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Existence and exponential stability of almost-periodic

solutions for MAM neural network with distributed

delays on time scales

GAO Jin1,2 WANG Qi-ru2 LIN Yuan3,∗

Abstract. This paper is concerned with multidirectional associative memory neural network

with distributed delays on almost-periodic time scales. Some sufficient conditions on the ex-

istence, uniqueness and the global exponential stability of almost-periodic solutions are estab-

lished. An example is presented to illustrate the feasibility and effectiveness of the obtained

results.

§1 Introduction

In the past few decades, neural networks have attracted people’s high degree of attention.

There have been a lot of studies concerning the stability of the neural network system. One can

refer to [4-6] and the references therein. The multidirectional associative memory (MAM) neural

network was proposed by Hagiwara [10] in 1990. The MAM neural network is an extension of

BAM neural network model. It has been found wide applications in image denoising, speech

recognition, pattern recognition and intelligent information processing. In recent years, the

MAM neural networks have been discussed in many papers [11][15-17].

In [16], the authors considered MAM neural networks with distributed delays of the following

form

dxki
dt

= −aki(t)xki(t) +
m∑

p=1,p̸=k

np∑
j=1

wki
pj(t)fpj

( ∫ +∞

0

gkipj(s)xpj(t− s)ds
)
+ Iki(t), (1.1)

where t ≥ 0, k = 1, 2, . . . ,m, i = 1, 2, . . . , nk, xki(t) denotes the membrane voltage of the ith

neuron in the field k at time t, aki > 0 denotes the decay rate of the ith neuron in the field k,

fpj(·) is a neuronal activation function of the jth neuron in the field p, wki
pj is the connection
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weight from the jth neuron in the field p to the ith neuron in the field k, Iki is the external

input of the ith neuron in the field k.

The theory of time scales was created in order to unify the study of continuous and dis-

crete analysis. It has a tremendous potential for applications and has recently received much

attention. However, only little attention has been paid towards the existence, uniqueness and

stability of almost-periodic solutions to MAM neural networks on time scales, and thus, it is

important and necessary to study them. We found that, the delta derivative and the nabla

derivative are different unless T = R. Especially, when T = Z, the nabla derivative y∇ is the

backward difference while the delta derivative y∆ is the forward difference. Then in [8, 9], we

extended the almost-periodic theory on time scales with the delta derivative to that with the

nabla derivative, and then derived some sufficient conditions ensuring the existence, uniqueness

and exponential stability of almost-periodic solutions for the neural networks on time scales.

Motivated by the above mentioned studies, in the present paper we shall consider MAM

neural networks with distributed delays on time scales of the following form

x∇ki(t) = −aki(t)xki(t) +
m∑

p=1,p̸=k

np∑
j=1

wki
pj(t)fpj

( ∫ +∞

0

gkipj(s)xpj(t− s)∇s
)
+ Iki(t), (1.2)

where t ∈ [0,+∞)T, T is an almost-periodic time scale, [0,+∞)T = {t|t ∈ [0,+∞) ∩ T}, k =

1, 2, . . . ,m, i = 1, 2, . . . , nk.

The initial condition of (1.2) is

xki(s) = θki(s), s ∈ (−∞, 0]T,

where θki(s) ∈ C1
(
(−∞, 0]T,R

)
, (−∞, 0]T = {t|t ∈ (−∞, 0]∩T}, k = 1, 2, . . . ,m, i = 1, 2, . . . , nk.

The rest of this paper is organized as follows. In Section 2, we introduce some notations

and definitions and state some preliminary results. These results play an important role in

Sections 3 and 4. In Section 3, we establish some sufficient conditions for the existence and

uniqueness of almost-periodic solutions of (1.2). In Section 4, we prove that the almost-periodic

solution obtained in Section 3 is globally exponentially stable. In Section 5, we give an example

to illustrate the feasibility and effectiveness of our results obtained in previous sections. In

Section 6, we give a conclusion of this paper.

§2 Preliminaries and lemmas

In this section, we introduce some notations and definitions and state some preliminary

results in [1-3][7-9][12-14].

Let T be a nonempty closed subset (time scale) of R. For t ∈ T, we define the forward and

backward jump operators σ, ρ : T → T, respectively, by
σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}.

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if ρ(t) < t, right-

dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. If T has a left-scattered

maximum m, then Tk := T\{m}; otherwise Tk := T. If T has a right-scattered minimum m,

then Tk := T\{m}; otherwise Tk := T. The backwards graininess ν : Tk → [0,∞) is defined by

ν(t) = t− ρ(t).
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A function f : T → R is called left-dense continuous or ld-continuous provided it is con-

tinuous at left-dense point in T and its right-side limits exist (finite) at right-dense points in

T.
For a function f : T → R and t ∈ Tk, we define the nabla derivative of f at t, denoted

f∇(t), to be the number (provided it exists) with the property that given any ε > 0, there is a

neighborhood U of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s| for all s ∈ U.

If f is ld-continuous, then there is a function F such that F∇(t) = f(t). In this case, we

define ∫ b

a

f(t)∇t = F (b)− F (a).

The function p is ν-regressive if 1−ν(t)p(t) ̸= 0 for all t ∈ Tk. Define the ν−regressive class

of functions on Tk to be Rν = {p : T → R| p is ld-continuous and ν-regressive}.
We define the set R+

ν of all positively ν-regressive elements by R+
ν = R+

ν (T,R) = {p ∈ Rν :

1− ν(t)p(t) > 0, for all t ∈ T}.
If p ∈ Rν , then we define the nabla exponential function by

êp(t, s) = exp
{∫ t

s

ξ̂ν(τ)(p(τ))∇τ
}

for s, t ∈ T, where the ν-cylinder transformation

ξ̂h(z) =

{
− log(1−hz)

h if h ̸= 0,

z if h = 0.

Definition 2.1 If p, q ∈ Rν , then we define a circle plus addition by

(p⊕ν q)(t) := p(t) + q(t)− p(t)q(t)ν(t)

for all t ∈ Tk. For p ∈ Rν , define a circle minus p by

⊖νp := − p

1− νp
.

Lemma 2.1( [1, 3]) Let p, q ∈ Rν and s, t, r ∈ T. Then
(i) ê0(t, s) ≡ 1 and êp(t, t) ≡ 1;

(ii) êp(ρ(t), s) = (1− ν(t)p(t))êp(t, s);

(iii) êp(t, s) = 1/êp(s, t) = ê⊖νp(s, t);

(iv) êp(t, r)êp(r, s) = êp(t, s);

(v) (êp(t, s))
∇ = p(t)êp(t, s).

Lemma 2.2( [1, 3]) Let f, g be nabla differentiable functions on T. Then
(i) (β1f + β2g)

∇ = β1f
∇ + β2g

∇, for any constants β1, β2;

(ii) (fg)∇(t) = f∇(t)g(t) + f(ρ(t))g∇(t) = f(t)g∇(t) + f∇(t)g(ρ(t));

(iii) If f and f∇ are continuous, then (
∫ t

a
f(t, s)∇s)∇ = f(ρ(t), t) +

∫ t

a
f∇(t, s)∇s.

Lemma 2.3( [1,3]) Assume p ∈ Rν and t0 ∈ T. If 1− ν(t)p(t) > 0 for t ∈ T, then êp(t, t0) > 0

for all t ∈ T.
Definition 2.2 A time scale T is called an almost-periodic time scale if

Π := {τ ∈ R : t± τ ∈ T,∀t ∈ T} ≠ {0}.
Let T =

∪
k∈Z

[k(a + b), k(a + b) + b], a ̸= b ,then T is an almost-periodic time scale. If

b = 0, a = 1, then T = Z; if b = 1, a = 0, then T = R.
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Definition 2.3 Let T be an almost-periodic time scale and E = R or C. A function f ∈
C(T,En) is called an almost-periodic function if the ε-translation set of f

E{ε, f} = {τ ∈ Π : |f(t+ τ)− f(t)| < ε, ∀t ∈ T}
is a relatively dense set in T for all ε > 0; that is, for any given ε > 0, there exists a constant

l(ε) > 0 such that each interval of length l(ε) contains a τ(ε) ∈ E{ε, f} such that

|f(t+ τ)− f(t)| < ε, ∀t ∈ T.
τ is called the ε-translation number of f and l(ε) is called the inclusion length of E{ε, f}.
Definition 2.4 Let A(t) be an n× n matrix-valued function on T. Then the linear system

x∇(t) = A(t)x(t), t ∈ T (2.1)

is said to admit an exponential dichotomy on T if for some (and hence for any) fundamental

solution matrix X(t), there exist positive constants ki, αi, i = 1, 2, and projection P such that

|X(t)PX−1(s)| ≤ k1ê⊖να1(t, s), s, t ∈ T, t ≥ s, and

|X(t)(I − P )X−1(s)| ≤ k2ê⊖να2(s, t), s, t ∈ T, t ≤ s;

where | · | is a matrix norm.

Consider the following almost-periodic system

x∇(t) = A(t)x(t) + g(t), t ∈ T, (2.2)

where A(t) is an almost-periodic matrix function, g(t) is an almost-periodic vector function.

Lemma 2.4( [8]) Let X(t) be a fundamental solution matrix of (2.1). If (2.1) admits an

exponential dichotomy, then (2.2) has a unique almost-periodic solution as follows:

x(t) =

∫ t

−∞
X(t)PX−1(ρ(s))g(s)∇s−

∫ +∞

t

X(t)(I − P )X−1(ρ(s))g(s)∇s.

Lemma 2.5( [8]) Assume ci(t) is almost-periodic, ci(t) ∈ R+
ν , ci(t) > 0 for i = 1, 2, ..., n, t ∈ T,

and

min
1≤i≤n

{
inf
t∈T

ci(t)
}
= m > 0.

Then the following linear system

x∇(t) = diag(−c1(t),−c2(t), ...,−cn(t))x(t) (2.3)

admits an exponential dichotomy on T.
Lemma 2.6( [16]) Assume that a square matrix A = (aij)n×n satisfies aij < 1 and aij ≥
0(i, j = 1, 2, ..., n). Then the matrix En − A is a nonsingular M matrix if and only if the

spectral radius ρ̃(A) < 1, where the matrix En is an identity matrix.

Set the vector x(t) = (x11(t), . . . , x1n1(t), . . . , xm1(t), . . . , xmnm(t))T , col{xki(t)}, and
|x(t)| , col{|xki(t)|}. We denote x(t) ≤ y(t) if xki(t) ≤ yki(t) for k = 1, 2, . . . ,m, i =

1, 2, . . . , nk, and sup
t∈[0,+∞)T

x(t) , col{ sup
t∈[0,+∞)T

xki(t)}. Let N denote the total number of neu-

rons in the MAM neural network (1.2), N =
m∑

k=1

nk. For any x(t) ∈ RN , its norm ||x(t)|| =

max
k = 1, 2, . . . ,m

i = 1, 2, . . . , nk

|xki(t)|. Let S = {φ(t) = (φ11(t), . . . , φ1n1(t), . . . , φm1(t), . . . , φmnm(t))T ∈ RN ,

where φki(t) is an almost periodic function on [0,+∞)T, k = 1, 2, . . . ,m, i = 1, 2, . . . , nk}. For
any φ(t) ∈ S, we define ||φ|| = sup

t∈[0,+∞)T

||φ(t)||, then S is a Banach space.

Definition 2.5 Let N is a neighborhood of t, for t ∈ T. Then D−u∇(t) is called Dini nabla



74 Appl. Math. J. Chinese Univ. Vol. 36, No. 1

derivative, if there exists a left neighborhood N(ε) ⊂ N of t such that

u(ρ(t))− u(s)

ρ(t)− s
< D−u∇(t) + ε,

for s ∈ N(ε), s < t.

Definition 2.6 An almost-periodic solution x∗(t) = col{x∗ki(t)} of (1.2) with initial value

φ∗(s) = col{φ∗
ki(s)} is said to be globally exponentially stable, if there exist a positive constant

M > 1 and a positive constant λ > 0 such that for an arbitrary solution x(t) = col{xki(t)}
with initial value φ(s) = col{φki(s)},

∥x(t)− x∗(t)∥ ≤M∥φ− φ∗∥1ê⊖νλ(t, 0),

where ∥φ− φ∗∥1 = sup
t∈(−∞,0]T

||φ(t)− φ∗(t)||.

§3 Existence and uniqueness of almost-periodic solutions

In this section, we establish sufficient conditions on the existence and uniqueness of almost-

periodic solutions of (1.2). For k = 1, 2, . . . ,m, i = 1, 2, . . . , nk, we denote:

aki = sup
t∈[0,+∞)T

|aki(t)|, aki = inf
t∈[0,+∞)T

|aki(t)|,

wki
pj = sup

t∈[0,+∞)T

|wki
pj(t)|, Iki = sup

t∈[0,+∞)T

|Iki(t)|, a = min
k = 1, 2, . . . ,m

i = 1, 2, . . . , nk

aki.

Throughout this paper, for any k = 1, 2, . . . ,m, i = 1, 2, . . . , nk, p = 1, 2, . . . ,m, p ̸= k, j =

1, 2, . . . , np, we make the following assumptions:

(H1) the signal decay rate aki(t) is a continuous almost periodic function on [0,+∞)T,

aki > 0, aki(t) ∈ R+
ν , the connection weight wki

pj(t) and the network’s external input Iki(t) are

bounded continuous almost periodic functions on [0,+∞)T;

(H2) the delay kernel function gkipj(s) : [0,+∞)T → [0,+∞) is piecewise continuous and

satisfies
∫ +∞
0

gkipj(s)∇s = 1,
∫ +∞
0

êa(s, 0)g
ki
pj(s)∇s < +∞;

(H3) there exists a positive constant Lki such that |fki(u) − fki(v)| ≤ Lki|u − v| for each

u, v ∈ R.
Define matrices

A = diag{a11, . . . , a1n1 , . . . , am1, . . . , amnm},
L = diag{L11, . . . , L1n1 , . . . , Lm1, . . . , Lmnm},

W =



0, . . . , 0, w11
21, . . . , w

11
2n2

, . . . , w11
m1, . . . , w

11
mnm

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

0, . . . , 0, w1n1
21 , . . . , w1n1

2n2
, . . . , w1n1

m1 , . . . , w
1n1
mnm

w21
11, . . . , w

21
1n1

, 0, . . . , 0, . . . , w21
m1, . . . , w

21
mnm

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

w2n2
11 , . . . , w2n2

1n1
, 0, . . . , 0, . . . , w2n2

m1 , . . . , w
2n2
mnm

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

wm1
11 , . . . , w

m1
1n1

, wm1
21 , . . . , w

m1
2n2

, . . . , 0, . . . , 0

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

wmnm
11 , . . . , wmnm

1n1
, wmnm

21 , . . . , wmnm
2n2

, . . . , 0, . . . , 0



.

Now, we are in a position to state our first theorem.
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Theorem 3.1 Assume (H1)− (H3) hold, and ρ̃(A
−1WL) < 1. Then (1.2) has a unique almost-

periodic solution.

Proof. For any given φ(t) = col{φki(t)} ∈ S, we consider the following almost-periodic

system:

x∇ki(t) = −aki(t)xki(t) +
m∑

p=1,p̸=k

np∑
j=1

wki
pj(t)fpj

( ∫ +∞

0

gkipj(s)φpj(t− s)∇s
)
+ Iki(t). (3.1)

From (H1) and Lemma 2.5, it follows that the linear system

x∇ki(t) = −aki(t)xki(t), k = 1, 2, . . . ,m, i = 1, 2, . . . , nk

admits an exponential dichotomy. Thus, by Lemma 2.4, we see that (3.1) has a unique almost-

periodic solution, which can be expressed as

Uφ(t) = col

{∫ t

−∞
ê−aki

(t, ρ(u))

( m∑
p=1,p̸=k

np∑
j=1

wki
pj(u)fpj

( ∫ +∞

0

gkipj(s)φpj(u− s)∇s
)

+Iki(u)

)
∇u

}
.

Define an operator T : S → S by:

T (φ(t)) = Uφ(t), ∀φ(t) ∈ S.

We will show that T is a contraction.

For any ξ(t), ζ(t) ∈ S, we have

|T (ξ(t))− T (ζ(t))| = col

{∣∣ ∫ t

−∞
ê−aki

(t, ρ(u))
m∑

p=1,p̸=k

np∑
j=1

wki
pj(u)

[
fpj

( ∫ +∞

0

gkipj(s)ξpj(u− s)∇s
)
− fpj

( ∫ +∞

0

gkipj(s)ζpj(u− s)∇s
)]
∇u

∣∣}
≤ col

{∫ t

−∞
ê−aki

(t, ρ(u))
m∑

p=1,p̸=k

np∑
j=1

wki
pj

∣∣∣∣fpj( ∫ +∞

0

gkipj(s)ξpj(u− s)∇s
)

− fpj
( ∫ +∞

0

gkipj(s)ζpj(u− s)∇s
)∣∣∣∣∇u}

≤ col

{∫ t

−∞
ê−aki

(t, ρ(u))

m∑
p=1,p̸=k

np∑
j=1

wki
pjLpj

∫ +∞

0

gkipj(s)
∣∣ξpj(u− s)

− ζpj(u− s)
∣∣∇s∇u}

≤ col

{∫ t

−∞
ê−aki

(t, ρ(u))
m∑

p=1,p̸=k

np∑
j=1

wki
pjLpj sup

s≤t

∣∣ξpj(s)− ζpj(s)
∣∣∇u}

≤ col

{
1

aki

m∑
p=1,p ̸=k

np∑
j=1

wki
pjLpj sup

s≤t

∣∣ξpj(s)− ζpj(s)
∣∣}

= A−1WLcol

{
sup
s≤t

∣∣ξki(s)− ζki(s)
∣∣}.
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It follows that

sup
t∈[0,+∞)T

|T (ξ(t))− T (ζ(t))| ≤ A−1WLcol

{
sup

t∈[0,+∞)T

∣∣ξki(t)− ζki(t)
∣∣}

= A−1WL sup
t∈[0,+∞)T

|ξ(t)− ζ(t)|.
(3.2)

By using (3.2) repeatedly, we obtain that

sup
t∈[0,+∞)T

|T k(ξ(t))− T k(ζ(t))| = sup
t∈[0,+∞)T

|T (T k−1(ξ(t)))− T (T k−1(ζ(t)))|

≤ A−1WL sup
t∈[0,+∞)T

|T k−1(ξ(t))− T k−1(ζ(t))|

≤ (A−1WL)2 sup
t∈[0,+∞)T

|T k−2(ξ(t))− T k−2(ζ(t))|

≤ . . . ≤ (A−1WL)k sup
t∈[0,+∞)T

|ξ(t)− ζ(t)|,

(3.3)

where k is an arbitrary positive integer.

Because ρ̃(A−1WL) < 1, we can obtain that lim
k→∞

(A−1WL)k = 0N×N . Therefore, for any

0 < ε < 1, there exists a positive integer K such that every element of the matrix (A−1WL)K

is smaller than ε
N . If we set (A−1WL)K = (bkipj)N×N , then

m∑
k=1

nk∑
i=1

bkipj <
m∑

k=1

nk∑
i=1

ε
N = ε.

From (3.3), we have

sup
t∈[0,+∞)T

|TK(ξ(t))− TK(ζ(t))| ≤ col

{ m∑
k=1

nk∑
i=1

bkipj sup
t∈[0,+∞)T

|ξki(t)− ζki(t)|
}

≤ sup
t∈[0,+∞)T

max
k = 1, 2, . . . ,m

i = 1, 2, . . . , nk

|ξki(t)− ζki(t)|col{
m∑

k=1

nk∑
i=1

bkipj},

which implies that ||TK(ξ)− TK(ζ)|| ≤ ε||ξ − ζ||.
Because 0 < ε < 1, TK is a contraction mapping from S to S. According to Banach fixed

point theorem, there exists a unique fixed point φ∗ ∈ S such that TK(φ∗) = φ∗. It follows that

TK(T (φ∗)) = T (TK(φ∗)) = T (φ∗), which implies that T (φ∗) ∈ S is also a fixed point of map

TK . By the uniqueness of fixed points, we have that T (φ∗) = φ∗ and then φ∗ satisfies (1.2).

Hence φ∗ is the unique almost periodic solution of (1.2) in S.

§4 Exponential stability of almost-periodic solutions

In this section, we derive sufficient conditions for the exponential stability of almost-periodic

solutions of (1.2).

Theorem 4.1 Assume (H1)− (H3) hold and ρ̃(A−1WL) < 1. Moreover, assume that

(H4) there exists a positive constant α > 0, α ∈ R+
ν such that for t ∈ (0,∞)T, k =

1, 2, . . . ,m, i = 1, 2, . . . , nk,

α+ (2aki
2ν(t)− aki)(1− ν(t)α)

+ (1 + 2akiν(t))(1− ν(t)α)
m∑

p=1,p̸=k

np∑
j=1

wki
pjLpj

∫ +∞

0

êα(t, t− s)gkipj(s)∇s < 0.

Then (1.2) has an almost-periodic solution which is globally exponentially stable.
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Proof. Theorem 3.1 tells us that (1.2) has an almost-periodic solution. Let x∗ = col{x∗ki(t)} be

this solution with initial value φ∗(s) = col{φ∗
ki(s)}, s ∈ (−∞, 0]T. We show that x∗ is globally

exponentially stable.

Let x(t) = col{xki(t)} be an arbitrary solution of (1.2) with initial value φ(s) = col{φki(s)},
s ∈ (−∞, 0]T. Define

uki(t) = xki(t)− x∗ki(t)

for k = 1, 2, . . . ,m, i = 1, 2, . . . , nk. It follows that

u∇ki(t) = −aki(t)uki(t) +
m∑

p=1,p ̸=k

np∑
j=1

wki
pj(t)

(
fpj

( ∫ +∞

0

gkipj(s)xpj(t− s)∇s
)

− fpj
( ∫ +∞

0

gkipj(s)x
∗
pj(t− s)∇s

))
= −aki(t)uki(t) +

m∑
p=1,p ̸=k

np∑
j=1

wki
pj(t)

[
fpj

( ∫ +∞

0

gkipj(s)xpj(t− s)∇s

−
∫ +∞

0

gkipj(s)x
∗
pj(t− s)∇s+

∫ +∞

0

gkipj(s)x
∗
pj(t− s)∇s

)
− fpj

( ∫ +∞

0

gkipj(s)x
∗
pj(t− s)∇s

)]
= −aki(t)uki(t) +

m∑
p=1,p ̸=k

np∑
j=1

wki
pj(t)

[
fpj

( ∫ +∞

0

gkipj(s)upj(t− s)∇s

+

∫ +∞

0

gkipj(s)x
∗
pj(t− s)∇s

)
− fpj

( ∫ +∞

0

gkipj(s)x
∗
pj(t− s)∇s

)]
.

We denote

Fpj

(∫ +∞

0

gkipj(s)upj(t− s)∇s
)

= fpj
( ∫ +∞

0

gkipj(s)upj(t− s)∇s+
∫ +∞

0

gkipj(s)x
∗
pj(t− s)∇s

)
− fpj

( ∫ +∞

0

gkipj(s)x
∗
pj(t− s)∇s

)
.

Then

u∇ki(t) = −aki(t)uki(t) +
m∑

p=1,p̸=k

np∑
j=1

wki
pj(t)Fpj

(∫ +∞

0

gkipj(s)upj(t− s)∇s
)
. (4.1)

From (H3), we have∣∣∣∣Fpj

(∫ +∞

0

gkipj(s)upj(t− s)∇s
)∣∣∣∣ ≤ Lpj

∣∣∣∣ ∫ +∞

0

gkipj(s)upj(t− s)∇s
∣∣∣∣,

for any upj(t) : T → R and Fpj(0) = 0.

The initial conditions associated with (4.1) are of the form

uki(s) = ψki(s) = φki(s)− φ∗
ki(s),

where k = 1, 2, . . . ,m, i = 1, 2, . . . , nk, s ∈ (−∞, 0]T.
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By calculating the Dini derivative of uki along the solutions of system (4.1), we have

D−(|uki(t)|∇)

≤ sign(uki(ρ(t)))u
∇
ki(t)

≤ −aki(t)uki(t)sign(uki(ρ(t))) +
m∑

p=1,p̸=k

np∑
j=1

wki
pjLpj

∫ +∞

0

gkipj(s)|upj(t− s)|∇s

= −aki(t)sign(uki(ρ(t)))(uki(ρ(t)) + ν(t)u∇ki(t))

+
m∑

p=1,p ̸=k

np∑
j=1

wki
pjLpj

∫ +∞

0

gkipj(s)|upj(t− s)|∇s

≤ −aki|uki(ρ(t))|+ akiν(t)|u∇ki(t)|+
m∑

p=1,p̸=k

np∑
j=1

wki
pjLpj

∫ +∞

0

gkipj(s)|upj(t− s)|∇s

= −aki|uki(t)− ν(t)u∇ki(t)|+ akiν(t)|u∇ki(t)|

+

m∑
p=1,p ̸=k

np∑
j=1

wki
pjLpj

∫ +∞

0

gkipj(s)|upj(t− s)|∇s

≤ −aki|uki(t)|+ 2akiν(t)|u∇ki(t)|+
m∑

p=1,p̸=k

np∑
j=1

wki
pjLpj

∫ +∞

0

gkipj(s)|upj(t− s)|∇s

≤ (2aki
2ν(t)− aki)|uki(t)|+ (1 + 2akiν(t))

m∑
p=1,p̸=k

np∑
j=1

wki
pjLpj

∫ +∞

0

gkipj(s)|upj(t− s)|∇s.

Set yki(t) = êα(t, 0)|uki(t)|. By calculating the Dini derivative of yki along the solutions of

system (4.1), we have

D−y∇ki(t)

= αêα(t, 0)|uki(t)|+ êα(ρ(t), 0)D
−(|uki(t)|∇)

≤
(
αêα(t, 0) + (2aki

2ν(t)− aki)(1− ν(t)α)êα(t, 0)
)
|uki(t)|

+ (1 + 2akiν(t))(1− ν(t)α)êα(t, 0)
m∑

p=1,p̸=k

np∑
j=1

wki
pjLpj

∫ +∞

0

gkipj(s)|upj(t− s)|∇s

≤
(
α+ (2aki

2ν(t)− aki)(1− ν(t)α)
)
|yki(t)|

+ (1 + 2akiν(t))(1− ν(t)α)

m∑
p=1,p̸=k

np∑
j=1

wki
pjLpj

∫ +∞

0

êα(t, t− s)gkipj(s)∇s sup
−∞<s≤t

ypj(s).

(4.2)

Set l0 = (1 + δ)∥ψ∥1, where δ is a positive constant.

When s ∈ (−∞, 0]T, we have

yki(s) = êα(s, 0)|ψki(s)| =
1

êα(0, s)
|ψki(s)| ≤ ∥ψ∥1 < l0,

where k = 1, 2, . . . ,m, i = 1, 2, . . . , nk.

Next, we claim that

yki(t) < l0, t ∈ (0,+∞)T, k = 1, 2, . . . ,m, i = 1, 2, . . . , nk. (4.3)

By contradiction, if (4.3) is not true, there exist k, i, t1 > 0 such that yki(t1) ≥ l0,
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D−y∇ki(t1) ≥ 0, and yki(t) < l0 for t ∈ (−∞, t1)T.

From (H4) and (4.2), we obtain

D−y∇ki(t1) ≤
[
α+ (2aki

2ν(t)− aki)(1− ν(t)α)

+ (1 + 2akiν(t))(1− ν(t)α)
m∑

p=1,p̸=k

np∑
j=1

wki
pjLpj

∫ +∞

0

êα(t, t− s)gkipj(s)∇s
]
l0

< 0,

which conflicts with D−y∇ki(t1) ≥ 0. Hence, (4.3) holds.

It follows that

|uki(t)| < l0ê⊖να(t, 0) = (1 + δ)∥ψ∥1ê⊖να(t, 0) =M∥ψ∥1ê⊖να(t, 0),

where M = 1 + δ > 1.

Therefore, the almost-periodic solution x∗ of (1.2) is globally exponentially stable. This

completes the proof.

§5 Applications

In this section, we present an example to illustrate the feasibility and effectiveness of our

results obtained in the previous sections for T = Z.
Consider the following MAM neutral network with m = 3, n1 = 1, n2 = 1, n3 = 2,

x∇11(t) = −a11(t)x11(t) + w11
21(t)f21

( ∫ +∞
0

g1121(s)x21(t− s)∇s
)

+w11
31(t)f31

( ∫ +∞
0

g1131(s)x31(t− s)∇s
)

+w11
32(t)f32

( ∫ +∞
0

g1132(s)x32(t− s)∇s
)
+ I11(t)

x∇21(t) = −a21(t)x21(t) + w21
11(t)f11

( ∫ +∞
0

g2111(s)x11(t− s)∇s
)

+w21
31(t)f31

( ∫ +∞
0

g2131(s)x31(t− s)∇s
)

+w21
32(t)f32

( ∫ +∞
0

g2132(s)x32(t− s)∇s
)
+ I21(t)

x∇31(t) = −a31(t)x31(t) + w31
11(t)f11

( ∫ +∞
0

g3111(s)x11(t− s)∇s
)

+w31
21(t)f21

( ∫ +∞
0

g3121(s)x21(t− s)∇s
)
+ I31(t)

x∇32(t) = −a32(t)x32(t) + w32
11(t)f11

( ∫ +∞
0

g3211(s)x11(t− s)∇s
)

+w32
21(t)f21

( ∫ +∞
0

g3221(s)x21(t− s)∇s
)
+ I32(t),

(5.1)

where the neuronal signal decay rates aki(t) =
1
4 , k = 1, 2, . . . ,m, i = 1, 2, . . . , nk, the external

inputs

I11(t) = 2 + sin t, I21(t) = 2 + 2 cos t, I31(t) = 2 + sin(2t), I32(t) = 2 + cos(2t).

The connection weights are set to be constants as in the following

W =


0 w11

21 w11
31 w11

32

w21
11 0 w21

31 w21
32

w31
11 w31

21 0 0

w32
11 w32

21 0 0


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=


0 0.02 0.01 0.02

0.02 0 0.03 0.01

0.01 0.01 0 0

0.02 0.03 0 0

 .

The neuronal activation functions fpj(x) =
1
20 sin(

3
4x), and the delay kernel functions gkipj(t) =

1
2t .

We can take the initial value θ11(s) = 0.3, θ21(s) = 0.25, θ31(s) = 0.1, θ32(s) = 0.2, for

s ∈ (−∞, 0]T.

It is not difficult to obtain that aki(t) are continuous almost periodic functions on [0,+∞)T,

wki
pj(t) and Iki(t) are bounded continuous almost periodic functions on [0,+∞)T, and aki >

0, aki(t) ∈ R+
ν , g

ki
pj(s) : [0,+∞)T → [0,+∞) are piecewise continuous, and satisfy

∫ +∞
0

gkipj(s)∇s
= 1, and

∫ +∞
0

êa(s, 0)g
ki
pj(s)∇s = 2 < +∞, Lki =

1
20 . Therefore, the matrixA = diag{0.25, 0.25,

0.25, 0.25}, L = diag{0.05, 0.05, 0.05, 0.05}, W =W ,

A−1WL =


0 0.004 0.002 0.004

0.004 0 0.006 0.002

0.002 0.002 0 0

0.004 0.006 0 0

 ,

ρ̃(A−1WL) = 0.0091 < 1.

Let α = 0.1, we have

α+ (2a11
2ν(t)− a11)(1− ν(t)α)

+ (1 + 2a11ν(t))(1− ν(t)α)
3∑

p=1,p ̸=k

np∑
j=1

w11
pjLpj

∫ +∞

0

êα(t, t− s)g11pj (s)∇s

= α+ (2a11
2ν(t)− a11)(1− ν(t)α)

+ (1 + 2a11ν(t))(1− ν(t)α)
(
w11

21L21

∫ +∞

0

êα(t, t− s)g1121(s)∇s

+ w11
31L31

∫ +∞

0

êα(t, t− s)g1131(s)∇s+ w11
32L32

∫ +∞

0

êα(t, t− s)g1132(s)∇s
)

= 0.1 + (
1

8
− 1

4
)(1− 0.1) + 2(1 +

1

2
)(1− 0.1)(0.05 · 1

20
)

= −0.01 < 0.

Similarly, we can get

α+ (2a21
2ν(t)− a21)(1− ν(t)α)

+ (1 + 2a21ν(t))(1− ν(t)α)
3∑

p=1,p̸=2

np∑
j=1

w21
pjLpj

∫ +∞

0

êα(t, t− s)g21pj (s)∇s

= −0.01 < 0,
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α+ (2a31
2ν(t)− a31)(1− ν(t)α)

+ (1 + 2a31ν(t))(1− ν(t)α)

3∑
p=1,p̸=3

np∑
j=1

w31
pjLpj

∫ +∞

0

êα(t, t− s)g31pj (s)∇s

= −0.004 < 0,

α+ (2a32
2ν(t)− a32)(1− ν(t)α)

+ (1 + 2a32ν(t))(1− ν(t)α)
3∑

p=1,p̸=3

np∑
j=1

w32
pjLpj

∫ +∞

0

êα(t, t− s)g32pj (s)∇s

= −0.01 < 0.

Then (H1)− (H4) are all satisfied.

By Theorem 3.1, system (5.1) has exactly one almost-periodic solution. Moreover, by The-

orem 4.1 this solution is globally exponentially stable.

§6 Conclusions

In this paper, we expand a MAM neural networks with distributed delays to time scales.

We establish some sufficient conditions on the existence, uniqueness and the global exponential

stability of almost-periodic solutions. An example is presented to illustrate the feasibility and

effectiveness of the obtained results for T = Z. We use Banach fixed point theorem, inequality

method and reduction to absurdity in this paper. In recent years, only little attention has been

paid towards almost-periodic solutions to MAM neural networks on time scales, we will study

more deeply about it in the future.
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