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Checking weak and strong optimality of the solution to

interval convex quadratic program

XIA Meng-xue1 LI Miao-miao1 ZHANG Ben2 LI Hao-hao3,∗

Abstract. In this paper, we investigate three canonical forms of interval convex quadratic pro-

gramming problems. Necessary and sufficient conditions for checking weak and strong optimality

of given vector corresponding to various forms of feasible region, are established respectively.

By using the concept of feasible direction, these conditions are formulated in the form of linear

systems with both equations and inequalities. In addition, we provide two specific examples to

illustrate the efficiency of the conditions.

§1 Introduction

Over the past decades, interval systems and interval mathematical programming problems

have been studied by many authors, see e.g., [1-17]. Most of the authors dealt with interval

systems, see Li et al.[8] Popova[16] and Skalna et al.[21] for latest results, among others. The

duality theory for interval-valued optimization problem was proposed by Wu[22, 23]. The

problem of computing the range of optimal values of interval convex quadratic programming

(IvCQP) was investigated by Liu[14], Li[9], Hlad́ık[5] and Li et al.[12]. Recently, Hlad́ık[7]

generalized the above results and proposed an algorithm for computing the optimal value range

of IvCQP in a general form.

One of the fundamental problems in interval program is to check whether a given vector is

optimal, which is often overlooked. Recently, some authors studied weak and strong optimality

of a given point to interval linear programs, see [18-22]. However, little was done on the

optimality of a given vector to IvCQP problems. In this paper, we discuss the characterizations

for checking weak and strong optimality of the solutions to three canonical forms of interval

convex quadratic constrained programming problems. First, we propose the methods to check

weak optimality of a given vector to IvCQP problems based on feasible directions. Next, strong
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optimality of a given vector is studied in a similar manner. Finally, we report some illustrated

examples.

§2 Preliminaries

Let us introduce some notations. The i-th row of a matrix A ∈ Rm×n is denoted by Ai,.,

the j-th column by A.,j . Following notations from [3], an interval matrix is defined as

A = [A,A] = {A ∈ Rm×n : A ≤ A ≤ A},
where A,A ∈ Rm×n, A ≤ A, and “≤” is understood componentwise. By

Ac =
1

2
(A+A), A∆ =

1

2
(A−A),

we denote the center and the radius of A, respectively. Then A = [Ac − A∆, Ac + A∆]. An

interval vector b = [b, b] = {b ∈ Rm : b ≤ b ≤ b} is understood as a one-column interval matrix.

Let {±1}m be the set of all {−1, 1} m-dimensional vectors, i.e.

{±1}m = {y ∈ Rm| | y |= e},
where e = (1, · · · , 1)T is the m-dimensional vector of all 1

,
s and the absolute value of a matrix

A = (aij) is defined by |A| = (|aij |). For a given y ∈ {±1}m, let

Ty = diag(y1, . . . , ym)

denote the corresponding diagonal matrix. For each x ∈ Rn, we define its sign vector sgn x by

(sgn x)i =

{
1 if xi ≥ 0,

−1 if xi < 0,

where i = 1, · · · , n. Then we have |x| = Tzx, where z = sgn x ∈ {±1}n.
Given an interval matrix A = [Ac −A∆, Ac +A∆], for each y ∈ {±1}m and z ∈ {±1}n, we

define matrices

Ayz = Ac − TyA∆Tz.

Similarly, for an interval vector b = [bc−b∆, bc+b∆] and for each y ∈ {±1}m, we define vectors

by = bc + Tyb∆.

The set of all m-by-n interval matrices will be denoted by IRm×n and the set of all m-

dimensional interval vectors by IRm. Let Q ∈ IRn×n, A ∈ IRm×n, c ∈ IRn and b ∈ IRm.

Assume that Q is positive semidefinite for all Q ∈ Q.

The interval convex quadratic programming (IvCQP) problem

min
1

2
xTQx+ cTx (1a)

s.t. x ∈ M(A, b), (1b)

is the family of convex quadratic programming (CQP) problems

min
1

2
xTQx+ cTx (2a)

s.t. x ∈ M(A, b), (2b)

with data satisfying Q ∈ Q, A ∈ A, b ∈ b , c ∈ c. A scenario means a concrete setting of (2).

As we all known, M(A, b) is the feasible region associated with a linear system. We can

extend the feasible region to interval linear systems, asM(A, b). In interval linear programming



174 Appl. Math. J. Chinese Univ. Vol. 36, No. 2

theory, one of the following canonical forms

(A) M(A,b) = {x ∈ Rn;Ax = b, x ≥ 0},
(B) M(A,b) = {x ∈ Rn;Ax ≤ b},
(C) M(A,b) = {x ∈ Rn;Ax ≤ b, x ≥ 0}

is usually assumed [1,4]. Similarly, we focus on interval convex quadratic programming problems

with the above three canonical forms of feasible regions.

Definition 2.1. A vector x is called a weakly(strongly) feasible solution of the IvCQP prob-

lem (1) if it satisfies (2b), for some(each) A ∈ A, b ∈ b. Moreover, a vector is called a

weakly(strongly) optimal solution to (1) if it is an optimal solution for some(each) concrete

settings of (2).

Definition 2.2. A matrix A is called a feasible matrix if there exists some b ∈ b such that

M(A, b) ̸= ∅.

Next, we give the conception of feasible directions, which has been discussed in [2].

Definition 2.3. Given an optimization problem with feasible region Ω. A vector d ∈ Rn, d ̸= 0,

is a feasible direction at x ∈ Ω if there exists α0 > 0 such that x+ αd ∈ Ω for all α ∈ [0, α0].

Let Ω = {x|ci(x) = 0, i ∈ Ψ; ci(x) ≥ 0, i ∈ Γ} be the feasible region of an optimization

problem where ci : Rn → R, i ∈ Ψ
∪

Γ are continuously differentiable functions. If d ∈ Rn is

the feasible direction at x ∈ Ω, then

∇ci(x)
T d = 0, ∀i ∈ Ψ; ∇ci(x)

T d ≥ 0, ∀i ∈ Γ(x) , {i ∈ Γ|ci(x) = 0}.
Moreover, the converse of this result also true if Ω is a linear system.

From Theorem 6.1 in [2], we can get the well-known first-order necessary condition, i.e., if

f is a real-valued function on Ω, x∗ is a local minimizer of f over Ω, then the rate of increase

of f at x∗ in any feasible direction d in Ω is nonnegative.

In order to obtain the main results in next section, we give some properties of CQP problems.

Theorem 2.1. Suppose that x∗ be a feasible solution of (2), then x∗ is an optimal solution of

(2) if and only if for any feasible direction d at x∗, we have

(c+Qx∗)T d ≥ 0. (3)

Proof. It is obvious by Theorem 6.1, Theorem 22.6 and Theorem 22.7 in [2]. �
In 2013, Hlad́ık[6] considered weak and strong solvability of general interval linear systems

consisting of mixed equations and inequalities with mixed free and sign-restricted variables. He

generalized the well known weak solvability characterizations by Oettli-Prager (for equations)

and Gerlach (for equalities) to a unified framework. From the main results in [6], we can obtain

the characterizations of weak and strong solvability for some special systems.

Theorem 2.2. A vector x ∈ Rn is a weak solution of interval linear system Ax = b, Cx ≤ d

(the vector satisfies linear system Ax = b, Cx ≤ d, for some A ∈ A, C ∈ C, b ∈ b and d ∈ d),

if and only if for some s ∈ {±1}n, it satisfies
(Ac −A∆Ts)x ≤ b, − (Ac +A∆Ts)x ≤ −b, (Cc − C∆Ts)x ≤ d.

Proof. It is clear by Corollary 2 in [6]. �
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Theorem 2.3. A vector x ∈ Rn is a strong solution of Ax = b, x ≥ 0 (the vector satisfies

linear system Ax = b, x ≥ 0, for each A ∈ A, b ∈ b) if and only if it satisfies

A∆x = 0, Acx = bc, x ≥ 0

Proof. It is clear by Theorem 3 in [6]. �
The following theorem from [3,18] characterize the solvability of interval linear systems,

which, together with Theorem 2.1, 2.2 and 2.3, will be used to obtain our main results in the

next two sections.

Theorem 2.4. A system Ax ≤ b is solvable for each A ∈ A, b ∈ b if and only if the system

Ax1 −Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0

is solvable.

Let x ∈ Rn, A ∈ IRm×n. Obviously, we know Ax ∈ IRm. The following lemma from [8]

characterizes the lower bound and the upper bound of interval vector Ax, which will be used

to obtain our main results in the next two sections.

Lemma 2.1. (Lemma 3.1 in [8]) Let x ∈ Rn, A ∈ IRm×n, and h = sgn x. Then for each

A ∈ A, we have Aehx ≤ Ax and A−ehx ≥ Ax.

§3 Checking weakly optimal solution of interval convex quadratic

program

In this section, we first propose the method to check weak optimality of a given vector

for the interval convex quadratic program, which feasible regions are interval equalities with

nonnegativity variables.

Theorem 3.1. Let x∗ = (x∗
1, . . . , x

∗
n)

T ∈ Rn. Denote G = {ki|i = 1, · · · , t, x∗
ki

= 0}. Then x∗

is a weakly optimal solution to

min
1

2
xTQx+ cTx (4a)

s.t. Ax = b, x ≥ 0 (4b)

if and only if x∗ is a weakly feasible solution to (4), and there exists a feasible matrix A such

that the linear system 
A(x1 − x2) = 0,

(x1 − x2)ki ≥ 0, ki ∈ G,

(c+Qx∗)Tx1 − (c+Qx∗)Tx2 < 0,

x1 ≥ 0, x2 ≥ 0

(5)

has no solution.

Proof. “Only if”: Let x∗ be a weakly optimal solution to problem (4), then x∗ is a weakly

feasible solution to (4). And for some A ∈ A, b ∈ b, x∗ is a weakly optimal solution to problem

min
1

2
xTQx+ cTx (6a)

s.t. Ax = b, x ≥ 0. (6b)
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Then, from Definition 2.3, the feasible direction to the feasible region (6b) at x∗ reads{
Ax = 0,

xki ≥ 0, ki ∈ G,

where G = {ki|i = 1, · · · , t, x∗
ki

= 0}.

Meanwhile, we know x∗ is a weakly optimal solution to problem (6) if and only if it is an

optimal solution to problem

min
1

2
xTQx+ cTx (7a)

s.t. Ax = b, x ≥ 0, (7b)

for some Q ∈ Q and c ∈ c. Moreover, from Theorem 2.1, x∗ is an optimal solution to (7) if

and only if there holds (3), where d is any feasible direction to the feasible region (6b) at x∗.

Obviously, the solvability of (3) for any feasible direction d is equivalent to the unsolvability of
Ax = 0,

xki ≥ 0 ki ∈ G,

(c+Qx∗)Tx < 0.

(8)

That is, x∗ is a weakly optimal solution to (6) if and only if the system (8) is unsolvable for

some Q ∈ Q, c ∈ c or, equivalently, if and only if it is not true that (8) is solvable for all

Q ∈ Q, c ∈ c. Then from Theorem 2.4, we can easily obtain the system
A(x1 − x2) = 0,

(x1 − x2)ki ≥ 0 ki ∈ G,

(c+Qx∗)Tx1 − (c+Qx∗)Tx2 < 0, x1 ≥ 0, x2 ≥ 0

(9)

has no solution. Obviously, from the nonnegativity of x∗, we know{
c+Qx∗ = c+Qx∗,

c+Qx∗ = c+Qx∗.
(10)

From the formula (10) and unsolvability of (9), we obtain the system (5) has no solution.

“If”: Let x∗ be a weakly feasible solution to (4), then for feasible matrix A ∈ A, there

exists b ∈ b such that x∗ is a feasible solution to problem (6).

Because the linear system (5) has no solution for feasible matrix A ∈ A, we know that

associated system (9) has no solution from the analysis above. According to Theorem 2.4, we

have the linear system (8) has no solution for some Q ∈ Q, c ∈ c. Hence, x∗ is an optimal

solution to (7) for some Q ∈ Q, c ∈ c, which means, x∗ is a weakly optimal solution to (4). �

In the similar manner, we can prove the next result for the IvCQP, which feasible regions

are interval inequalities with free variables.

Theorem 3.2. Let x∗ ∈ Rn, where x∗ = (x∗
1, . . . , x

∗
n)

T . Then x∗ is a weakly optimal solution

to

min
1

2
xTQx+ cTx (11a)

s.t. Ax ≤ b (11b)

if and only if x∗ is a weakly feasible solution to (11), and there exists a feasible matrix A such
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that the linear system 
Arj ,·(x1 − x2) ≤ 0, rj ∈ F

(c+Q−esx
∗)Tx1 − (c+Qesx

∗)Tx2 < 0,

x1 ≥ 0, x2 ≥ 0

(12)

has no solution, where s = sgn x∗ and F = {rj |j = 1, · · · , q, Arj ,·x
∗ ≥ brj}.

Proof. “Only if”: Let x∗ be a weakly optimal solution to problem (11), then x∗ is a

weakly feasible solution to (11). And for some A ∈ A, b ∈ b, x∗ is a weakly optimal solution

to problem

min
1

2
xTQx+ cTx (13a)

s.t. Ax ≤ b. (13b)

Then feasible direction to the feasible region of (13) at x∗ reads

Ar′j ,·x ≤ 0, r′j ∈ F ′,

where F ′ = {r′j |j = 1, · · · ,m, Ar′j ,·x
∗ = br′j}. Meanwhile, we know x∗ is an optimal solution to

problem

min
1

2
xTQx+ cTx (14a)

s.t. Ax ≤ b, (14b)

for some Q ∈ Q, c ∈ c.

Moreover, from Theorem 2.1, x∗ is an optimal solution to (14) if and only if there holds (3),

where d is any feasible direction to the feasible region of (13) at x∗. Thus, solvability of (3) for

any feasible direction d is equivalent to the unsolvability of{
Ar′j ,·x ≤ 0, r′j ∈ F ′

(c+Qx∗)Tx < 0.
(15)

Clearly, for each r′j ∈ F ′ we are easy to obtain Ar′j ,·x
∗ = br′j ≥ br′j , thus, r

′
j ∈ F , which implies

F ′ ⊆ F . Hence, the linear system {
Arj ,·x ≤ 0, rj ∈ F

(c+Qx∗)Tx < 0.
(16)

has no solution. That is, from the weak optimality of x∗ for problem (13), we have the system

(16) is unsolvable for some Q ∈ Q, c ∈ c. Then from Theorem 2.4 and Lemma 2.1, we obtain

the system (12) has no solution.

“If”: Let x∗ be a weakly feasible solution to (11), then for feasible matrix A ∈ A, there

exists some b ∈ b such that x∗ is a feasible solution to (13).

Because the linear system (12) has no solution, we know that the associated linear system

(17) has no solution from the above analysis. According to Theorem 2.4, we know that (16)

has no solution for some Q ∈ Q, c ∈ c. Denote

b̃k =

{
Ak,·x

∗, k ∈ F

bk ∈ bk, k /∈ F,

obviously, b̃ ∈ b. Moreover, we have

Ak,·x
∗ = b̃k, k ∈ F
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and

Ak,·x
∗ < bk ≤ b̃k, k /∈ F,

thus, Ax∗ ≤ b̃, meanwhile, F ′ = F . Hence, we know the linear system (15) has no solution,

which means x∗ is an optimal solution to (14), for some Q ∈ Q, c ∈ c. Thus, x∗ is a weakly

optimal solution to problem (11). �

Theorem 3.3. Let x∗ = (x∗
1, . . . , x

∗
n)

T ∈ Rn, Then x∗ is a weakly optimal solution to

min
1

2
xTQx+ cTx (17a)

s.t. Ax ≤ b, x ≥ 0 (17b)

if and only if x∗ is a weakly feasible solution to (17), and there exists a feasible matrix A such

that the linear system 
Arj ,·(x1 − x2) ≤ 0, rj ∈ F

(x1 − x2)ki ≥ 0, ki ∈ G,

(c+Qx∗)Tx1 − (c+Qx∗)Tx2 < 0,

x1 ≥ 0, x2 ≥ 0

(18)

has no solution, where F = {rj |j = 1, · · · , q, Arj ,·x
∗ ≥ brj}, and G = {ki|i = 1, · · · , t, x∗

ki
= 0}.

Proof: The proof is similar to that of the Theorem 3.1 and Theorem 3.2 and is thus

omitted here. �

§4 Checking strongly optimal solution of interval convex quadratic

program

In this section, we first propose the method to check strong optimality of a given vector for

the interval convex quadratic program. In this case, the feasible regions are interval equalities

with nonnegative variables.

Theorem 4.1. Let x∗ ∈ Rn, where x∗ = (x∗
1, . . . , x

∗
n)

T . Denote

G = {ki|i = 1, · · · , t, x∗
ki

= 0}.
Then x∗ is a strongly optimal solution to (4) if and only if it is a strongly feasible solution to

(4), and for each hi ∈ {±1}, i = 1, 2, · · · , n− t, the linear system

Ax ≤ 0,

Ax ≥ 0,

xki ≥ 0, ki ∈ G,∑t
i=1(c+Qx∗)kixki+∑n
i=t+1[(cc +Qcx

∗)ki + hi−t(c∆ +Q∆x
∗)ki ]xki < 0

(19)

has no solution.

Proof. “Only if”: Let x∗ be a strongly optimal solution to (4), then x∗ is a strongly

feasible solution to (4), and for each A ∈ A, b ∈ b, Q ∈ Q and c ∈ c, x∗ is an optimal solution

to CQP problem

min
1

2
xTQx+ cTx (20a)

s.t. Ax = b, x ≥ 0. (20b)
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Clearly, the feasible direction to the feasible region of (20) at x∗ reads{
Ax = 0,

xki ≥ 0, ki ∈ G,

and from the discussion in “Only if” part of Theorem 3.1, we have the following linear system
Ax = 0,

xki ≥ 0, ki ∈ G,

(c+Qx∗)Tx < 0

(21)

has no solution. Obviously, for each A ∈ A, b ∈ b, Q ∈ Q and c ∈ c, the system (21) which

has no solution is equivalent to the conditions that
Ax = 0,

xki ≥ 0 ki ∈ G,

(c+Qx∗)Tx < 0

(22)

has no weak solution. Moreover, from Theorem 2.2, the interval linear system (22) has no weak

solution if and only if for each s ∈ {±1}n, the following system
(Ac −A∆Ts)x ≤ 0,

−(Ac +A∆Ts)x ≤ 0,

xki ≥ 0 ki ∈ G,

((cc +Qcx
∗)T − (c∆ +Q∆x

∗)TTs)x < 0,

(23)

has no solution.

By a contradiction, if there exists some hi ∈ {±1}, i = 1, 2, · · · , n− t, such that the linear

system (19) has a solution x̂, which implies

Ax̂ ≤ 0,

Ax̂ ≥ 0,

x̂ki ≥ 0, ki ∈ G,∑t
i=1(c+Qx∗)ki

x̂ki
+∑n

i=t+1[(cc +Qcx
∗)ki

+ hi−t(c∆ +Q∆x
∗)ki

]x̂ki
< 0,

(24)

Let ski = 1, i = 1, 2, · · · , t; ski = sgn x̂ki , i = t+1, · · · , n, obviously, s ∈ {±1}n. From Lemma

2.1, we have

(Ac −A∆Ts)x̂ =
n∑

i=1

(Ac −A∆Ts)·,ki x̂ki

=
t∑

i=1

[(Ac)·,ki − (A∆)·,kiski ]x̂ki +
n∑

i=t+1

[(Ac)·,ki − (A∆)·,kiski ]x̂ki

=
t∑

i=1

A·,ki
x̂ki +

n∑
i=t+1

(Aes)·,ki x̂ki ≤
t∑

i=1

A·,ki
x̂ki +

n∑
i=t+1

A·,ki
x̂ki

= Ax̂.

Similarly, there holds

(Ac +A∆Ts)x̂ ≥ Ax̂.

Thus, from formula (24), there holds{
(Ac −A∆Ts)x̂ ≤ 0,

(Ac +A∆Ts)x̂ ≥ 0.
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Meanwhile,

[(cc +Qcx
∗)T − (c∆ +Q∆x

∗)TTs]x̂

= [(cc +Qcx
∗)− Ts(c∆ +Q∆x

∗)]T x̂

=

n∑
i=1

[(cc +Qcx
∗)ki − ski(c∆ +Q∆x

∗)ki ]x̂ki (25)

=
t∑

i=1

[(cc +Qcx
∗)ki − ski(c∆ +Q∆x

∗)ki ]x̂ki +
n∑

i=t+1

[(cc +Qcx
∗)ki − ski(c∆ +Q∆x

∗)ki ]x̂ki

=

t∑
i=1

(c+Qx∗)ki x̂ki +

n∑
i=t+1

[(cc +Qcx
∗)ki − ski(c∆ +Q∆x

∗)ki ]x̂ki .

Moreover, for each vector x̂ ∈ Rn, we know |x̂| = (sgn x̂) · x̂, then
n∑

i=t+1

[(cc +Qcx
∗)ki − ski(c∆ +Q∆x

∗)ki ]x̂ki

=

n∑
i=t+1

[(cc +Qcx
∗)ki x̂ki − |x̂ki |(c∆ +Q∆x

∗)ki ]

≤
n∑

i=t+1

[(cc +Qcx
∗)ki x̂ki + hi−tx̂ki(c∆ +Q∆x

∗)ki ] (26)

=
n∑

i=t+1

[(cc +Qcx
∗)ki

+ hi−t(c∆ +Q∆x
∗)ki

]x̂ki

where hi−t ∈ {±1}. Thus, together with (24) (25) and (26), there holds

[(cc +Qcx
∗)T − (c∆ +Q∆x

∗)TTs]x̂

≤
t∑

i=1

[(c+Qx∗)ki ]x̂ki +
n∑

i=t+1

[(cc +Qcx
∗)ki + hi−t(c∆ +Q∆x

∗)ki ]x̂ki < 0.

Which implies x̂ satisfies (23), for some s ∈ {±1}n. This is a contradiction, thus, the linear

system (19) has no solution, for each hi ∈ {±1}, i = 1, 2, · · · , n− t.

“If”: From the “Only if” part in Theorem 4.1, we know that x∗ is a strongly optimal

solution to (4) if and only if x∗ is a strongly feasible solution to (4) and for each s ∈ {±1}n,
the linear system (23) has no solution.

Assume that x∗ is a strongly feasible solution to (4), and for each hi ∈ {±1}, i = 1, 2, · · · , n−
t the system (19) has no solution, we only need to prove (23) has no solution for each s ∈ {±1}n,
in this part.

By a contradiction, if there exists s ∈ {±1}n such that the linear system (23) has a solution

x̂, which implies 
(Ac −A∆Ts)x̂ ≤ 0,

−(Ac +A∆Ts)x̂ ≤ 0,

x̂ki ≥ 0 ki ∈ G,

((cc +Qcx
∗)T − (c∆ +Q∆x

∗)TTs)x̂ < 0.

(27)

Meanwhile, from Theorem 2.3, we know

A∆x
∗ = 0,
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since x∗ is a strongly feasible solution to (4). Then we have (A∆)·,j = 0 if x∗
j ̸= 0, due to

A∆ ≥ 0 and x∗ ≥ 0. Because x∗
ki

> 0, ki /∈ G, hence, (A∆)·,ki = 0, ki /∈ G. Thus, we have

A·,ki
= A·,ki = (Ac)·,ki , i = t+ 1, · · · , n, (28)

meanwhile,

x̂ki ≥ 0, i = 1, · · · , t. (29)

Then from (28) (29) and combing with (27) , there holds

Ax̂ =
t∑

i=1

A·,ki
x̂ki +

n∑
i=t+1

(Ac)·,ki x̂ki

≤
t∑

i=1

(Ac −A∆Ts)·,ki
x̂ki

+
n∑

i=t+1

(Ac)·,ki
x̂ki

= (Ac −A∆Ts)x̂ ≤ 0.

Similarly, we have

Ax̂ ≥ (Ac +A∆Ts)x̂ ≥ 0

Moreover, due to x∗ ≥ 0 and x̂ki ≥ 0, i = 1, 2, · · · , t, then there holds

[(cc +Qcx
∗)T − (c∆ +Q∆x

∗)TTs]x̂

=

t∑
i=1

[(cc +Qcx
∗)ki − ski(c∆ +Q∆x

∗)ki ]x̂ki +

n∑
i=t+1

[(cc +Qcx
∗)ki − ski(c∆ +Q∆x

∗)ki ]x̂ki

≥
t∑

i=1

[(c+Qx∗)ki ]x̂ki +
n∑

i=t+1

[(cc +Qcx
∗)ki − ski(c∆ +Q∆x

∗)ki ]x̂ki .

Let ski = −hi−t, i = t+ 1, · · · , n, then from formula (27) we have
t∑

i=1

[(c+Qx∗)ki ]x̂ki +
n∑

i=t+1

[(cc +Qcx
∗)ki + hi−t(c∆ +Q∆x

∗)ki ]x̂ki < 0,

which implies x̂ satisfies (19) for some hi ∈ {±1}, i = 1, · · · , n − t. This is a contradiction,

thus, for each s ∈ {±1}n the interval linear system (23) has no solution. Hence, x∗ is a strongly

optimal solution to (4). �
Obviously, from Theorem 4.1, we can checking the optimality of a strongly feasible solution

for IvCQP (4) by 2n−t linear systems. In the similar manner, we can prove the optimality of a

given vector for the IvCQP (11).

Theorem 4.2. Let x∗ ∈ Rn. Denote

F = {rj |j = 1, · · · , q, (Aeh)rj ,·x
∗ = brj},

where h = sgn x∗. Then x∗ is a strongly optimal solution to (11) if and only if it is a strongly

feasible solution to (11), and for each s ∈ {±1}n, the system{
(Aes)rj ,·x ≤ 0, rj ∈ F,

(c+Qx∗)Tesx < 0
(30)

has no solution.

Proof. “Only if”: Let x∗ be a strongly optimal solution to (11), then x∗ is a strongly

feasible solution to (11), and for each A ∈ A, Q ∈ Q and c ∈ c, x∗ is an optimal solution to
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CQP problem

min
1

2
xTQx+ cTx (31a)

s.t. Ax ≤ b. (31b)

Specially, consider A ∈ A, where A is defined as

Arj ,· =

{
Arj ,· ∈ Arj ,·, rj ∈ F

(Aeh)rj ,·, rj ∈ {1, 2, · · · , n}\F.
(32)

Let the set

F ′ = {r′j |j = 1, · · · , t, Ar′j ,·x
∗ = br′j},

the feasible direction to the feasible region of (31) at x∗ reads

Ar′j ,·x ≤ 0, r′j ∈ F ′.

Clearly, from Lemma 2.1, we are easy to obtain that for each rj ∈ F

brj = (Aeh)rj ,·x
∗ ≤ Arj ,·x

∗ ≤ brj ,

obviously,

Arj ,·x
∗ = brj .

Thus, rj ∈ F ′, which implies F ⊆ F ′.

Now, we prove F ′\F is empty by a contradiction. For some r′j ∈ F ′\F , from the formula

(32), we have

Ar′j ,· = (Aeh)r′j ,·,

then

(Aeh)r′j ,·x
∗ = Ar′j ,·x

∗ = br′j .

Equivalently, r′j ∈ F , a contradiction. Thus, we have F = F ′.

Note that x∗ is an optimal solution to (31), then from the discussion in “Only if” part of

Theorem 3.2, we know that the system{
Ar′j ,·x ≤ 0, r′j ∈ F ′

(c+Qx∗)Tx < 0.

has no solution. Thus, for each Arj ,· ∈ Arj ,·, rj ∈ F and Q ∈ Q, c ∈ c, the system{
Arj ,·x ≤ 0, rj ∈ F

(c+Qx∗)Tx < 0.
(33)

has no solution that is nothing to do with Arj ,· ∈ Arj ,·, rj /∈ F , due to F = F ′. Hence, for

each A ∈ A, c ∈ c, Q ∈ Q, the linear system (33) has no solution, obviously, it is equivalent

to the conditions that {
Arj ,·x ≤ 0, rj ∈ F

(c+Qx∗)Tx < 0.

has no weak solution. Thus, from Theorem 2.2, the interval linear system has no weak solution

if and only if for each s ∈ {±1}n, the following system{
(Ac −A∆Ts)rj ,·x ≤ 0, rj ∈ F

((cc +Qcx
∗)T − (c∆ +Q∆x

∗)TTs)x < 0.

has no solution, which implies (30) holds.

“If”: Let x∗ be a strongly feasible solution to (11), then for each A ∈ A, b ∈ b, Q ∈ Q, c ∈
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c, x∗ is a feasible solution to CQP problem

min
1

2
xTQx+ cTx (34a)

s.t. Ax ≤ b. (34b)

Then the feasible direction to the feasible region of (34) at x∗ reads

Ar′j ,·x ≤ 0, r′j ∈ F ′,

where

F ′ = {r′j |j = 1, · · · ,m, Ar′j ,·x
∗ = br′j}.

Similarly, from Lemma 3.1, we are easy to obtain that for each rj ∈ F , then

brj ≤ brj = (Aeh)rj ,·x
∗ ≤ Arj ,·x

∗ ≤ brj ,

which implies

Arj ,·x
∗ = brj .

Clearly, we know rj ∈ F ′, thus, F ⊆ F ′.

Because the linear system (30) has no solution for each s ∈ {±1}n, the linear system (33)

has no solution for each A ∈ A, b ∈ b, Q ∈ Q, c ∈ c by Theorem 2.2. Moreover, we are easy

to obtain that for each A, b, Q, c, the linear system{
Ar′j ,·x ≤ 0, r′j ∈ F ′

(c+Qx∗)Tx < 0

has no solution since F ⊆ F ′. Hence, from Theorem 2.1, the x∗ is an optimal solution to CQP

(34), which means x∗ is a strongly optimal solution to problem (11). �

Theorem 4.3. Let x∗ ∈ Rn, where x∗ = (x∗
1, . . . , x

∗
n)

T . Denote

F = {rj |j = 1, · · · , q, Arj ,·x
∗ = brj} and G = {ki|i = 1, · · · , t, x∗

ki
= 0}. Then x∗ is a strongly

optimal solution to (17) if and only if x∗ is a strongly feasible solution to (17), and for each

hi ∈ {±1}, i = 1, 2, · · · , n− t, the system
Arj ,·x ≤ 0, rj ∈ F,

xki ≥ 0, ki ∈ G,∑t
i=1(c+Qx∗)kixki+∑n
i=t+1[(cc +Qcx

∗)ki + hi−t(c∆ +Q∆x
∗)ki ]xki < 0,

(35)

has no solution.

Proof: The proof is similar to that of the Theorem 4.1 and Theorem 4.2 and is thus

omitted here. �

§5 Illustrative examples

In this section, we present two examples to illustrate the methods proposed in Section 3 and

4.

Example 1 Consider the IvCQP problem

min
1

2
x2
1 + 2x2

2 + [−1, 0]x1x2 + [−3, 0]x1 + [0, 1]x2

s.t. [0, 1]x1 + [1, 3]x2 ≤ [1, 2], (36)

x1, x2 ≥ 0.
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Let x∗ = (2, 0)T . Clearly, we are easy to obtain that x∗ is a weakly feasible solution, and

A = (1, 2) is a feasible matrix of the x∗.

Now construct the corresponding system (18). Note that the set

F = {rj |j = 1, · · · , q, Arj ,·x
∗ ≥ brj} = {1} and G = {ki|i = 1, · · · , t, x∗

ki
= 0} = {2} in this

example. Thus, the linear system (18) is

(1, 2)(x1 − x2) ≤ 0,

(x1 − x2)2 ≥ 0,

(

(
0

1

)
+

(
1 0

0 4

)(
2

0

)
)Tx1 − (

(
−3

0

)
+

(
1 −1

−1 4

)(
2

0

)
)Tx2 < 0,

x1, x2 ≥ 0.

where x1 =

(
x1
1

x2
1

)
, x2 =

(
x1
2

x2
2

)
. The linear system above can be written as

x1
1 + 2x2

1 − x1
2 − 2x2

2 ≤ 0,

x2
1 − x2

2 ≥ 0,

2x1
1 + x2

1 + x1
2 + 2x2

2 < 0,

x1
1, x

2
1, x

1
2, x

2
2 ≥ 0.

(37)

Obviously the third inequality in the system (41) contradicts with the nonnegativity of variables

x1
1, x

2
1, x

1
2, x

2
2. Hence, linear system (37) has no solution. From Theorem 3.3 we know that x∗

is a weak optimal solution to (36).

Moreover, we choose A = (1, 2), b = 2, c = (−2, 1)T and Q =

(
1 −0.5

−0.5 4

)
. Then

x∗ = (2, 0)T is optimal for the scenario

min
1

2
x2
1 + 2x2

2 − 0.5x1x2 − 2x1 + x2

s.t. x1 + 2x2 ≤ 2,

x1, x2 ≥ 0.

Example 2 Consider the IvLP problem

min
1

2
x2
1 +

1

2
x2
2 + 2x2

3 + [−1, 0]x1x3 + x2x3 − 3x1 + [−1, 0]x2 + x3

s.t. x1 + x2 + [0, 2]x3 = 2, (38)

2x1 − x2 + [1, 3]x3 = 1,

x1, x2, x3 ≥ 0.

Let x∗ = (1, 1, 0)T . Clearly, from Theorem 2.3 we know that x∗ is a strongly feasible

solution to (38).

Now construct the corresponding system (19). Note that the set G = {ki|i = 1, · · · , t, x∗
ki

=

0} = {3} in this example. Thus, the linear system (19) is

Ax ≤ 0,

Ax ≥ 0,

x3 ≥ 0,

(c+Qx∗)3x3 + [(cc +Qcx
∗)1 + h1(c∆ +Q∆x

∗)1]x1

+ [(cc +Qcx
∗)2 + h2(c∆ +Q∆x

∗)2]x2 < 0,

(39)
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where h1, h2 ∈ {±1}, x = (x1, x2, x3)
T . Note that (c∆ + Q∆x

∗)1 = 0 and hence h1(c∆ +

Q∆x
∗)1 = 0, so we only discuss the cases h2 = ±1. When h2 = 1, the linear system (39) can

be written as 

x1 + x2 ≤ 0,

2x1 − x2 + x3 ≤ 0,

x1 + x2 + 2x3 ≥ 0,

2x1 − x2 + 3x3 ≥ 0,

x3 ≥ 0,

x3 − 2x1 + x2 < 0.

(40)

Adding the second inequality and the sixth inequality in the system (40), we have 2x3 < 0,

which contradicts with the nonnegativity of variable x3. Hence, the linear system (40) has no

solution. When h2 = −1, we can similarly find that the corresponding system has no solution.

From Theorem 4.1 we know that x∗ is a strongly optimal solution to (38).

§6 Conclusion

This paper derives various methods to check weak and strong optimality of a given vector to

IvCQP with three canonical forms. All methods of three decision problems of interval convex

quadratic programming are established separately, since the equivalent transformation between

the interval linear systems is generally impossible due to dependency. Apart from these three

canonical forms of IvCQP, there are some other types of IvCQP, for example the general problem

can be formulated by using equations, inequalities or both. Moreover, by using sign-restricted

variables, the most general model with variables unrestricted in sign has been considered. The

methodology of this paper can be applicable to make a generalization of the solution concepts

for these interval convex quadratic programming problems.
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