
Appl. Math. J. Chinese Univ.
2021, 36(1): 83-98

Numerical solutions of two-dimensional nonlinear integral

equations via Laguerre Wavelet method with convergence

analysis

K. Maleknejad∗ M. Soleiman Dehkordi

Abstract. In this paper, the approximate solutions for two different type of two-dimensional

nonlinear integral equations: two-dimensional nonlinear Volterra-Fredholm integral equations

and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre

wavelet method. To do this, these two-dimensional nonlinear integral equations are transformed

into a system of nonlinear algebraic equations in matrix form. By solving these systems, un-

known coefficients are obtained. Also, some theorems are proved for convergence analysis.

Some numerical examples are presented and results are compared with the analytical solution

to demonstrate the validity and applicability of the proposed method.

§1 Introduction

Various problems in plasma physics, electrical engineering, electromagnetic analysis, the

Spatio-temporal development of an epidemic, theory of parabolic initial boundary value prob-

lems, physical phenomena [17, 31–36, 40, 41], population dynamics, and Fourier problems (see

e.g [7, 10,11,38,42,43] arise to the two-dimensional nonlinear integral equation.

There are several motivations for studying the numerical solution of two-dimensional inte-

gral equations such as triangular functions [3], block-by-block method [23], rationalized Harr

function [1, 2] and block pulse functions [24] , Legendre polynomials [37], Tau method [14], re-

producing kernel method [9], Hybrid function method [20], hybrid of block-pulse and parabolic

functions [25], a new collocation method [26], two-dimensional orthonormal Bernstein polyno-

mials [27], Bernoulli wavelet method [28], piecewise linear functions [29] and two-dimensional

delta basis functions [30].
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The purpose of the present paper concerns two topics. One of the our intentions is to obtain

the numerical solution of the two-dimensional nonlinear Volterra-Fredholm integral equations

u(x, t)− λ1

∫ t

0

∫ x

0

G1(x, t, y, z, u(y, z))dydz − λ2

∫ 1

0

∫ 1

0

G2(x, t, y, z, u(y, z))dydz = f(x, t) (1)

where u(x, t) is an unknown function on some region Ω := [0, 1]× [0, 1] and

X = {(x, t, y, z, u(y, z))|0 ≤ y ≤ x ≤ 1, 0 ≤ z ≤ t ≤ 1}.
The functions f(x, t), G1(x, t, y, z, u(y, z)) and G2(x, t, y, z, u(y, z)) are assumed to be given

smooth real valued function on Ω and λ1, λ2 are given real constants.

The other aim is to attain the numerical solution of the two-dimensional nonlinear mixed

Volterra-Fredholm integral equation

u(x, t) = f(x, t) + λ

∫ x

0

∫
Ω

G(x, t, y, z, u(y, z))dzdy, (x, t) ∈ [0, 1]× Ω (2)

where u(x, t) is the unknown in D = [0, 1] × Ω, where Ω is a closed subset of Rn ,n = 1, 2, 3.

The functions f(x, t) and G(x, t, y, z, u) are given functions in D.

In general,it is not easy to derive the analytical solutions to most of the nonlinear mixed

Volterra-Fredholm integral equation. Therefore, it is vital to develop some reliable and effi-

cient techniques to solve equation (1) such as two-dimensional triangular functions [18], two-

dimensional Legendre wavelets method [4], Adomian decomposition series [19, 44], the trape-

zoidal Nystrom and Euler Nystrom method [12, 13], He’s variational iteration method [46],

homotopy perturbation method [45] and two-dimensional block-pulse functions [21].

In this study, two-dimensional Laguerre wavelet is introduced and the numerical solutions

for equation (1) and equation (2) are computed by two-dimensional Laguerre wavelet method.

Thus, this paper is organized as follows. In Section 2, the basic definition and properties of

Laguerre polynomial are described. The two-dimensional Laguerre wavelets have constructed

a base on the Laguerre wavelet in Section 3. In Section 4 how the Laguerre wavelet method

can be used to reduce equation (1) and Eq.(2) to systems of nonlinear algebraic equations are

explained. Convergence analysis is discussed in Section 5. In Section 6, we apply the described

method to the solution of the Darboux problem. In Section 7, we present some numerical

examples which show the efficiency and accuracy of the proposed method. Finally, we give the

main conclusions of this study in Section 8.

§2 Laguerre Polynomials

For any α > −1, the Laguerre polynomials L
(α)
k (t), k ≥ 0, are the eigenfunctions of the

singular Sturm-Liouville problem in (0,+∞)(
tα+1e−t

(
L
(α)
k (t)

)′)′

+ ktαe−tL
(α)
k (t) = 0

They are orthogonal in (0,+∞) with respect to the weight w(t) = tαe−t and∫ ∞

0

L
(α)
k (t)L(α)

m (t)tαe−tdt = Γ(α+ 1)

(
k + α

k

)
δkm, k,m ≥ 0.
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The Laguerre polynomial satisfy the recursion relation

L
(α)
k+1(t) = (2k + α+ 1− t)L

(α)
k (t)− (k + α)L

(α)
k−1(t),

where L
(α)
0 (t) = 1 and L

(α)
1 (t) = α + 1 − t. In the particular case α = 0, the polynomial

Lk(t) = L
(0)
k (t) satisfy Lk(0) = 1 and are orthonormal in (0,+∞) [5]. There is well-known a

classical global uniform estimates given by [22,39]

|Lα
n(t)| ≤

(α+ 1)n

n!
e

t
2 , α ≥ 0, t ≥ 0, n = 0, 1, 2, .... (3)

In this paper, we assume that α = 0, therefore

|Ln(t)| ≤
1

(n− 1)!
e

t
2 , t ≥ 0, n = 0, 1, 2, .... (4)

§3 Wavelets and Laguerre wavelets

Wavelets constitute a family of functions constructed from dilation and translation of single

function called the mother wavelet ψ(t). They are defined by

ψa,b(t) =
1√
|a|
ψ
( t− b

a

)
, a, b ∈ R,

where a is dilation parameter and b is a translation parameter.

The Laguerre wavelets ψn,m(t) = ψ(k, n,m, t) have four arguments, defined on interval [0, 1)

by:

ψn,m(t) =


2

k
2

m!Lm(2kt− 2n+ 1), n−1
2k−1 ≤ t < n

2k−1 ,

0, elsewhere.

(5)

where k ∈ Z+, n = 1, 2, 3, ..., 2k−1 and m = 0, 1, ...,M − 1 is the order of the Laguerre polyno-

mials and M is a fixed positive integer [15].

The two-dimensional Laguerre wavelets are defined as

ψn,i,l,j(x, t) =
2

k1+k2
2

i!j! Li(2
k1x− 2n+ 1) Lj(2

k2t− 2l + 1), n−1
2k1−1 ≤ x < n

2k1−1 ,
l−1

2k2−1 ≤ t < l
2k2−1 ,

0, elsewhere.

(6)

where n = 1, 2, ..., 2k1−1, l = 1, 2, ..., 2k2−1, k1 and k2 are any positive integers, i and j are the

order of the Laguerre polynomials .

3.1 Function approximation by Laguerre wavelets

A function u(x, t) defined over [0, 1)× [0, 1) can be expanded in terms of Laguerre wavelets

as

u(x, t) =
∞∑

n=1

∞∑
i=0

∞∑
l=1

∞∑
j=0

cn,i,l,jψn,i,l,j(x, t). (7)
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If the infinite series in equation (7) is truncated, then it can be written as:

uk,M (x, t) =
2k1−1∑
n=1

M1−1∑
i=0

2k2−1∑
l=1

M2−1∑
j=0

cn,i,l,jψn,i,l,j(x, t) = CT Ψ(x, t), (8)

where Ψ(x, t) is (2k1−12k2−1M1M2 × 1) matrix, given by

Ψ(x, t) =[Ψ1,0,1,0(x, t),Ψ1,0,1,1(x, t), ...,Ψ1,0,1,M2−1(x, t), ...,Ψ1,0,2k2−1,M2−1(x, t), ...,

Ψ2k1−1,M1−1,2k2−1,M2−1(x, t)].

Also, C is (2k1−12k2−1M1M2 × 1) matrix whose elements can be calculated from the formula

cn,i,l,j =

∫ 1

0

∫ 1

0

ψn,i(x)ψl,j(t)u(x, t)dxdt,

and

C = [c1,0,1,0, c1,0,1,1, ..., c1,0,1,M2−1, ..., c1,0,2k2−1,M2−1, ..., c2k1−1,M1−1,2k2−1,M2−1]
T

§4 Two-dimensional Nonlinear Integral Equations

In this section, the numerical solutions of two different kind of two-dimensional nonlinear

integral equation are obtained by the two-dimensional Laguerre wavelets method.

4.1 Two-dimensional Nonlinear Volterra-Fredholm Integral Equation-

s

Consider the following nonlinear integral equation

u(x, t)− λ1

∫ t

0

∫ x

0

G1(x, t, y, z, u(y, z))dydz − λ2

∫ 1

0

∫ 1

0

G2(x, t, y, z, u(y, z))dydz = f(x, t) (9)

where u(x, t) is an unknown function on some region Ω := [0, 1]×[0, 1] andX = {(x, t, y, z, u(y, z))|
0 ≤ y ≤ x ≤ 1, 0 ≤ z ≤ t ≤ 1}. The functions f(x, t), G1(x, t, y, z, u(y, z)) andG2(x, t, y, z, u(y, z))

are assumed to be given smooth real valued function on Ω and λ1, λ2 are given real constants.

For solving the above problem (9), by attention to equation (8) we first expand u(x, t) by

the two-dimensional Laguerre wavelets as

uk,M (x, t) =

2k1−1∑
n=1

M1−1∑
i=0

2k2−1∑
l=1

M2−1∑
j=0

cn,i,l,jψn,i,l,j(x, t) = CT Ψ(x, t) (10)

where the coefficients cn,i,l,j are unknown. Then from equations (9) and (10) we have

uk,M (x, t)− λ1

∫ t

0

∫ x

0

G1(x, t, y, z, uk,M (y, z))dydz − λ2

∫ 1

0

∫ 1

0

G2(x, t, y, z, uk,M (y, z)dydz

= f(x, t) (11)

Let (xi, tj) be the set of 2k1−1M1 × 2k2−1M2 zero point of the shifted Chebyshev polynomial
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in [0, 1]. Now, we collocate equation (11) at (xi, tj) as

uk,M (xi, tj)− λ1

∫ ti

0

∫ xj

0

G1(xi, tj , y, z, uk,M (y, z))dydz

+ λ2

∫ 1

0

∫ 1

0

G2(xi, tj , y, z, uk,M (y, z)dydz = f(xi, tj) (12)

Gauss quadrature formulas will be used to compute the integral terms in equation (12). For

this purpose, we transfer the y-intervals and the z-intervals into [−1, 1] by means of the trans-

formations

τ1 =
2

xi
y − 1, ⇒ y =

xi
2
(τ1 + 1), y ∈ [0, xi],

τ2 =
2

tj
z − 1, ⇒ y =

tj
2
(τ2 + 1), z ∈ [0, tj ],

η1 = 2y − 1, ⇒ y =
1

2
(η1 + 1), y ∈ [0, 1],

η2 = 2z − 1, ⇒ y =
1

2
(η2 + 1), z ∈ [0, 1].

So equation (12) converts to

uk,M (xi, tj)−
λ1xitj

4

∫ 1

−1

∫ 1

−1

G1(xi, tj ,
xi
2
(τ1 + 1),

tj
2
(τ2 + 1), uk,M (

xi
2
(τ1 + 1),

tj
2
(τ2 + 1)))dτ1

dτ2 −
λ2
4

∫ 1

−1

∫ 1

−1

G2(xi, tj ,
1

2
(η1 + 1),

T2
2
(η2 + 1), uk,M (

T1
2
(η1 + 1),

1

2
(η2 + 1))dη1dη2 = f(xi, tj)

Using the Gauss quadrature formula, we estimate the integrals and gets

uk,M (xi, tj)−
λ1xitj

4

r1∑
p=1

r2∑
q=1

ωpωqG1(xi, tj ,
xi
2
(τq + 1),

tj
2
(τp + 1), uk,M (

xi
2
(τq + 1),

tj
2
(τp + 1)))

− λ2
4

r1∑
p=1

r2∑
q=1

ωpωqG2(xi, tj ,
1

2
(ηq + 1),

1

2
(ηp + 1), uk,M (

1

2
(ηq + 1),

1

2
(ηp + 1)) = f(xi, tj)

where τp , ηp and τq, ηq are zeros of Legendre polynomials of degrees r1 and r2, respectively, and

ωp and ωq are the corresponding weights. Equation (??) gives 2k1−1M1 × 2k2−1M2 nonlinear

equation which can be solved using Newton’s iterative method. The initial values required

to start Newton’s iterative method can be chosen by using the physical behavior of the given

integral equations.

4.2 The Nonlinear Mixed Volterra-Fredholm Integral Equation

Consider the nonlinear mixed Volterra-Fredholm integral equation

u(x, t) = f(x, t) + λ

∫ x

0

∫
Ω

G(x, t, y, z, u(y, z))dzdy, (x, t) ∈ [0, 1]× Ω (13)

where u(x, t) is the unknown in D = [0, 1] × Ω, where Ω is a closed subset of Rn ,n = 1, 2, 3.

The functions f(x, t) and G(x, t, y, z, u) are given functions in D.

Now, consider equation (13) with Ω = [0, 1]. We solve equation (13) by the Laguerre

wavelet. According to the process described in Section 4.1, we consider u(x, t) in equation (13)
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is approximated by two-dimensional

uk,M (x, t) =
2k1−1∑
n=1

M1−1∑
i=0

2k2−1∑
l=1

M2−1∑
j=0

cn,i,l,jψn,i,l,j(x, t) = CT Ψ(x, t) (14)

Substituting equation (14) into equation (13) gives

uk,M (x, t) = f(x, t) + λ

∫ x

0

∫ 1

0

G(x, t, y, z, uk,M (y, z))dzdy (15)

Collocation equation (15) at 2k1−1M1 × 2k2−1M2 point (xi, tj), gives

uk,M (xi, tj) = f(xi, tj) + λ

∫ xi

0

∫ 1

0

G(xi, tj , y, z, uk,M (y, z))dzdy (16)

where xi and tj are zeros of the shifted Chebyshev polynomial in [0, 1]. We transform the

integrals over [0, xi], [0, 1] into the integral over [−1, 1]. For this purpose, linear transformation

must be applied with the following form

τ =
2

xi
y − 1, ⇒ y =

xi
2
(τ + 1), y ∈ [0, xi],

α = 2z − 1, ⇒ z =
1

2
(α+ 1), z ∈ [0, 1],

Let

H(xi, tj , τ, α) = G

(
xi, tj ,

xi
2
(τ + 1),

1

2
(α+ 1), uk,M

(xi
2
(τ + 1),

1

2
(α+ 1)

))
Equation (16) may then be restated as

uk,M (xi, tj) = f(xi, tj) +
λxi
4

∫ 1

−1

∫ 1

−1

H(xi, tj , τ, α)dαdτ

Using the Gauss quadrature formula relative to the quadrature weights ωq and ωp, we estimate

the integrals and gets

uk,M (xi, tj)−
λxi
4

r1∑
p=1

r2∑
q=1

ωpωqH
(
xi, tj , τq, αp

)
= f(xi, tj) (17)

where τq and αp are zeros of Legendre polynomial of degrees r1 and r2, respectively. By solving

the nonlinear system (17), we can find the unknown coefficients cn,i,l,j and then we have the

approximate solution of equation (13).

§5 Convergence Analysis

Theorem 5.1. If u(x, t) defined on [0, 1) × [0, 1) and |uk,M (x, t)| ≤ M, then the Laguerre

wavelets expansion of uk,M (x, t) defined in equation (8) converges uniformly and also

|cn,i,l,j | ≤
4M(

√
e− 1)2

2
k1+k2

2 i!(i− 1)! j!(j − 1)!

Proof. The function uk,M (x, t) ∈ [0, 1)×[0, 1) can be expressed by the two-dimensional Laguerre
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wavelets as

uk,M (x, t) =
2k1−1∑
n=1

M1−1∑
i=0

2k2−1∑
l=1

M2−1∑
j=0

cn,i,l,jψn,i,l,j(x, t)

=
2k1−1∑
n=1

M1−1∑
i=0

2k2−1∑
l=1

M2−1∑
j=0

cn,i,l,jψn,i(x)ψl,j(t)

where the coefficients cn,i,l,j can be determined as

cn,i,l,j = ⟨⟨uk,M (x, t), ψn,i(x)⟩, ψl,j(t)⟩

=

∫ 1

0

(∫ 1

0

uk,M (x, t)ψn,i(x)dx

)
ψl,j(t)dt

=

∫
Il,k2

(∫
n,k1

uk,M (x, t)ψn,i(x)dx

)
ψl,j(t)dt

=
2

k1+k2
2

i!j!

∫
Il,k2

(∫
n,k1

uk,M (x, t)Li(2
k1x− 2n+ 1)dx

)
Lj(2

k2t− 2l + 1)dt,

where In,k1 =

[
n−1
2k1−1 ,

n
2k1−1

)
and Il,k2 =

[
l−1

2k2−1 ,
l

2k2−1

)
.

Now by change of variable u = 2k1x− 2n+ 1, we obtain :

cn,i,l,j =
2

k1+k2
2

2k1i!j!

∫
Il,k2

(∫ 1

0

uk,M (
u+ 2n− 1

2k1
, t)Li(u)du

)
Lj(2

k2t− 2l + 1)dt,

Similarly, changing the variable for t as v = 2k2t− 2l + 1, we get :

cn,i,l,j =
1

2
k1+k2

2 i!j!

∫ 1

0

(∫ 1

0

uk,M (
u+ 2n− 1

2k1
,
v + 2n− 1

2k2
)Li(u)du

)
Lj(v)dv,

Now by equation (4), we observe that

|cn,i,l,j | ≤ 1

2
k1+k2

2 i!j!

∫ 1

0

(∫ 1

0

∣∣∣∣uk,M (
u+ 2n− 1

2k1
,
v + 2n− 1

2k2
)

∣∣∣∣ |Li(u)|du
)
|Lj(v)|dv

=
M

2
k1+k2

2 i!j!

(∫ 1

0

|Li(u)|du
)(∫ 1

0

|Lj(v)|dv
)

=
4M(

√
e− 1)2

2
k1+k2

2 i!(i− 1)! j!(j − 1)!

This means that the series
∑2k1−1

n=1

∑M1−1
i=0

∑2k2−1

l=1

∑M2−1
j=0 cn,i,l,j is absolutely convergent and

hence the series
2k1−1∑
n=1

M1−1∑
i=0

2k2−1∑
l=1

M2−1∑
j=0

cn,i,l,jψn,i,l,j(x, t),

is uniformly convergent.

Theorem 5.2. Let uk,M (x, t) =
∑2k1−1

n=1

∑M1−1
i=0

∑2k2−1

l=1

∑M2−1
j=0 cn,i,l,jψn,i,l,j(x, t) be the trun-

cated series, then the truncated error En,i,l,j(x, t) can be defined as

∥En,i,l,j(x, t)∥22 ≤
∞∑

n=2k1−1+1

∞∑
i=M1

∞∑
l=2k2−1+1

∞∑
j=M2

(
4M(

√
e− 1)2

2
k1+k2

2 i!(i− 1)! j!(j − 1)!

)2

.
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Proof. Any function u(x, t) can be expressed by the Laguerre wavelet as

u(x, t) =
∞∑

n=1

∞∑
i=0

∞∑
l=1

∞∑
j=0

cn,i,l,jψn,i,l,j(x, t).

If

uk,M (x, t) =
2k1−1∑
n=1

M1−1∑
i=0

2k2−1∑
l=1

M2−1∑
j=0

cn,i,l,jψn,i,l,j(x, t),

be the truncated series, then the truncated error term can be calculated as

En,i,l,j(x, t) = u(x, t)− uk,M (x, t) =
∞∑

n=2k1−1+1

∞∑
i=M1

∞∑
l=2k2−1+1

∞∑
j=M2

cn,i,l,jψn,i,l,j(x, t)

Therefore,

∥En,i,l,j(x, t)∥22 = ∥
∞∑

n=2k1−1+1

∞∑
i=M1

∞∑
l=2k2−1+1

∞∑
j=M2

cn,i,l,jψn,i,l,j(x, t)∥22

=

∫ 1

0

∫ 1

0

∣∣∣∣ ∞∑
n=2k1−1+1

∞∑
i=M1

∞∑
l=2k2−1+1

∞∑
j=M2

cn,i,l,jψn,i(x)ψl,j(t)

∣∣∣∣2dxdt
≤

∞∑
n=2k1−1+1

∞∑
i=M1

∞∑
l=2k2−1+1

∞∑
j=M2

|cn,i,l,j |2
∫ 1

0

∫ 1

0

|ψn,i(x)ψl,j(t)|2dxdt

=
∞∑

n=2k1−1+1

∞∑
i=M1

∞∑
l=2k2−1+1

∞∑
j=M2

(
4M(

√
e− 1)2

2
k1+k2

2 i!(i− 1)! j!(j − 1)!

)2

.

That is establishing the claim.

§6 Application on the Darboux problem

Consider the Darboux problem

∂2u

∂x∂t
= H(x, t, u)

with initial condition

u(x, 0) = f1(x), u(0, t) = f2(t), (x, t) ∈ Ω,

where f1 and f2 are given continuous functions on Ω = [0, 1]× [0, 1] with f1(0) = f2(0). In [6],

it has been shown that this problem is equivalent to

u(x, t) = f(x, t) +

∫ t

0

∫ x

0

K(y, z, u(y, z))dydz (18)

where f(x, t) = f1(x) + f2(t) − f1(0). An equation of the form (18) will be considered in

Examples 7.1 and 7.2.

§7 Numerical experiments

We propose some examples to approximate the solution of two-dimensional nonlinear Volterra-

Fredholm integral equations and mixed nonlinear Volterra-Fredholm two-dimensional integral
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Table 1. Numerical results for Example 7.1.

Presented method with Method in [37]with Method in [8] with
(x, y) = ( 1

2ℓ
, 1
2ℓ
) M1 =M2 = 4 M=3 m = 16

ℓ = 2 0 1.7× 10−4 1.40× 10−4

ℓ = 3 2.22045× 10−16 1.3× 10−5 2.18× 10−6

ℓ = 4 2.22045× 10−16 3.5× 10−5 3.59× 10−8

ℓ = 5 0 3.2× 10−5 5.21× 10−10

ℓ = 6 8.88178× 10−16 1.9× 10−5 4.91× 10−11

equations using the Laguerre wavelet method. We consider the absolute error between the exact

solution and the present solution defined as

E(x, t) = |u(x, t)− uk,M (x, t)|, (x, t) ∈ [0, 1]× [0, 1],

to illustrate the performance of the method. The computations associated with the examples

were performed using Mathematica 10 software on a PC. Newton’s iteration method is used

to solve the nonlinear systems and we solved this system using the Mathematica function

FindRoot, which uses Newton’s method as the default method. The initial values required

to start Newton’s iterative method can be chosen by using the physical behavior of the given

integral equations.

Example 7.1. (See [37]) Consider the following two-dimensional nonlinear Volterra integral

equation of second kind

u(x, t) = f(x, t) +

∫ t

0

∫ x

0

u2(y, z)dydz (19)

where

f(x, y) = x2 + t2 − 1

45
xt(9x4 + 10x2t2 + 9t4)

The exact solution of equation (19) is given by u(x, t) = x2 + t2 . By applying the method

discussed in detail in Section 4.1, this problem has been solved by Laguerre polynomial for

M1 = M2 = 4 , k1 = k2 = 1. Table 1 and Figure 1 show the approximate solution obtained by

Laguerre wavelets method.

It is evident from the Table 1, that the numerical solution converge to the exact solution.

It is also concluded that the proposed method is very efficient for numerical solution of these

problems.

Example 7.2. Consider the following two-dimensional nonlinear Volterra integral equation

u(x, t) = f(x, t) +

∫ t

0

∫ x

0

(xy2 + cos z)u2(y, z)dtdz, (x, t) ∈ [0, 1]× [0, 1]

where

f(x, t) = x sin t
(
1− 1

9
x2 sin2 t

)
+

1

10
x6
(1
2
sin 2t

)
and the exact solution is u(x, t) = x sin t. Table 2 and Figure 2 show the numerical results.

Example 7.3. Consider the following two-dimensional linear Volterra-Fredholm integral equa-
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Figure 1. The error function graph of Example 7.1.

Table 2. Numerical results for example 7.2.

Presented method with Presented method with Method in [9] with
(x, y) = ( 1

2ℓ
, 1
2ℓ
) M1 =M2 = 4 M1 =M2 = 6 N = 30

ℓ = 1 7.7782× 10−5 1.6191× 10−7 6.1× 10−5

ℓ = 2 1.7623× 10−5 7.5459× 10−8 1.2× 10−4

ℓ = 3 1.6143× 10−5 1.3338× 10−8 7.1× 10−5

ℓ = 4 3.5218× 10−6 1.7705× 10−8 5.3× 10−5

ℓ = 5 5.8934× 10−7 4.6972× 10−9 5.9× 10−5

ℓ = 6 1.0493× 10−6 2.9310× 10−10 7.4× 10−4

Figure 2. Graph of the Laguerre wavelets approximation error of Example 7.2.
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Table 3. Numerical results for example 7.3.

Presented method with Presented method with Method in [9] with
(x, y) M1 =M2 = 4 M1 =M2 = 6 N = 30
(0.1, 0.1) 4.3308× 10−6 1.1695× 10−7 8.5538× 10−5

(0.2, 0.2) 2.0279× 10−5 3.0373× 10−7 6.5403× 10−4

(0.3, 0.3) 2.3651× 10−5 2.0071× 10−6 7.2516× 10−5

(0.4, 0.4) 1.2687× 10−5 7.1645× 10−5 1.0695× 10−5

(0.5, 0.5) 4.2236× 10−5 1.7806× 10−5 3.5914× 10−5

(0.6, 0.6) 2.0285× 10−4 3.4134× 10−4 1.2525× 10−4

(0.7, 0.7) 5.3816× 10−4 5.1831× 10−4 1.0928× 10−4

(0.8, 0.8) 8.9278× 10−4 5.8443× 10−4 1.2101× 10−4

(0.9, 0.9) 6.8220× 10−4 2.8651× 10−4 1.6056× 10−4

Figure 3. Graph of the Laguerre wavelets approximation error of Example 7.3.

tion:

u(x, t) = f(x, t)−
∫ t

0

∫ 1

0

t2e−zu(y, z)dtdz, t ∈ [0, 1]

where

f(x, t) = x2et +
x3t2

3
and the exact solution is u(x, t) = x2et. Table 3 shows the numerical results.

Example 7.4. Consider the nonlinear mixed integral equation by

u(x, t) = f(x, t) +

∫ t

0

∫ 1

0

x(1− y2)

(1 + t)(1 + z2)
(1− e−u(y,z))dydz (20)

where

f(x, t) = −Ln
(
1 +

xt

1 + t2

)
+

xt2

8(1 + t)(1 + t2)
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Table 4. Numerical results for example 7.4.

(x, y) = ( 1
2ℓ
, 1
2ℓ
) M1 =M2 = 4 M1 =M2 = 6

ℓ = 1 3.9208× 10−4 1.2907× 10−3

ℓ = 2 5.3914× 10−4 1.1706× 10−4

ℓ = 3 4.8309× 10−4 2.7803× 10−5

ℓ = 4 2.0072× 10−4 5.6331× 10−6

ℓ = 5 3.5691× 10−4 1.9092× 10−6

ℓ = 6 2.4496× 10−4 4.4770× 10−6

Table 5. Numerical results for example 7.5.

Presented method with Presented method with Method in [14] with
(x, y) M1 =M2 = 4 M1 =M2 = 6 N = 14
(0.0, 0.0) 8.6676× 10−4 1.7271× 10−6 6.45× 10−6

(0.2, 0.2) 4.4562× 10−4 2.4632× 10−6 1.26× 10−5

(0.4, 0.4) 1.9565× 10−3 3.5691× 10−6 6.20× 10−5

(0.6, 0.6) 2.4501× 10−4 3.7141× 10−6 3.18× 10−4

(0.8, 0.8) 1.9121× 10−3 3.7411× 10−6 6.88× 10−4

which has the exact solution u(x, t) = −Ln
(
1 + xt

1+t2

)
. The numerical results are shown in

Table 4.

Example 7.5. (See [14]) Consider the following 2D nonlinear Volterra-Fredholm integral e-

quation

u(x, t) = f(x, t) + 16

∫ 1

0

∫ 1

0

ex+t+y+zu3(y, z)dydz +

∫ t

0

∫ x

0

u(y, z)dydz

where

f(x, t) = 2ex+t+4 − ex+t+8 − ex+t + ex + et − 1,

whose exact solution is u(x, t) = ex+t. The numerical results using presented method are shown

in Table 5 and Figures 4.

§8 Conclusion

In this study, a two-dimensional wavelet method based on Laguerre polynomial for two-

dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-

Fredholm integral equations is presented and some theorems are proved for convergence analysis.

Moreover, the numerical results and absolute errors are presented. As a practical example, the

Darboux problem is transformed into a two-dimensional nonlinear Volterra-Fredholm integral

equation and the solution of the Darboux problem is obtained by the two-dimensional Laguerre

wavelets method. It has been shown that the obtained results are in excellent agreement with

the exact solution. Since this method is very powerful and efficient makes it necessary to

investigate a method for solution of such equations and we hope that this work is a step in this

direction.
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Figure 4. The error function graph for Example 7.5.
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