) = £(x +0) = &(x), ((D*5) =
&)(@) = (D°0)(E(w +-)) = o((~ )l 2oy — (~1)lel(Dg) (@), ive., 3¢ = &, (D6) % =
(=1)leIDe¢. Then for every € € E,

(8% £)(&) = F(5%€) = F(€), (D0) + £)(€) = F((D*0) x€&) = F((-1)*ID*¢) = (D*£)(¢).

(2) Let f € E' and U = {n € E : |f(n)| < 1}. By Cor. 2.1, ho f € EOY) for each
he Z,1(C,C) and fo* (ho f)=ho (fox[f) for every convolution multiplier fo € E’. In fact,

(fox (ho f))(&) = (ho f)(fox&) = h[f(fox &) = hl(fox £)(&)] = [ o (fox (&), V&€ E.

Theorem 5.2. Let fo € E’ be a convolution multiplier. For every U € N(E) there is a
V € N(E) such that
fox fe EOV) v fe BN,
fox feBOYV) v fe[B0D).
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Henceforth, we write fox& = fo(£(z+-)) = (fox&)(z), see [4, 3.3.2]. Observe that tf € EV)
whenever t € C and f € EOU),

Lemma 5.2. If fo € E’ is a convolution multiplier and t € C, then
t(fox&) = (tfo)x& VE € E;
t(fox f) = fox (tf), Vf e [EOD];

t(fox f)=(tfo)x f, VfeE.
Proof. t(fo* &) =tfo(E(x+ ) = (tfo)(E(z +-)) = (tfo) x&, VEE E. For f € [E™Y)] and
Ee B, t(fox f)E) =tf(fox&) = tf)(fox&) = (fox ). If f €L, then t(fox* f)(§) =
tf(fox &) = f(t(fox&)) = f((tfo) x&§) = ((tfo) * f)(§) for all§ € E. DI

As usual, e = (1,0,---,0), e2 = (0,1,0,---,0), ---, e, = (0,---,0,1).

Theorem 5.3. If fo € E’ is a convolution multiplier and « is a multi-indez, then D*(fo*&) =
fox DY for £ € E, and

D*(fox f) = (D*fo) * f = fox D*f, ¥ f € [EOV)].

Recall that if f € E’ for which supp f is bounded in R", then f must be a convolution
multiplier ([4, Th. 3.3.4]). Then we can develop the result of continuity of convolution ([4, Th.
3.3.5)).

First, we give an improvement of Th. 3.3.5 of [4] as follows.

Theorem 5.4. If {fi} C E' such that fr — f, i.e., fu(€) — f(€) at each € € E (f € E'
by Th. 2.8) and there is a bounded F' C R™ such that supp fi, C F, Vk € N, then for every
g € [EY)] and bounded B C E,

lim(fy, * 9)(€) = (f * 9)(&) uniformly for € € B.

We also give some simple facts before our main result Th. 5.6.

Theorem 5.5. Let fo € E' be a convolution multiplier, U € N(E) and v € C(0). There is a
V € N(E) for which fo*-: [EOV)] = [E™V)] is a linear operator such that fo x f € EO:Y)
for each f € EOV). Moreover, if fr —» f in EOU) e, f, fr € EOU) and fi(€) — f(€) at
each € € E, then for every bounded B C E, limy(fo * fi)(&) = (fo * £)(&) uniformly for £ € B.

We now have a strong continuity result for convolution as follows.

Theorem 5.6. Let {f,} C E' be a sequence of usual distributions such that fp — f, i.e.,
(&) = f(&) at each £ € E (f € E' by Th. 2.8) and there is a bounded F C R™ such that
supp fr C F, Yk € N. If gp — g in EOU) e, g, g € EU) for all k and gi(€) — g(€) at
each £ € E, then for every bounded B C E, limy m—s+00 ([ * gm)(§) = (f * 9)(&) uniformly for
& € B and, in particular, limg(fr * g )(§) = (f * g)(&) uniformly for £ € B, and (fi * gx)(&k) —
(f *g)(&) whenever &, — & in E.

Proof. As in the proof of Th. 5.4, it follows from fi — f in E' and g,gr € EOY) that
there is a V € N(E) such that f g, fm *gr € EY) for all k,m € N.
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Let € € E. As was noticed in the proof of Th. 5.4, fm *x& — f+& in E and so lim,, (fn, *
9:)(&) = limy, gi(fm *x &) = gi(f x &), Vk € N. But {fn, &} is bounded in E and, by Th.
2.2, limg(fom * gr) (&) = img gi(fim &) = g(fm * &) = (fim * 9)(§) uniformly for m € N. Then
g m—s 400 (fm * k) (§) = limy, limy (fr * g ) (§) = limy, (fim * 9)(§) = limy, g(frn &) = g(f*§) =
(f £9)(6), VE € E.

Let B be a bounded subset of E. If limy 100 (fm * gx) (&) = (f % g)(§) is not uniformly for
& € B, then there existe > 0, {§,} C B and integer sequences k1 < ko < -+ andmy < mg < -
such that

(*) |(fm, % 9k, )(&) = (Fxg)(&)] 26, v=1,2,3,---.
Since f* g, fm, * gk, € E®V) for allv € N and
i, *96,)(E) = | Tim (o g)(€) = (/ = )(€), VEE B,
it follows from Th. 2.2 or Th. 2.7 that lim, (fm, * gk, ) (&) = (f * 9)(§) uniformly for £ € B and
so there is a vy € N such that
|(frm, % 98, )(&0) = (f * 9) (&) <&, Vv > 1.
This contradicts (x) and so limg m— oo (fm * g1)(€) = (f * 9)(€) uniformly for £ € B. O
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