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Demi-linear analysis II

—demi-distributions

LI Rong-lu1 ZHONG Shu-hui2 KIM Do-han3 WU Jun-de4

Abstract. In this paper, we develop the theory of demi-distributions which generalizes the

usual distribution theory. In particular, we show that many results on differentiations, Fourier

transforms, and convolutions can be generalized to demi-distributions theory.

§1 Introduction

Let X be a topological vector space and N (X) the family of neighborhoods of 0 ∈ X, and

C(0) the set of complex valued functions γ satisfying

1. γ : C → C;

2. limt→0 γ(t) = γ(0) = 0;

3. |γ(t)| ≥ |t| if |t| ≤ 1.

Let Y be a topological vector space, and K be R or C. A mapping f : X → Y is said to

be demi-linear if f(0) = 0 and there exist γ ∈ C(0) and U ∈ N (X) such that every x ∈ X,

u ∈ U and t ∈ {t ∈ K : |t| ≤ 1} yield r, s ∈ K for which |r − 1| ≤ |γ(t)|, |s| ≤ |γ(t)| and
f(x+ tu) = rf(x) + sf(u).

We denote by Lγ,U (X,Y ) the demi-linear mappings related to γ ∈ C(0) and U ∈ N (X), and

by Kγ,U (X,Y ) the subfamily of Lγ,U (X,Y ) satisfying the following property: if x ∈ X, u ∈ U

and |t| ≤ 1 then

f(x+ tu) = f(x) + sf(u)

for some s with |s| ≤ |γ(t)|.
As stated in [1, 2], the family of demi-linear mappings is a natural and valuable extension

of the family of linear operators.
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For a > 0, Da =
{
ξ ∈ CRn

: ξ is infinitely differentiable and ξ(x) = 0 whenever

|x| =
√

x2
1 + · · ·+ x2

n > a
}

has the locally convex Fréchet topology which is given by the

norm sequence {∥ξ∥p = sup|x|≤a max|q|≤p |Dqξ(x)|}∞p=0.

Let D =
∪∞

m=1 Dm be the strict inductive limit of {Dm}.
Let S = {ξ ∈ CRn

: ξ is infinitely differentiable and rapidly decreasing}. Equipped with

the norm sequence {∥ξ∥p = sup|k|,|q|≤p,x∈Rn |xkDqξ(x)|}∞p=0, S is a locally convex Fréchet

space, where k = (k1, k2, · · · , kn) is a multi-index and xk = xk1
1 xk2

2 · · ·xkn
n .

The spaces {Da,D ,S } are called the space of test functions.

The distributions of L. Schwartz, the generalized distributions of Beurling and the ultradis-

tributions of Roumieu are continuous linear functionals defined on some suitable spaces of test

functions.

In this paper, E ∈ {Da,D ,S } is a space of test functions and a function f : E → C is called

a demi-distribution if f is continuous and demi-linear. Thus, the family of demi-distributions

includes all usual distributions and many nonlinear functionals ([1, 2]).

By using the equicontinuity results in [1], we show that the family of demi-linear mappings

can be used to develop the theory of distributions. For instance, in the case of the usual

distributions the simplest equation y′ = 0 has solutions y = constant only. However, we

will show that the equation y′ = 0 has extremely many solutions which are nonlinear demi-

linear functionals, and the equation y′ = f also has extremely many solutions which are demi-

distributions. Moreover, we will show that the family of demi-distributions is closed with respect

to extremely many of nonlinear transformations such as |f(·)|, sin |f(·)|, e|f(·)| − 1, etc.

§2 Demi-distributions

Firstly, note that the space D is an (LF ) space and so D is both barrelled and bornological

([3, p. 222]). Thus, D is C − sequential ([3, p. 118]). There is an important result which

says that every sequentially continuous linear operator from a C − sequential locally convex

space to a locally convex space must be continuous ([3, p. 118]). Now, we improve this result

as following:

Theorem 2.1. Let X,Y be locally convex spaces, U ∈ N (X) and γ0(t) = t, ∀ t ∈ C. If X is

C − sequential and f ∈ Kγ0,U (X,Y ) is sequentially continuous, then f must be continuous.

Proof. Let V ∈ N (Y ). Pick balanced convex neighborhoods U0 ∈ N (X) and V0 ∈ N (Y )

such that U0 ⊂ U , V0 ⊂ V .

Let W = f−1(V0). For u,w ∈ U0

∩
W and scalars α, β with |α| + |β| ≤ 1, it follows from

f ∈ Kγ0,U (X,Y ) that

f(αu+ βw) = f(αu) + sf(w) = s1f(u) + sf(w) ∈ s1V0 + sV0,

where |s1| ≤ |γ0(α)| = |α|, |s| ≤ |γ0(β)| = |β|. Then |s1| + |s| ≤ |α| + |β| ≤ 1 and so

f(αu+ βw) ∈ V0, αu+ βw ∈ U0

∩
W . This shows that U0

∩
W is both balanced and convex.

Let xk → 0 in X. Then xk ∈ U0 eventually. Since f is sequentially continuous, f(xk) →
f(0) = 0 and f(xk) ∈ V0 eventually, i.e., xk ∈ W eventually. Thus, xk ∈ U0

∩
W eventually
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and so U0

∩
W is a sequential neighborhood of 0 ∈ X. Since X is C − sequential, U0

∩
W ∈

N (X) and f(U0

∩
W ) ⊂ V0 ⊂ V . This shows that f is continuous at 0.

Suppose (xα)α∈I is a net in X such that xα → x ∈ X. Pick an α0 ∈ I for which xα − x ∈
U, ∀α ≥ α0. For α ≥ α0,

f(xα) = f(x+ xα − x) = f(x) + sαf(xα − x), |sα| ≤ |γ0(1)| = 1.

But f(xα − x) → f(0) = 0 and so f(xα) → f(x). �

Theorem 2.2. Suppose that E ∈ {Da,D ,S }, γ ∈ C(0), U ∈ N (E) and Y is a topological

vector space. If f, fν ∈ Lγ,U (E, Y ) are continuous (ν = 1, 2, 3, · · · ) and fν(ξ) → f(ξ) at each

ξ ∈ E, then for every bounded B ⊂ E, limν fν(ξ) = f(ξ) uniformly for ξ ∈ B.

Proof. Since both Da and S are Fréchet spaces having the Montel property, we only need

to consider D . Suppose that B ⊂ D is bounded but limν fν(ξ) = f(ξ) is not uniform for ξ ∈ B.

Then there exist V ∈ N (Y ), {ξk} ⊂ B and integers ν1 < ν2 < · · · such that

fνk
(ξk)− f(ξk) ̸∈ V, k = 1, 2, 3, · · · .

Pick a balanced W ∈ N (Y ) for which W +W +W ⊂ V . Since B is bounded in D , B ⊂ Dm

for some m ∈ N ([3, p. 219]) and B is relatively compact in the Fréchet space Dm ([4, Th.

1.6.2]). By passing to a subsequence if necessary, we say that ξk → ξ ∈ Dm. Since fν(η) → f(η)

at each η ∈ Dm, {fν}∞1 is pointwise bounded on Dm and so {fν}∞1 is equicontinuous on Dm

by Th. 3.1 of [1]. By Cor. 3.1 of [1], limk fν(ξk) = fν(ξ) uniformly for ν ∈ N and so there

is a k0 ∈ N such that fν(ξk) − fν(ξ) ∈ W for all ν ∈ N and k > k0. Since f : D → Y is

continuous and fν(ξ) → f(ξ), there exist ν0, k1 ∈ N such that f(ξ)− f(ξk) ∈ W for all k > k1

and fν(ξ)− f(ξ) ∈ W for all ν > ν0.

Pick an integer k2 ≥ k0 + k1 for which νk > ν0 whenever k > k2. Then for every k > k2 we

have that

fνk
(ξk)− f(ξk) = fνk

(ξk)− fνk
(ξ) + fνk

(ξ)− f(ξ) + f(ξ)− f(ξk)

∈ W +W +W ⊂ V.

This is a contradiction and so limν fν(ξ) = f(ξ) uniformly for ξ ∈ B. �

In general, Lγ,U (X,Y ) $ Wγ,U (X,Y ) where Y is locally convex. Using Th. 4.1 of [1]

instead of Th. 3.1 of [1], the above proof gives an improved result as follows.

Theorem 2.3. Let E ∈ {Da,D ,S }, γ ∈ C(0) and U ∈ N (E). Let Y be a locally convex space

and f, fν ∈ Wγ,U (E, Y ) are continuous, ν = 1, 2, 3, · · · . If fν(ξ) → f(ξ) at each ξ ∈ E, then for

every bounded B ⊂ E, limν fν(ξ) = f(ξ) uniformly for ξ ∈ B.

For Kγ0,U (X,Y ), we have a much stronger result as follows.

Theorem 2.4. Let E ∈ {Da,D ,S }, U ∈ N (E) and Y be a locally convex space. Let fν ∈
Kγ0,U (E, Y ) be continuous, ∀ ν ∈ N. If limν fν(ξ) = f(ξ) exists at each ξ ∈ E, then f is also a

continuous mapping in Kγ0,U (E, Y ) and for every bounded B ⊂ E, limν fν(ξ) = f(ξ) uniformly

for ξ ∈ B.
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Proof. Only need to consider E = D . Let ξ ∈ E, η ∈ U and |t| ≤ 1. Then f(ξ + tη) =

limν fν(ξ + tη) = limν(fν(ξ) + sνfν(η)), where |sν | ≤ |γ0(t)| = |t| ≤ 1. Say that sνk
→ s. Then

|s| = limk |sνk
| ≤ |γ0(t)| and
f(ξ + tη) = lim

k
fνk

(ξ + tη) = lim
k
(fνk

(ξ) + sνk
fνk

(η)) = f(ξ) + sf(η).

Thus, f ∈ Kγ0,U (E, Y ).

Let ξk → ξ in D . Then ξk → ξ in Dm for some m ∈ N ([3, p. 219]). Since fν(·) → f(·),
{fν}∞1 is pointwise bounded on Dm and, by Cor. 3.1 of [1], limk fν(ξk) = fν(ξ) uniformly

for ν ∈ N. Then limk f(ξk) = limk limν fν(ξk) = limν limk fν(ξk) = limν fν(ξ) = f(ξ). Thus,

f : D → Y is sequentially continuous and so f is continuous by Th. 2.1.

Now the desired follows from Th. 2.2. �

Henceforth, E ∈ {Da,D ,S }.

Definition 2.1. f : E → C is called a demi-distribution if f is continuous and f ∈ Lγ,U (E,C)
for some γ ∈ C(0) and U ∈ N (E).

Let E(γ,U) be the family of demi-distributions related to γ ∈ C(0) and U ∈ N (E). Let

[E(γ,U)] be the span (E(γ,U)) in CE , i.e., [E(γ,U)] =
{
finite sum

∑
tkfk : tk ∈ C, fk ∈ E(γ,U)

}
.

Let E′ be the space of usual distributions, i.e., E′ is the space of continuous linear function-

als. Obviously, E′ ⊂ E(γ,U), ∀U ∈ N (E), γ ∈ C(0).

Example 2.1. (1) For every f ∈ L1
loc(Rn) define [f ] : D → R by [f ](ξ) =

∫
Rn |f(x)ξ(x)| dx, ξ ∈

D .

Let γ ∈ C(0) and ξ, η ∈ D , |t| ≤ 1. For every x ∈ Rn there exists α(x) ∈ [−|t|, |t|] such that

|ξ(x) + tη(x)| = |ξ(x)|+ α(x)|η(x)| and

[f ](ξ + tη) =

∫
Rn

|f(x)(ξ + tη)(x)| dx

=

∫
Rn

|f(x)||ξ(x) + tη(x)| dx

=

∫
Rn

|f(x)|[|ξ(x)|+ α(x)|η(x)|] dx

=

∫
Rn

|f(x)ξ(x)| dx+

∫
Rn

α(x)|f(x)η(x)| dx

= [f ](ξ) +

∫
Rn

α(x)|f(x)η(x)| dx.

If
∫
Rn |f(x)η(x)| dx = 0, then 0 ≤ |

∫
Rn α(x)|f(x)η(x)| dx| ≤

∫
Rn |α(x)f(x)η(x)|dx

≤ |t|
∫
Rn |f(x)η(x)| dx = 0 and so

∫
Rn α(x)|f(x)η(x)| dx = 0 = 0[f ](η), where 0 ≤ |γ(t)|.

If
∫
Rn |f(x)η(x)| dx ̸= 0, then

|
∫
Rn α(x)|f(x)η(x)| dx∫

Rn |f(x)η(x)| dx
| ≤ |t| ≤ |γ(t)|,

so
∫
Rn α(x)|f(x)η(x)| dx = s

∫
Rn |f(x)η(x)| dx = s[f ](η) where s =

∫
Rn α(x)|f(x)η(x)| dx∫

Rn |f(x)η(x)| dx , |s| ≤
|t| ≤ |γ(t)|. Thus,

[f ](ξ + tη) = [f ](ξ) + s[f ](η), |s| ≤ |γ(t)|,
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i.e., [f ] ∈ Kγ,D(D ,R)
∩

D(γ,D) but [f ] is not a usual distribution.

(2) Let D1(R) =
{
ξ ∈ RR : ξ is infinitely differentiable and ξ(x) = 0 for |x| > 1

}
. Let

γ(t) = π
2 t for t ∈ R and U =

{
ξ ∈ D1(R) : max|x|≤1 |ξ(x)| < 1

}
. Define f : D1(R) → R by

f(ξ) =

∫ ∞

−∞
| sin ξ(x)| dx, ξ ∈ D1(R).

It is easy to show that if a ∈ R and u, t ∈ [−1, 1] then sin(a + tu) = sin a + s sinu with

|s| ≤ π
2 |t|. Hence, for ξ ∈ D1(R), η ∈ U and |t| ≤ 1 we have that

f(ξ + tη) =

∫ ∞

−∞
| sin[ξ(x) + tη(x)]| dx

=

∫ ∞

−∞
| sin ξ(x) + α(x) sin η(x)| dx (|α(x)| ≤ π

2
|t|)

=

∫ ∞

−∞
[| sin ξ(x)|+ β(x)| sin η(x)|] dx (|β(x)| ≤ |α(x)| ≤ π

2
|t|)

=

∫ ∞

−∞
| sin ξ(x)| dx+

∫ ∞

−∞
β(x)| sin η(x)| dx

=

∫ ∞

−∞
| sin ξ(x)| dx+ s

∫ ∞

−∞
| sin η(x)| dx (|s| ≤ π

2
|t| = |γ(t)|)

= f(ξ) + sf(η), |s| ≤ π

2
|t| = |γ(t)|.

Thus, f ∈ Kγ,U (D1(R),R)
∩
(D1(R))(γ,U) but f is not a usual distribution.

(3) For the case of Rn = R, we write that S = S (R). Let U =
{
η ∈ S (R) : supx∈R |η(x)| <

1
}
and γ(t) = et for t ∈ C. Then define g : S (R) → C by

g(ξ) =
√
−1

∫ 1

−1

(e|ξ(x)| − 1) dx, ξ ∈ S (R).

For ξ ∈ S (R), η ∈ U and |t| ≤ 1,

g(ξ + tη) =
√
−1

∫ 1

−1

(e|ξ(x)+tη(x)| − 1) dx

=
√
−1

∫ 1

−1

(e|ξ(x)|+α(x)|η(x)| − 1) dx (α(x) ∈ [−|t|, |t|])

=
√
−1

∫ 1

−1

(e|ξ(x)|+α(x)|η(x)| − eα(x)|η(x)| + eα(x)|η(x)| − 1) dx

=
√
−1

∫ 1

−1

eα(x)|η(x)|(e|ξ(x)| − 1) dx+
√
−1

∫ 1

−1

(eα(x)|η(x)| − 1) dx.

If
∫ 1

−1
(e|ξ(x)| − 1) dx = 0, then 0 ≤

∫ 1

−1
eα(x)|η(x)|(e|ξ(x)| − 1) dx ≤ e|t|

∫ 1

−1
(e|ξ(x)| − 1) dx = 0

and so
√
−1

∫ 1

−1
eα(x)|η(x)|(e|ξ(x)| − 1) dx = 0 =

√
−1

∫ 1

−1
(e|ξ(x)| − 1) dx = g(ξ) = rg(ξ), where

r = 1, |r − 1| = 0 ≤ |γ(t)|. If
∫ 1

−1
(e|ξ(x)| − 1) dx ̸= 0, then

√
−1

∫ 1

−1
eα(x)|η(x)|(e|ξ(x)| − 1) dx =
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∫ 1
−1

eα(x)|η(x)|(e|ξ(x)|−1) dx∫ 1
−1

(e|ξ(x)|−1) dx

√
−1

∫ 1

−1
(e|ξ(x)| − 1) dx, where

|
∫ 1

−1
eα(x)|η(x)|(e|ξ(x)| − 1) dx∫ 1

−1
(e|ξ(x)| − 1) dx

− 1| =
|
∫ 1

−1
(eα(x)|η(x)| − 1)(e|ξ(x)| − 1) dx|∫ 1

−1
(e|ξ(x)| − 1) dx

=
|
∫ 1

−1
eθ(x)α(x)|η(x)|α(x)|η(x)|(e|ξ(x)| − 1) dx|∫ 1

−1
(e|ξ(x)| − 1) dx

(0 ≤ θ(x) ≤ 1)

≤
∫ 1

−1
e|t||t|(e|ξ(x)| − 1) dx∫ 1

−1
(e|ξ(x)| − 1) dx

(∵ |α(x)| ≤ |t|, |η(x)| ≤ 1)

=e|t||t| ≤ e|t| = |γ(t)|. (∵ |t| ≤ 1)

Thus,
√
−1

∫ 1

−1
eα(x)|η(x)|(e|ξ(x)|−1) dx = r

√
−1

∫ 1

−1
(e|ξ(x)|−1) dx = rg(ξ), where |r−1| ≤ |γ(t)|.

If g(η) =
√
−1

∫ 1

−1
(e|η(x)| − 1) dx = 0, then η(x) = 0 a.e. in [−1, 1] and g(ξ + tη) =

√
−1

∫ 1

−1
(e|ξ(x)+tη(x)| − 1) dx =

√
−1

∫ 1

−1
(e|ξ(x)| − 1) dx = g(ξ) = rg(ξ) + sg(η) where r = 1 and

s = 0, |r − 1| = 0 ≤ |γ(t)|, |s| = 0 ≤ |γ(t)|.
Suppose that g(η) =

√
−1

∫ 1

−1
(e|η(x)| − 1) dx ̸= 0. Then

√
−1

∫ 1

−1

(eα(x)|η(x)| − 1) dx =

∫ 1

−1
(eα(x)|η(x)| − 1) dx∫ 1

−1
(e|η(x)| − 1) dx

g(η),

where

|
∫ 1

−1
(eα(x)|η(x)| − 1) dx∫ 1

−1
(e|η(x)| − 1) dx

| =
|
∫ 1

−1
eδ(x)α(x)|η(x)|α(x)|η(x)| dx|∫ 1

−1
eθ(x)|η(x)||η(x)| dx

(0 ≤ δ(x), θ(x) ≤ 1)

≤
|
∫ 1

−1
eδ(x)α(x)|η(x)||α(x)||η(x)| dx|∫ 1

−1
|η(x)| dx

≤
∫ 1

−1
e|t||t||η(x)| dx∫ 1

−1
|η(x)| dx

= e|t||t| ≤ e|t| = |γ(t)|.
Then g(ξ + tη) = rg(ξ) + sg(η), where |r − 1| ≤ |γ(t)|, |s| ≤ |γ(t)|, i.e., g ∈ Lγ,U (S (R),C).
Since ξk → ξ in S implies that ∥ξk − ξ∥0 = supx∈R |ξk(x) − ξ(x)| → 0 and so g(ξk) =√
−1

∫ 1

−1
(e|ξk(x)| − 1) dx →

√
−1

∫ 1

−1
(e|ξ(x)| − 1) dx = g(ξ), i.e., g : S (R) → C is continuous.

Thus, g ∈ (S (R))(γ,U).

For every C ≥ 1 and ε > 0, KC,ε(R,R) includes a lot of nonlinear functions. Pick an

h ∈ KC,ε(R,R) and let f(x+ iy) = ih(|x+ iy|), ∀x+ iy ∈ C. If |u+ iv| < ε and |t| ≤ 1, then

f [x+iy+t(u+iv)] = ih(|x+iy+t(u+iv)|) = ih(|x+iy|+α|u+iv|) = ih(|x+iy|)+sih(|u+iv|) =
f(x + iy) + sf(u + iv), where α ∈ [−|t|, |t|] ⊂ [−1, 1] and |s| ≤ C|α| ≤ C|t|. This shows that

f ∈ KC,ε(C,C) and, therefore, KC,ε(C,C) also includes a lot of nonlinear functions.

Let E[γ,U ] = {f ∈ Kγ,U (E,C) : f is continuous}. Then E[γ,U ] ⊂ E(γ,U).

Theorem 2.5. If A ⊂ E′ is an equicontinuous family of distributions and ε > 0, then there is
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a U ∈ N (E) such that{
h ◦ f : h ∈ Lγ,ε(C,C), f ∈ A} ⊂ E(γ,U), ∀ γ ∈ C(0),{
h ◦ f : h ∈ Kγ,ε(C,C), f ∈ A} ⊂ E[γ,U ], ∀ γ ∈ C(0).

Proof. Since A is equicontinuous, there is a U ∈ N (E) such that |f(η)| < ε, ∀ f ∈ A, η ∈ U .

Let ξ ∈ E, η ∈ U and |t| ≤ 1. For h ∈ Lγ,ε(C,C) and f ∈ A,

(h ◦ f)(ξ + tη) = h(f(ξ) + tf(η))

= r(h ◦ f)(ξ) + s(h ◦ f)(η), |r − 1| ≤ |γ(t)|, |s| ≤ |γ(t)|.
Thus, h ◦ f ∈ Lγ,U (E,C).

Suppose that h ∈ Lγ,ε(C,C) and wk → w in C. Then

lim
k

h(wk) = lim
k

h(w + wk − w) = lim
k

h(w +
2(wk − w)

ε

ε

2
)

= lim
k
[rkh(w) + skh(

ε

2
)],

where |rk − 1| ≤ |γ( 2(wk−w)
ε )| → 0 and |sk| ≤ |γ( 2(wk−w)

ε )| → 0, i.e., rk → 1, sk → 0.

Thus, h(wk) → h(w), h is continuous. But A ⊂ E′ and so h ◦ f : E → C is continuous for

h ∈ Lγ,ε(C,C) and f ∈ A. �

Theorem 2.6. Let γ1 ∈ C(0) for which sup|t|≤1 |γ1(t)| = 1, |γ1(α)| ≤ |γ1(β)| whenever |α| ≤
|β| ≤ 1, e.g., γ1(t) =

√
|t|. For every U ∈ N (E), f ∈ E[γ1,U ] and ε > 0 there is a V ∈ N (E)

such that γ1 ◦ γ1 ∈ C(0) and

h ◦ f ∈ E(γ1◦γ1,V ), ∀h ∈ Lγ1,ε(C,C),

h ◦ f ∈ E[γ1◦γ1,V ], ∀h ∈ Kγ1,ε(C,C).
Proof. Pick a W ∈ N (E) for which |f(η)| < ε, ∀ η ∈ W . Let h ∈ Lγ1,ε(C,C), ξ ∈ E,

η ∈ V = U
∩

W and |t| ≤ 1. Then

(h ◦ f)(ξ + tη) = h(f(ξ + tη)) = h(f(ξ) + αf(η)) (|α| ≤ |γ1(t)| ≤ 1)

= rh(f(ξ)) + sh(f(η)) = r(h ◦ f)(ξ) + s(h ◦ f)(η),
where |r − 1| ≤ |γ1(α)| ≤ |γ1(γ1(t))|, |s| ≤ |γ1(α)| ≤ |γ1(γ1(t))|.

As in the proof of Th. 2.5, h is continuous and so h ◦ f ∈ E(γ1◦γ1,V ).

Similarly, h ◦ f ∈ E[γ1◦γ1,V ] whenever h ∈ Kγ1,ε(C,C). �

Example 2.2. (1) Let h(z) = |z|, ∀ z ∈ C. Then h ∈ Kγ0,C(C,C) where γ0(t) = t. Let

U ∈ N (E) and γ1 ∈ C(0) as in Th. 2.6. Then for every f ∈ E(γ1,U) and a > 0 there is a

Va ∈ N (E) such that Va ⊂ U and |f(η)| < a, ∀ η ∈ Va.

Let a > 0, ξ ∈ E, η ∈ Va and |t| ≤ 1. Then

|f(ξ + tη)| = |rf(ξ) + αf(η)| = |r||f(ξ)|+ s|f(η)|,
where ||r| − 1| ≤ |r − 1| ≤ |γ1(t)|, |s| ≤ |α| ≤ |γ1(t)|. Thus, γ0 ◦ γ1 = γ1 and |f(·)| = h ◦ f ∈
E(γ1,Va), ∀ a > 0.

(2) Let γ1(t) =
√
|t|, γ2(t) = π

2 t, ∀ t ∈ C. Let U ∈ N (E) and f ∈ E[γ1,U ]. There

is a V ∈ N (E) such that V ⊂ U and |f(η)| < 1, ∀ η ∈ V . Define sin |f(·)| : E → C by
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sin |f(·)|(ξ) = sin |f(ξ)|, ξ ∈ E. For ξ ∈ E, η ∈ V and |t| ≤ 1,

sin |f(·)|(ξ + tη) = sin |f(ξ + tη)| = sin |f(ξ) + αf(η)| (|α| ≤ |γ1(t)| =
√

|t| ≤ 1)

= sin[|f(ξ)|+ β|f(η)|] (|β| ≤ |α| ≤ 1)

= sin |f(ξ)|+ s sin |f(η)| (|s| ≤ π

2
|β| ≤ π

2
|α| ≤ π

2

√
|t| = |(γ2 ◦ γ1)(t)|)

= sin |f(·)|(ξ) + s sin |f(·)|(η).
Thus, γ2 ◦ γ1 ∈ C(0) and sin |f(·)| ∈ E[γ2◦γ1,V ].

(3) If h(z) = e|z| − 1, ∀ z ∈ C, γ1(t) =
√
|t| and γ(t) = e2t, then h ∈ Lγ,1(C,C) and for

every f ∈ E[γ1,U ] there is a V ∈ N (E) such that e|f(·)| − 1 = h ◦ f ∈ E(γ◦γ1,V ).

Even f is a nonzero usual distribution, each of |f(·)|, sin |f(·)| and e|f(·)| − 1 can not be a

usual distribution. However, Th. 2.6 shows that the family of demi-distributions is closed with

respect to infinitely many of nonlinear transformations.

Henceforth, in the notations E(γ,U) and E[γ,U ] we always confess that γ ∈ C(0) and U ∈
N (E).

Definition 2.2. fk
w∗−→ f in E(γ,U) means that fk, f ∈ E(γ,U) for all k ∈ N and fk(ξ) → f(ξ)

at each ξ ∈ E, and fk → f in E(γ,U) means that fk, f ∈ E(γ,U) for all k ∈ N and for every

bounded B ⊂ E, limk fk(ξ) = f(ξ) uniformly for ξ ∈ B.

Now Th. 2.2 gives the following

Theorem 2.7. fk → f in E(γ,U) if and only if fk
w∗−→ f in E(γ,U).

Definition 2.3. A sequence {fk} ⊂ E(γ,U) (resp., E[γ,U ]) is w∗ Cauchy if limk fk(ξ) exists at

each ξ ∈ E. E(γ,U) (resp., E[γ,U ]) is said to be sequentially complete if for every w∗ Cauchy

sequence {fk} in E(γ,U) (resp., E[γ,U ]) there exists f ∈ E(γ,U) (resp., E[γ,U ]) such that fk → f ,

i.e., for every bounded B ⊂ E, limk fk(ξ) = f(ξ) uniformly for ξ ∈ B.

Theorem 2.8. Both D
(γ,U)
a and S (γ,V ) are sequentially complete for every γ ∈ C(0), U ∈

N (Da) and V ∈ N (S ). Moreover, D [γ0,W ] is also sequentially complete for γ0(t) = t and

W ∈ N (D).

Proof. Let E ∈ {Da,S }, U ∈ N (E) and γ ∈ C(0). If {fk} ⊂ E(γ,U) and limk fk(ξ) = f(ξ)

exists at each ξ ∈ E, then {fk} is equicontinuous by Th. 3.1 of [1]. If ξν → ξ in E, then

limν fk(ξν) = fk(ξ) uniformly for k ∈ N and limν f(ξν) = limν limk fk(ξν) = limk limν fk(ξν) =

limk fk(ξ) = f(ξ). Thus, f : E → C is continuous.

Let ξ ∈ E, η ∈ U and |t| ≤ 1. Then f(ξ + tη) = limk fk(ξ + tη) = limk[rkfk(ξ) + skfk(η)]

where |rk − 1| ≤ |γ(t)|, |sk| ≤ |γ(t)|. By passing to a subsequence if necessary, we assume that

rk → r and sk → s. Then |r−1| ≤ |γ(t)|, |s| ≤ |γ(t)| and f(ξ+ tη) = limk[rkfk(ξ)+skfk(η)] =

rf(ξ) + sf(η), f ∈ Lγ,U (E,C). Thus, f ∈ E(γ,U).

Now fk
w∗−→ f in E(γ,U) and so fk → f in E(γ,U) by Th. 2.7.

The completeness of D [γ0,W ] follows from Th. 2.4. �
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For E ∈ {D ,S } and G ⊂ Rn, let EG = {ξ ∈ E : supp ξ ⊂ G}. Each f ∈ E(γ,U) yields

f |EG : EG → C by f |EG(ξ) = f(ξ), ∀ ξ ∈ EG. Then E∅ = {0} and f |E∅ = 0, ∀ f ∈ E(γ,U).

Definition 2.4. E = D . For f ∈ E(γ,U) let

supp f = Rn\
[ ∪

{G ⊂ Rn : G is open, f |EG
= 0}

]
.

Theorem 2.9. E = D . For every f ∈ E(γ,U) there is an open G0 ⊂ Rn such that f |EG0
= 0

and supp f = Rn\G0.

Proof. Let G0 = Rn\supp f and {Gα : α ∈ I} = {G ⊂ Rn : G is open, f |EG
= 0}. Then

G0 =
∪

α∈I Gα is open and supp f = Rn\G0.

Suppose that f |EG0
̸= 0. There is a ξ ∈ E such that supp ξ ⊂ G0 but f(ξ) ̸= 0. Then

Rn\supp ξ ⊃ Rn\G0 = supp f and Rn = (Rn\supp ξ)
∪
(
∪

α∈I Gα). By the partition of unity,

there is a sequence {ξk} ⊂ D such that
∑∞

k=1 ξk(x) = 1 for all x ∈ Rn and each supp ξk ⊂
(Rn\supp ξ) or some Gα, and each x ∈ supp ξ has a neighborhood which intersects finitely many

of supp ξk only. But supp ξ is compact and so there is an open G ⊂ Rn such that supp ξ ⊂ G

and G intersects finitely many of supp ξk only. Hence, ξξk = 0 for all but finitely many of

k′s. Say that {k : ξξk ̸= 0} = {1, 2, · · · ,m}. Then ξ(x) =
∑m

k=1 ξ(x)ξk(x), ∀x ∈ Rn. For

k ≤ m, ξξk ̸= 0 shows that supp ξk ̸⊂ Rn\supp ξ and so suppξk ⊂ Gα for some α ∈ I. Thus,

f(ξξk) = 0, k = 1, 2, · · · ,m.

Pick a p ∈ N such that 1
pξξk ∈ U, k = 1, 2, · · · ,m. Since supp ( 1pξξk) ⊂ supp ξk ⊂ Gα for

some α ∈ I, f( 1pξξk) = 0, k = 1, 2, · · · ,m. Then

f(ξ) = f(

m∑
k=1

ξξk) = f(

m−1∑
k=1

ξξk + (p− 1)
1

p
ξξm +

1

p
ξξm)

= r1f(

m−1∑
k=1

ξξk + (p− 1)
1

p
ξξm) + s1f(

1

p
ξξm) (|r1 − 1| ≤ |γ(1)|, |s1| ≤ |γ(1)|)

= r1f(
m−1∑
k=1

ξξk + (p− 1)
1

p
ξξm)

· · · · · ·

= r1r2 · · · rpf(
m−1∑
k=1

ξξk)

= r1r2 · · · rpf(
m−2∑
k=1

ξξk + (p− 1)
1

p
ξξm−1 +

1

p
ξξm−1)

= r1 · · · rprp+1 · · · r2pf(
m−2∑
k=1

ξξk)

· · · · · ·

= (

mp−1∏
ν=1

rν)f(
1

p
ξξ1) = 0.

This contradicts that f(ξ) ̸= 0. Hence, f |EG0
= 0. �
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§3 Differentiation

E ∈ {Da,D ,S }, [E(γ,U)] = span (E(γ,U)) in CE .

Definition 3.1. Let f =
∑m

k=1 αkfk ∈ [E(γ,U)] where each αk ∈ C, fk ∈ E(γ,U). Observing

each ξ ∈ E is a function defined on Rn, for j ∈ {1, 2, · · · , n} define ∂f
∂xj

: E → C by

∂f

∂xj
(ξ) = f(− ∂ξ

∂xj
), ξ ∈ E.

Then ∂
∂xj

(
∑m

k=1 αkfk)(ξ) = (
∑m

k=1 αkfk)(− ∂ξ
∂xj

) =
∑m

k=1 αkfk(− ∂ξ
∂xj

) =
∑m

k=1 αk
∂fk
∂xj

(ξ) =

(
∑m

k=1 αk
∂fk
∂xj

)(ξ) and so ∂
∂xj

(
∑m

k=1 αkfk) =
∑m

k=1 αk
∂fk
∂xj

for
∑m

k=1 αkfk ∈ [E(γ,U)].

For a multi-index α = (α1, · · · , αn) let |α| = α1 + · · · + αn and Dα = ∂|α|

∂x
α1
1 ···∂xαn

n
. As

in the case of usual distributions, for f ∈ [E(γ,U)] and every multi-index α = (α1, · · · , αn),

(Dαf)(ξ) = f((−1)|α|Dαξ), ∀ ξ ∈ E. Evidently, we have that ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

, ∂5f
∂x1∂x2

2∂x
2
3
=

∂5f
∂x2

3∂x1∂x2
2
, etc.

Lemma 3.1. For every multi-index α, Dα : E → E is a continuous linear operator.

Proof. For E = Da or S , the conclusion is obvious.

Let ξk → 0 in D . Then {ξk} ⊂ Dm for some m ∈ N and ξk → 0 in Dm since Dm is a

subspace of D ([3, p. 219]). Then ∥Dαξk∥p ≤ ∥ξk∥|α|+p for all p ∈ N and so Dαξk → 0 in Dm,

i.e., Dαξk → 0 in D . Thus, Dα : D → D is sequentially continuous. Then Dα : D → D is

continuous since D is bornological and C − sequential. See also Th. 2.1. �

Theorem 3.1. Let α be a multi-index. For every U ∈ N (E) there is a V ∈ N (E) such that

{Dαf : f ∈ E(γ,U)} ⊂ E(γ,V ), ∀ γ ∈ C(0),

{Dαf : f ∈ [E(γ,U)]} ⊂ [E(γ,V )], ∀ γ ∈ C(0).

Moreover, if fk, f ∈ E(γ,U) and fk
w∗−→ f , i.e., fk(ξ) → f(ξ) at each ξ ∈ E, then for every

bounded B ⊂ E, limk(D
αfk)(ξ) = (Dαf)(ξ) uniformly for ξ ∈ B.

Proof. Let U ∈ N (E). By Lemma 3.1, there is a V ∈ N (E) for which (−1)|α|Dαη ∈ U ,

∀ η ∈ V .

Let f ∈ E(γ,U), ξ ∈ E, η ∈ V and |t| ≤ 1. Then

(Dαf)(ξ + tη) = f((−1)|α|Dαξ + t(−1)|α|Dαη)

= rf((−1)|α|Dαξ) + sf((−1)|α|Dαη)

= r(Dαf)(ξ) + s(Dαf)(η),

where |r − 1| ≤ |γ(t)|, |s| ≤ |γ(t)|. Thus, Dαf ∈ Lγ,V (E,C).
Since both (−1)|α|Dα : E → E and f : E → C are continuous, Dαf = f◦(−1)|α|Dα : E → C

is also continuous and so Dαf ∈ E(γ,V ).

Suppose that fk, f ∈ E(γ,U), fk(ξ) → f(ξ), ∀ ξ ∈ E, and B ⊂ E is bounded. Then

(−1)|α|Dα(B) = {(−1)|α|Dαξ : ξ ∈ B} is bounded and, by Th. 2.7, limk(D
αfk)(ξ) =

limk fk((−1)|α|Dαξ) = f((−1)|α|Dαξ) = (Dαf)(ξ) uniformly for ξ ∈ B. �



LI Rong-lu, et al. Demi-linear analysis II—demi-distributions 197

Example 3.1. (1) Let f ∈ L1
loc(Rn), γ ∈ C(0) and

[f ](ξ) =

∫
Rn

|f(x)ξ(x)| dx, ξ ∈ D .

Then [f ] ∈ D [γ,D] (see Exam. 2.1(1)), and

(Dα[f ])(ξ) =

∫
Rn

|f(x)(Dαξ)(x)| dx, ∀ ξ ∈ D .

(2) γ and U as in Exam. 2.1(2), and

f(ξ) =

∫ ∞

−∞
| sin ξ(x)| dx, ∀ ξ ∈ D1(R).

Then f ∈ (D1(R))[γ,U ] and

(Dαf)(ξ) =

∫ ∞

−∞
| sin[(−1)|α|(Dαξ)(x)]| dx

=

∫ ∞

−∞
| sin(Dαξ)(x)| dx, ∀ ξ ∈ D1(R).

(3) Let U ∈ N (E) and γ(t) =
√
|t|, ∀ t ∈ C. For every f ∈ E[γ,U ], both sin |f(·)| and

e|f(·)| − 1 are demi-distributions, see Exam. 2.2. Then for every multi-index α,

Dα sin |f(·)| = sin |Dαf(·)|, Dα(e|f(·)| − 1) = e|D
αf(·)| − 1.

In general, Th. 2.6 shows that h ◦ f is a demi-distribution for every h ∈ Lγ,ε(C,C). Then

Dα(h ◦ f) = h ◦Dαf.

In fact, (Dα(h ◦ f))(ξ) = (h ◦ f)((−1)|α|Dαξ) = h[f((−1)|α|Dαξ)] = h[(Dαf)(ξ)] = (h ◦
Dαf)(ξ), ∀ ξ ∈ E.

(4) E ∈ {Da,S } and {∥ · ∥p}∞p=0 is the usual norm sequence on E. For p ∈ N and ε > 0,

let Up,ε = {η ∈ E : ∥η∥p < ε}. Then for every multi-index α and ε > 0,

Dαf ∈ E(γ,Up+|α|,ε), ∀ f ∈ E(γ,Up,ε), γ ∈ C(0), p ∈ N,

Dαf ∈ [E(γ,Up+|α|,ε)], ∀ f ∈ [E(γ,Up,ε)], γ ∈ C(0), p ∈ N.
In fact, ∥η∥p+|α| < ε implies ∥(−1)|α|Dαη∥p ≤ ∥η∥p+|α| < ε.

Definition 3.2. ζ : Rn → C is called a multiplier in E if for every ξ ∈ E the pointwise product

ζξ ∈ E and ζξk → 0 in E whenever ξk → 0. For a multiplier ζ in E and f ∈ [E(γ,U)], define

ζf : E → C by (ζf)(ξ) = f(ζξ), ∀ ξ ∈ E.

Theorem 3.2. If ζ is a multiplier in E, then for every U ∈ N (E) there is a V ∈ N (E) such

that

{ζf : f ∈ E(γ,U)} ⊂ E(γ,V ), ∀ γ ∈ C(0),

{ζf : f ∈ [E(γ,U)]} ⊂ [E(γ,V )], ∀ γ ∈ C(0).

Proof. The correspondence ξ 7→ ζξ is a continuous linear operator from E into E and so

there is a V ∈ N (E) such that ζη ∈ U for all η ∈ V .

Let f ∈ E(γ,U) and ξ ∈ E, η ∈ V , |t| ≤ 1. Then

(ζf)(ξ + tη) = f(ζξ + tζη) = rf(ζξ) + sf(ζη)

= r(ζf)(ξ) + s(ζf)(η), |r − 1| ≤ |γ(t)|, |s| ≤ |γ(t)|.
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Thus, ζf ∈ Lγ,V (E,C). The continuity of ζf : E → C follows from the continuity of f and the

continuity of the correspondence ξ 7→ ζξ. Hence, ζf ∈ E(γ,V ). �

Lemma 3.2. Let E ∈ {Da(R),D(R),S (R)} be a space of test functions defined on R, i.e.,

n = 1. Pick a ζ ∈ E for which
∫∞
−∞ ζ(x) dx = 1 and define A : E → E by A(ξ) = ξ −

(
∫∞
−∞ ξ(x) dx)ζ, ξ ∈ E. Then A is a continuous linear operator,

∫∞
−∞ A(ξ)(x) dx = 0 for all

ξ ∈ E and A(ξ(k)) = ξ(k), ∀ ξ ∈ E, k ∈ N.
Proof. For ξ, η ∈ E and t ∈ C, A(ξ + tη) = ξ + tη − (

∫∞
−∞(ξ + tη)(x) dx)ζ = ξ −

(
∫∞
−∞ ξ(x) dx)ζ + tη − t(

∫∞
−∞ η(x) dx)ζ = A(ξ) + tA(η).

Since 1 ∈ E′, if ξk → ξ in E, then
∫∞
−∞ ξk(x) dx →

∫∞
−∞ ξ(x) dx, A(ξk) = ξk−(

∫∞
−∞ ξk(x) dx)ζ

→ ξ − (
∫∞
−∞ ξ(x) dx)ζ = A(ξ) and so A is sequentially continuous. Since E is bornological, A

is continuous.

For ξ ∈ E and k ≥ 1, A(ξ(k)) = ξ(k) − (
∫∞
−∞ ξ(k)(x) dx)ζ = ξ(k). �

For usual distributions, the equation y′ = 0 has solutions y = const only. However, for

demi-distributions in E(γ,U), the equation y′ = 0 has extremely many solutions which are

not constants, and the equation y′ = f also has extremely many solutions which are demi-

distributions.

Lemma 3.3. Let E be a space of test functions defined on R. Let γ ∈ C(0) and U ∈ N (E).

For y ∈ E(γ,U), y′ = 0 if and only if y(ξ) = 0 whenever
∫∞
−∞ ξ(x) dx = 0.

Proof. Suppose that y′ = 0 and ξ ∈ E for which
∫∞
−∞ ξ(x) dx = 0. Letting η(x) =∫ x

−∞ ξ(t) dt, η ∈ E and ξ = η′. Then y(ξ) = y(−(−η)′) = y′(−η) = 0.

The converse is obvious. �

In general, we have

Theorem 3.3. Let E ∈ {Da(R),D(R),S (R)}, a space of test functions defined on R. Let

U ∈ N (E), γ ∈ C(0). Then for every ξ0 ∈ E and f0 ∈ E(γ,U) there is a V ∈ N (E) such that

the equation y′ = 0 has a solution f ∈ E(γ,V ) which is given by f(ξ) = f0[(
∫∞
−∞ ξ(x) dx)ξ0]

for ξ ∈ E. If f0 = 1, then f0 ∈ E′ and f(ξ) = f0[(
∫∞
−∞ ξ(x) dx)ξ0] = (

∫∞
−∞ ξ(x) dx)f0(ξ0) =

(
∫∞
−∞ ξ(x) dx)(

∫∞
−∞ ξ0(τ) dτ) =

∫∞
−∞(

∫∞
−∞ ξ0(τ) dτ)ξ(x) dx, ∀ ξ ∈ E, i.e., f =

∫∞
−∞ ξ0(τ) dτ ∈

E′, a constant which is a usual solution of the equation y′ = 0.

The solutions of the equation y′ = 0 have an interesting property as follows.

Theorem 3.4. Let E ∈ {Da(R),D(R)}, a space of test functions defined on R. Let U ∈ N (E),

γ ∈ C(0) and y ∈ E[γ,U ]. If y′ = 0, then for every ζ ∈ E with
∫∞
−∞ ζ(x) dx = 1,

y(ξ) = y[(

∫ ∞

−∞
ξ(x) dx)ζ], ∀ ξ ∈ E,

i.e., if ζ1, ζ2 ∈ E such that
∫∞
−∞ ζ1(x) dx =

∫∞
−∞ ζ2(x) dx = 1, then y[(

∫∞
−∞ ξ(x) dx)ζ1] =

y[(
∫∞
−∞ ξ(x) dx)ζ2] = y(ξ) for all ξ ∈ E and, in particular,

y(ξ) = y(η) whenever

∫ ∞

−∞
ξ(x) dx =

∫ ∞

−∞
η(x) dx = 1,
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y(
ξ∫∞

−∞ ξ(x) dx
) = y(

η∫∞
−∞ η(x) dx

) whenever

∫ ∞

−∞
ξ(x) dx ̸= 0 and

∫ ∞

−∞
η(x) dx ̸= 0.

Proof. If ζ ∈ E such that ζ ̸= ξ′, ∀ ξ ∈ E, i.e.,
∫∞
−∞ ζ(x) ̸= 0, then 1∫ ∞

−∞ ζ(x) dx
ζ ∈ E

and
∫∞
−∞

ζ(x)∫ ∞
−∞ ζ(t) dt

dx = 1. Pick a ζ ∈ E for which
∫∞
−∞ ζ(x) dx = 1 and let A(ξ) = ξ −

(
∫∞
−∞ ξ(x) dx)ζ for ξ ∈ E. By Lemma 3.2, A : E → E is a continuous linear operator and∫∞

−∞ A(ξ)(x) dx = 0, ∀ ξ ∈ E. Moreover,

A(ξ)(x) =
(∫ x

−∞
A(ξ)(t) dt

)′
, ∀ ξ ∈ E, x ∈ R.

Let ξ ∈ E and pick a p ∈ N for which 1
pA(ξ) ∈ U . Then

y(ξ) = y[(

∫ ∞

−∞
ξ(x) dx)ζ +A(ξ)]

= y[(

∫ ∞

−∞
ξ(x) dx)ζ + (p− 1)

1

p
A(ξ) +

1

p
A(ξ)]

= y[(

∫ ∞

−∞
ξ(x) dx)ζ + (p− 1)

1

p
A(ξ)] + s1y(

1

p
A(ξ))

· · · · · ·

= y[(

∫ ∞

−∞
ξ(x) dx)ζ] + sy(

1

p
A(ξ)).

But 1
pA(ξ)(x) = ( 1p

∫ x

−∞ A(ξ)(t) dt)′ for all x ∈ R and so y( 1pA(ξ)) = y[−(− 1
p

∫ x

−∞ A(ξ)(t) dt)′] =

y′(− 1
p

∫ x

−∞ A(ξ)(t) dt) = 0 since y′ = 0. Therefore,

y(ξ) = y[(

∫ ∞

−∞
ξ(x) dx)ζ], ∀ ξ ∈ E.

If
∫∞
−∞ ξ(x) dx =

∫∞
−∞ η(x) dx = 1, then y(ξ) = y[(

∫∞
−∞ ξ(x) dx)ζ] = y(ζ) = y[(

∫∞
−∞ η(x) dx)ζ]

= y(η). �

For E ∈ {Da(R),D(R)} let

E1 = {ξ ∈ E :

∫ ∞

−∞
ξ(x) dx = 1}.

If y ∈ E′ is a usual distribution such that y′ = 0, then y must be a constant C ∈ R, i.e.,
y(ξ) =

∫∞
−∞ Cξ(x) dx for all ξ ∈ E. Hence, y(ξ) = C, ∀ ξ ∈ E1. Th. 3.3 shows that the same

fact holds for the case of E[γ,U ].

Corollary 3.1. E ∈ {Da(R),D(R)}, U ∈ N (E) and γ ∈ C(0). If y ∈ E[γ,U ] such that y′ = 0,

then y(·) is an invariant on E1, i.e., there is a C ∈ R such that

y(ξ) = C, ∀ ξ ∈ E1.

Although Th. 3.3 gives a lot of various solutions of the equation y′ = 0 for the case of

E(γ,U), Th. 3.3 does not give all solutions. However, for the case of E[γ,U ] we can give all

solutions of y′ = 0.

Theorem 3.5. Let E ∈ {Da(R),D(R)} be a space of test functions defined on R, U ∈ N (E)

and γ ∈ C(0). Then for every ξ0 ∈ E and f0 ∈ E[γ,U ] there is a V ∈ N (E) such that the
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equation y′ = 0 has a solution f ∈ E[γ,V ] which is given by f(ξ) = f0[(
∫∞
−∞ ξ(x) dx)ξ0] for

ξ ∈ E. Conversely, if f ∈ E[γ,U ] is a solution of the equation y′ = 0, then there exist ξ0 ∈ E

and f0 ∈ E[γ,U ] such that f(ξ) = f0[(
∫∞
−∞ ξ(x) dx)ξ0], ∀ ξ ∈ E.

Proof. Let ξ0 ∈ E, f0 ∈ E[γ,U ]. There is a V ∈ N (E) such that (
∫∞
−∞ η(x) dx)ξ0

∈ U for all η ∈ V . Let f(ξ) = f0[(
∫∞
−∞ ξ(x) dx)ξ0] for ξ ∈ E. If ξ ∈ E, η ∈ V and

|t| ≤ 1, then f(ξ + tη) = f0[(
∫∞
−∞(ξ + tη)(x) dx)ξ0] = f0[(

∫∞
−∞ ξ(x) dx)ξ0 + t(

∫∞
−∞ η(x) dx)ξ0] =

f0[(
∫∞
−∞ ξ(x) dx)ξ0] + sf0[(

∫∞
−∞ η(x) dx)ξ0] = f(ξ) + sf(η), where |s| ≤ |γ(t)|. Thus, f ∈ E[γ,V ]

and f ′ = 0:

f ′(ξ) = f(−ξ′) = f0[(

∫ ∞

−∞
−ξ′(x) dx)ξ0] = f0(0) = 0, ∀ ξ ∈ E.

Conversely, suppose that f ∈ E[γ,U ] and f ′ = 0. Pick a ξ0 ∈ E with
∫∞
−∞ ξ0(x) dx

= 1, and let f0 = f . By Th. 3.4,

f(ξ) = f [(

∫ ∞

−∞
ξ(x) dx)ξ0] = f0[(

∫ ∞

−∞
ξ(x) dx)ξ0], ∀ ξ ∈ E. �

We now consider the equation y′ = f where f ∈ E(γ,U).

Theorem 3.6. Let E ∈ {Da(R),D(R)} be a space of test functions defined on R, E1 = {ξ ∈
E :

∫∞
−∞ ξ(x) dx = 1}, U ∈ N (E) and γ ∈ C(0). Let f ∈ E(γ,U) be arbitrary. Then every

ζ ∈ E1 gives Uζ ∈ N (E) and yζ ∈ E(γ,Uζ) such that y′ζ = f and

yζ(ξ) = f(−
∫ x

−∞
[ξ(τ)− (

∫ ∞

−∞
ξ(s) ds)ζ(τ)] dτ), ∀ ξ ∈ E.

Proof. Only need to consider E = D(R). Pick a ζ ∈ E1 and define Aζ : D(R) → D(R) by

Aζ(ξ) = ξ−(
∫∞
−∞ ξ(τ) dτ)ζ, ∀ ξ ∈ D(R). By Lemma 3.2, Aζ is a continuous linear operator and∫∞

−∞ Aζ(ξ)(τ) dτ = 0, ∀ ξ ∈ D(R). For every ξ ∈ D(R), Aζ(ξ)(x) =
d
dx [

∫ x

−∞ Aζ(ξ)(τ) dτ ], ∀x ∈
R. Since Aζ(ξ) ∈ D(R), ∀ ξ ∈ D(R), there ia an aξ > 0 such that Aζ(ξ)(x) = 0, ∀ |x| > aξ and

so
∫ x

−∞ Aζ(ξ)(τ) dτ = 0 for x < −aξ and
∫ x

−∞ Aζ(ξ)(τ) dτ =
∫∞
−∞ Aζ(ξ)(τ) dτ = 0 for x > aξ.

Thus,
∫ x

−∞ Aζ(ξ)(τ) dτ gives a test function in D(R), ∀ ξ ∈ D(R).
Let T (ξ)(x) =

∫ x

−∞ Aζ(ξ)(τ) dτ, ∀ ξ ∈ D(R), x ∈ R. Since Aζ is linear, T : D(R) → D(R) is
a linear operator. Let ξk → 0 in D(R). By Lemma 3.2, Aζ(ξk) → 0 in D(R) and so Aζ(ξk) → 0

in Dm0(R) for some m0 ∈ N ([3, p. 219]). Then {T (ξk)} ⊂ Dm0(R). In fact, {Aζ(ξk)} ⊂
Dm0(R), i.e., Aζ(ξk)(x) = 0, ∀ |x| > m0, k ∈ N, hence T (ξk)(x) =

∫ x

−∞ Aζ(ξk)(τ) dτ = 0 for

x < −m0, k ∈ N and T (ξk)(x) =
∫ x

−∞ Aζ(ξk)(τ) dτ =
∫∞
−∞ Aζ(ξk)(τ) dτ = 0 whenever x > m0

and k ∈ N. Since Aζ(ξk) → 0 in Dm0(R),

∥T (ξk)∥0 = sup
|x|≤m0

|T (ξk)(x)| = sup
|x|≤m0

|
∫ x

−m0

Aζ(ξk)(τ) dτ |

≤
∫ m0

−m0

|Aζ(ξk)(τ)| dτ ≤ 2m0∥Aζ(ξk)∥0 → 0, i.e., ∥T (ξk)∥0 → 0.

Moreover, dT (ξ)
dx (x) = Aζ(ξ)(x), ∀ ξ ∈ D(R), x ∈ R, i.e., dT (ξ)

dx = Aζ(ξ), ∀ ξ ∈ D(R). Since

{T (ξk)} ⊂ Dm0(R) and Aζ(ξk) → 0 in Dm0(R), ∥T (ξk)∥p ≤ max{∥T (ξk)∥0, ∥Aζ(ξk)∥p−1} → 0

for each p ∈ N. Thus, T (ξk) → 0 in Dm0(R), i.e., T (ξk) → 0 in D(R). Therefore, T :

D(R) → D(R) is sequentially continuous. Since T is linear and D(R) is bornological, i.e.,
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D(R) is C − sequential, T is continuous and so there is a balanced Uζ ∈ N (D(R)) such that

T (Uζ) ⊂ U .

Define yζ : D(R) → C by

yζ(ξ) = f(−T (ξ)) = f(−
∫ x

−∞
[ξ(τ)− (

∫ ∞

−∞
ξ(s) ds)ζ(τ)]dτ), ∀ ξ ∈ D(R).

Since both f and T are continuous, yζ is continuous.

Let ξ ∈ D(R), η ∈ Uζ and |t| ≤ 1. Since Uζ is balanced and f ∈ D(R)(γ,U), T (−η) ∈
T (Uζ) ⊂ U and

yζ(ξ + tη) = f(−T (ξ + tη)) = f(−T (ξ) + tT (−η)) = rf(−T (ξ)) + sf(T (−η))

= rf(−T (ξ)) + sf(−T (η)) = ryζ(ξ) + syζ(η), |r − 1| ≤ |γ(t)|, |s| ≤ |γ(t)|.
Thus, yζ ∈ D(R)(γ,Uζ).

For every ξ ∈ D(R), T (ξ′)(x) =
∫ x

−∞ Aζ(ξ
′)(τ) dτ =

∫ x

−∞[ξ′(τ) − (
∫∞
−∞ ξ′(s) ds)ζ(τ)]

dτ =
∫ x

−∞ ξ′(τ) dτ = ξ(x), ∀x ∈ R, i.e., T (ξ′) = ξ, ∀ ξ ∈ D(R). Then

y′ζ(ξ) = yζ(−ξ′) = f(−T (−ξ′)) = f(T (ξ′)) = f(ξ), ∀ ξ ∈ D(R),

i.e., y′ζ = f . �

Theorem 3.7. Let E ∈ {Da(R),D(R)} and f ∈ E(γ,U). For every ξ0 ∈ E, f0 ∈ E(γ,U) and

ζ ∈ E with
∫∞
−∞ ζ(x) dx ̸= 0 let

g(ξ) = f0[(

∫ ∞

−∞
ξ(x) dx)ξ0] + f(−

∫ x

−∞
[ξ(τ)−

∫∞
−∞ ξ(s) ds∫∞
−∞ ζ(s) ds

ζ(τ)] dτ), ∀ ξ ∈ E,

then g ∈ [E(γ,W )] for some W ∈ N (E) and g′ = f .

Proof. Let ξ0 ∈ E, f0 ∈ E(γ,U) and ζ ∈ E with
∫∞
−∞ ζ(x) dx ̸= 0. Let

g0(ξ) = f0[(

∫ ∞

−∞
ξ(x) dx)ξ0], ξ ∈ E,

yζ(ξ) = f(−
∫ x

−∞
[ξ(τ)−

∫∞
−∞ ξ(s) ds∫∞
−∞ ζ(s) ds

ζ(τ)] dτ), ξ ∈ E.

Then g0 ∈ E(γ,V ) for some V ∈ N (E) and g′0 = 0 by Th. 3.3, and yζ ∈ E(γ,Uζ) for some

balanced Uζ ∈ N (E) and y′ζ = f by Cor. 3.3.

Let W = V
∩
Uζ . Then W ∈ N (E) and E(γ,V )

∪
E(γ,Uζ) ⊂ E(γ,W ). Thus, g0 ∈ E(γ,W ),

yζ ∈ E(γ,W ), g = g0 + yζ ∈ [E(γ,W )] and g′ = (g0 + yζ)
′ = g′0 + y′ζ = f . �

Further discussions of ordinary and partial differential equations of demi-distributions will

be interesting but we reserve these discussions for another paper.

§4 Fourier Transform

Let x + iy = (x1 + iy1, · · · , xn + iyn) ∈ Cn, |y| = |y1| + · · · + |yn|. For a > 0 and

α = (α1, · · · , αn), a multi-index, let (x+ iy)α =
∏n

k=1(xk + iyk)
αk and

Z(a) =
{
ζ ∈ CCn

: ζ is entire; for every multi-index α, |(x+ iy)αζ(x+ iy)| ≤ Cα(ζ)e
a|y|},

∥ζ∥p = sup
x+iy∈Cn,|α|≤p

|(x+ iy)αζ(x+ iy)|e−a|y|, p = 0, 1, 2, 3, · · · ,
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Z =
{
ζ ∈ CCn

: ζ is entire, ∃ a(ζ) > 0 such that |(x+ iy)αζ(x+ iy)| ≤ Cα(ζ)e
a(ζ)|y|}.

The Fourier transform F (ξ) of ξ ∈ D is given by

F (ξ)(σ + iτ) = ζ(σ + iτ) =

∫
ξ(x)ei(x,σ)−(x,τ) dx, (x, σ) =

n∑
j=1

xjσj , (x, τ) =
n∑

j=1

xjτj .

Then F [Da] = Za, F [D ] = Z, and operators

F : Da → Za, F : D → Z, F−1 : Za → Da, F−1 : Z → D

are both continuous and linear ([4, 3.1.1—3.1.2]).

For ξ ∈ S let

F (ξ)(σ) = ζ(σ) =

∫
ξ(x)ei(x,σ) dx, ∀σ ∈ Rn.

Then F (S ) = S and both F and F−1 are continuous and linear.

Definition 4.1. Let E ∈ {Da,D ,S }, U ∈ N (E) and γ ∈ C(0). For f ∈ E(γ,U) define

f̂ : F (E) → C by f̂(ζ) = (2π)nf(F−1(ζ)), ∀ ζ ∈ F (E). We write f̂ = F (f) and so

F (f)(F (ξ)) = (2π)nf(ξ), ∀ f ∈ E(γ,U), ξ ∈ E.

Henceforth, E ∈ {Da,D ,S }, U ∈ N (E) and γ ∈ C(0).

Theorem 4.1. F (E(γ,U)) = (F (E))(γ,F (U)).

Proof. Since both F and F−1 are continuous linear operators, F (U) ∈ N (F (E)). Let

f ∈ E(γ,U), ζ ∈ F (E), η ∈ F (U) and |t| ≤ 1. Then

F (f)(ζ + tη) = (2π)nf(F−1(ζ + tη)) = (2π)nf(F−1(ζ) + tF−1(η))

= (2π)n[rf(F−1(ζ)) + sf(F−1(η))]

= r(2π)nf(F−1(ζ)) + s(2π)nf(F−1(η))

= rF (f)(ζ) + sF (f)(η), |r − 1| ≤ |γ(t)|, |s| ≤ |γ(t)|.
Thus, F (f) ∈ Lγ,F (U)(F (E),C).

Let ζα → ζ in F (E). Then F−1(ζα) → F−1(ζ) in E and so F (f)(ζα) = (2π)nf(F−1(ζα)) →
(2π)nf(F−1(ζ)) = F (f)(ζ). This shows that F (f) is continuous and F (f) ∈ (F (E))(γ,F (U)).

Conversely, for g ∈ (F (E))(γ,F (U)) define

f(ξ) = (2π)−ng(F (ξ)), ∀ ξ ∈ E.

If ξ ∈ E, η ∈ U and |t| ≤ 1, then

f(ξ + tη) = (2π)−ng(F (ξ + tη)) = (2π)−ng(F (ξ) + tF (η))

= (2π)−n[rg(F (ξ)) + sg(F (η))]

= rf(ξ) + sf(η), |r − 1| ≤ |γ(t)|, |s| ≤ |γ(t)|,
i.e., f ∈ Lγ,U (E,U).

Since both g and F are continuous, f is continuous so f ∈ E(γ,U) and

F (f)(ζ) = (2π)nf(F−1(ζ)) = g(ζ), ∀ ζ ∈ F (E),

i.e., g = F (f). �
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Definition 4.2. Let [(F (E))(γ,F (U))] = span (F (E))(γ,F (U)) in CF (E). For f ∈ [E(γ,U)] define

F (f) : F (E) → C by

F (f)(F (ξ)) = (2π)nf(ξ), ∀ ξ ∈ E.

Theorem 4.2. If f =
∑m

k=1 αkfk where αk ∈ C and fk ∈ E(γ,E), then F (f) =
∑m

k=1 αkF (fk)

∈ [(F (E))(γ,F (U))], and

F ([E(γ,U)]) = [(F (E))(γ,F (U))].

Moreover, F : [E(γ,U)] → [(F (E))(γ,F (U))] is w ∗ −w∗ continuous and linear.

Now we consider the case of n = 1. Let S (R) be the space of infinitely differentiable but

rapidly decreasing functions defined on R. Then F (S (R)) = S (R), F ((S (R))′) = (S (R))′.
A constant C ∈ (S (R))′ means that C(ζ) =

∫∞
−∞ Cζ(σ) dσ for all ζ ∈ S (R) ([4, 3.2.1]), and

C = F (Cδ) = CF (δ). In fact, CF (δ)(F (ξ)) = 2πCδ(ξ) = 2πCξ(0) = 2πC 1
2π

∫∞
−∞ e−i0σF (ξ)(σ)dσ

=
∫∞
−∞ CF (ξ)(σ) dσ = C(F (ξ)) for all ξ ∈ S (R).

Lemma 4.1. Let y ∈ (S (R))′, a usual distribution. Then

y(iσζ(σ)) = 0 for all ζ ∈ S (R)

if and only if y = Cδ, where C is a constant.

Proof. Suppose that y ∈ (S (R))′ and y(iσζ(σ)) = 0, ∀ ζ ∈ S (R). Since (S (R))′ =

F ((S (R))′), there is a usual distribution f ∈ (S (R))′ such that y = F (f) and

f ′(ξ) = f(−ξ′) =
1

2π
F (f)(F ((−ξ)′)) =

1

2π
F (f)(−iσF (−ξ)(σ))

=
1

2π
y(iσF (ξ)(σ)) = 0, ∀ ξ ∈ S (R),

i.e., f ′ = 0. But f is a usual distribution so f = C, a constant. Thus, y = F (f) = F (C) =

CF (1) = Cδ.

Conversely, if y = Cδ where C is a constant, then

y(iσζ(σ)) = Cδ(iσζ(σ)) = 0, ∀ ζ ∈ S (R). �

However, there exists a lot of various demi-distributions on S (R) which satisfy the condition

y(iσζ(σ)) = 0, ∀ ζ ∈ S (R).

Theorem 4.3. Let U ∈ N (S (R)) and γ ∈ C(0). Pick an arbitrary f0 ∈ (S (R))(γ,U) and

ξ0 ∈ S (R) and let f(ξ) = f0[(
∫∞
−∞ ξ(t) dt)ξ0], ∀ ξ ∈ S (R). Then f ∈ (S (R))(γ,V ) for some

V ∈ N (S (R)) and F (f) ∈ (S (R))(γ,F (V )) such that

F (f)(iσζ(σ)) = 0, ∀ ζ ∈ S (R).

Proof. By Th. 3.3, there is a V ∈ N (S (R)) such that f ∈ (S (R))(γ,V ) and f ′ = 0. If

ζ ∈ S (R), then ζ = F (ξ) for some ξ ∈ S (R) and

F (f)(iσζ(σ)) = F (f)(iσF (ξ)(σ)) = F (f)(−iσF (−ξ)(σ))

= F (f)(F ((−ξ)′)) = 2πf(−ξ′) = 2πf ′(ξ) = 0. �

§5 Convolutions

In this section, E ∈ {D ,S }, U ∈ N (E) and γ ∈ C(0).
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Definition 5.1. ([4, 3.3.2]) A distribution f0 ∈ E′ is called a convolution multiplier on E if

the following (i) and (ii) hold for f0:

(i) if for each ξ ∈ E define f0 ∗ ξ : Rn → C by

(f0 ∗ ξ)(x) = f0(ξ(x+ ·)), ∀x ∈ Rn,

then f0 ∗ ξ ∈ E;

(ii) if ξk → 0 in E, then f0 ∗ ξk → 0 in E.

Lemma 5.1. If f0 is a convolution multiplier on E, then f0 ∗ · : E → E is a continuous linear

operator.

Following [4], P (D) =
∑

aαD
α =

∑
aα1,··· ,αn

∂α1+···+αn

∂x
α1
1 ···∂xαn

n
is a finite sum, where aα ∈ C

and α = (α1, · · · , αn) is a multi-index. For ξ ∈ E and x ∈ Rn, ∂ξ(x+τ)
∂τj

= ∂ξ(x+τ)
∂(xj+τj)

∂(xj+τj)
∂τj

=
∂ξ(x+τ)
∂(xj+τj)

(
∂xj

∂τj
+

∂τj
∂τj

) = ∂ξ(x+τ)
∂(xj+τj)

and, by induction, it is easy to see that

∂|α|ξ(x+ τ)

∂τα1
1 · · · ∂ταn

n
=

∂|α|ξ(x+ τ)

∂(x1 + τ1)α1 · · · ∂(xn + τn)αn

for every multi-index α and so there is no any ambiguity for the notation Dαξ(x+ ·), i.e.,

Dαξ(x+ ·) = ∂|α|ξ(x+ τ)

∂τα1
1 · · · ∂ταn

n
=

∂|α|ξ(x+ τ)

∂(x1 + τ1)α1 · · · ∂(xn + τn)αn
= (Dαξ)(x+ ·).

Theorem 5.1. If f0 ∈ E′ is a convolution multiplier on E, then P (D)f0 is also a convolution

multiplier on E, and

(
∑

aαD
αf0) ∗ ξ =

∑
aα(−1)|α|f0 ∗Dαξ, ∀ ξ ∈ E.

Definition 5.2. For every convolution multiplier f0 ∈ E′ and f ∈ [E(γ,U)] define the convolu-

tion f0 ∗ f : E → C by

(f0 ∗ f)(ξ) = f(f0 ∗ ξ), ∀ ξ ∈ E.

Example 5.1. (1) For every ξ ∈ E, δ ∗ ξ = ξ, (Dαδ) ∗ ξ = (−1)|α|Dαξ, and for every

f ∈ [E(γ,U)], δ ∗ f = f , (Dαδ) ∗ f = Dαf .

In fact, for ξ ∈ E and x ∈ Rn, (δ ∗ ξ)(x) = δ(ξ(x + ·)) = ξ(x + 0) = ξ(x), ((Dαδ) ∗
ξ)(x) = (Dαδ)(ξ(x+ ·)) = δ((−1)|α| ∂|α|ξ(x+τ)

∂τ
α1
1 ···∂ταn

n
) = (−1)|α|(Dαξ)(x), i.e., δ ∗ ξ = ξ, (Dαδ) ∗ ξ =

(−1)|α|Dαξ. Then for every ξ ∈ E,

(δ ∗ f)(ξ) = f(δ ∗ ξ) = f(ξ), ((Dαδ) ∗ f)(ξ) = f((Dαδ) ∗ ξ) = f((−1)|α|Dαξ) = (Dαf)(ξ).

(2) Let f ∈ E′ and U = {η ∈ E : |f(η)| < 1}. By Cor. 2.1, h ◦ f ∈ E(γ,U) for each

h ∈ Lγ,1(C,C) and f0 ∗ (h ◦ f) = h ◦ (f0 ∗ f) for every convolution multiplier f0 ∈ E′. In fact,

(f0 ∗ (h ◦ f))(ξ) = (h ◦ f)(f0 ∗ ξ) = h[f(f0 ∗ ξ)] = h[(f0 ∗ f)(ξ)] = [h ◦ (f0 ∗ f)](ξ), ∀ ξ ∈ E.

Theorem 5.2. Let f0 ∈ E′ be a convolution multiplier. For every U ∈ N (E) there is a

V ∈ N (E) such that

f0 ∗ f ∈ E(γ,V ), ∀ f ∈ E(γ,U),

f0 ∗ f ∈ [E(γ,V )], ∀ f ∈ [E(γ,U)].
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Henceforth, we write f0∗ξ = f0(ξ(x+·)) = (f0∗ξ)(x), see [4, 3.3.2]. Observe that tf ∈ E(γ,U)

whenever t ∈ C and f ∈ E(γ,U).

Lemma 5.2. If f0 ∈ E′ is a convolution multiplier and t ∈ C, then

t(f0 ∗ ξ) = (tf0) ∗ ξ, ∀ ξ ∈ E;

t(f0 ∗ f) = f0 ∗ (tf), ∀ f ∈ [E(γ,U)];

t(f0 ∗ f) = (tf0) ∗ f, ∀ f ∈ E′.

Proof. t(f0 ∗ ξ) = tf0(ξ(x+ ·)) = (tf0)(ξ(x+ ·)) = (tf0) ∗ ξ, ∀ ξ ∈ E. For f ∈ [E(γ,U)] and

ξ ∈ E, t(f0 ∗ f)(ξ) = tf(f0 ∗ ξ) = (tf)(f0 ∗ ξ) = (f0 ∗ (tf))(ξ). If f ∈ E′, then t(f0 ∗ f)(ξ) =
tf(f0 ∗ ξ) = f(t(f0 ∗ ξ)) = f((tf0) ∗ ξ) = ((tf0) ∗ f)(ξ) for all ξ ∈ E. �

As usual, e1 = (1, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), · · · , en = (0, · · · , 0, 1).

Theorem 5.3. If f0 ∈ E′ is a convolution multiplier and α is a multi-index, then Dα(f0 ∗ ξ) =
f0 ∗Dαξ for ξ ∈ E, and

Dα(f0 ∗ f) = (Dαf0) ∗ f = f0 ∗Dαf, ∀ f ∈ [E(γ,U)].

Recall that if f ∈ E′ for which supp f is bounded in Rn, then f must be a convolution

multiplier ([4, Th. 3.3.4]). Then we can develop the result of continuity of convolution ([4, Th.

3.3.5]).

First, we give an improvement of Th. 3.3.5 of [4] as follows.

Theorem 5.4. If {fk} ⊂ E′ such that fk
w∗−→ f , i.e., fk(ξ) → f(ξ) at each ξ ∈ E (f ∈ E′

by Th. 2.8) and there is a bounded F ⊂ Rn such that supp fk ⊆ F, ∀ k ∈ N, then for every

g ∈ [E(γ,U)] and bounded B ⊂ E,

lim
k
(fk ∗ g)(ξ) = (f ∗ g)(ξ) uniformly for ξ ∈ B.

We also give some simple facts before our main result Th. 5.6.

Theorem 5.5. Let f0 ∈ E′ be a convolution multiplier, U ∈ N (E) and γ ∈ C(0). There is a

V ∈ N (E) for which f0 ∗ · : [E(γ,U)] → [E(γ,V )] is a linear operator such that f0 ∗ f ∈ E(γ,V )

for each f ∈ E(γ,U). Moreover, if fk
w∗−→ f in E(γ,U), i.e., f, fk ∈ E(γ,U) and fk(ξ) → f(ξ) at

each ξ ∈ E, then for every bounded B ⊂ E, limk(f0 ∗ fk)(ξ) = (f0 ∗ f)(ξ) uniformly for ξ ∈ B.

We now have a strong continuity result for convolution as follows.

Theorem 5.6. Let {fk} ⊂ E′ be a sequence of usual distributions such that fk
w∗−→ f , i.e.,

fk(ξ) → f(ξ) at each ξ ∈ E (f ∈ E′ by Th. 2.8) and there is a bounded F ⊂ Rn such that

supp fk ⊆ F, ∀ k ∈ N. If gk
w∗−→ g in E(γ,U), i.e., g, gk ∈ E(γ,U) for all k and gk(ξ) → g(ξ) at

each ξ ∈ E, then for every bounded B ⊂ E, limk,m→+∞(fk ∗ gm)(ξ) = (f ∗ g)(ξ) uniformly for

ξ ∈ B and, in particular, limk(fk ∗ gk)(ξ) = (f ∗ g)(ξ) uniformly for ξ ∈ B, and (fk ∗ gk)(ξk) →
(f ∗ g)(ξ) whenever ξk → ξ in E.

Proof. As in the proof of Th. 5.4, it follows from fk
w∗−→ f in E′ and g, gk ∈ E(γ,U) that

there is a V ∈ N (E) such that f ∗ g, fm ∗ gk ∈ E(γ,V ) for all k,m ∈ N.
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Let ξ ∈ E. As was noticed in the proof of Th. 5.4, fm ∗ ξ → f ∗ ξ in E and so limm(fm ∗
gk)(ξ) = limm gk(fm ∗ ξ) = gk(f ∗ ξ), ∀ k ∈ N. But {fm ∗ ξ} is bounded in E and, by Th.

2.2, limk(fm ∗ gk)(ξ) = limk gk(fm ∗ ξ) = g(fm ∗ ξ) = (fm ∗ g)(ξ) uniformly for m ∈ N. Then

limk,m→+∞(fm∗gk)(ξ) = limm limk(fm∗gk)(ξ) = limm(fm∗g)(ξ) = limm g(fm∗ξ) = g(f ∗ξ) =
(f ∗ g)(ξ), ∀ ξ ∈ E.

Let B be a bounded subset of E. If limk,m→+∞(fm ∗ gk)(ξ) = (f ∗ g)(ξ) is not uniformly for

ξ ∈ B, then there exist ε > 0, {ξν} ⊂ B and integer sequences k1 < k2 < · · · and m1 < m2 < · · ·
such that

(∗) |(fmν ∗ gkν )(ξν)− (f ∗ g)(ξν)| ≥ ε, ν = 1, 2, 3, · · · .
Since f ∗ g, fmν ∗ gkν ∈ E(γ,V ) for all ν ∈ N and

lim
ν
(fmν

∗ gkν
)(ξ) = lim

k,m→+∞
(fm ∗ gk)(ξ) = (f ∗ g)(ξ), ∀ ξ ∈ E,

it follows from Th. 2.2 or Th. 2.7 that limν(fmν ∗ gkν )(ξ) = (f ∗ g)(ξ) uniformly for ξ ∈ B and

so there is a ν0 ∈ N such that

|(fmν ∗ gkν )(ξν)− (f ∗ g)(ξν)| < ε, ∀ ν > ν0.

This contradicts (∗) and so limk,m→+∞(fm ∗ gk)(ξ) = (f ∗ g)(ξ) uniformly for ξ ∈ B. �
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