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Heteroscedastic Laplace mixture of experts regression

models and applications

WU Liu-cang1,∗ ZHANG Shu-yu2 LI Shuang-shuang3

Abstract. Mixture of Experts (MoE) regression models are widely studied in statistics and

machine learning for modeling heterogeneity in data for regression, clustering and classification.

Laplace distribution is one of the most important statistical tools to analyze thick and tail

data. Laplace Mixture of Linear Experts (LMoLE) regression models are based on the Laplace

distribution which is more robust. Similar to modelling variance parameter in a homogeneous

population, we propose and study a new novel class of models: heteroscedastic Laplace mixture

of experts regression models to analyze the heteroscedastic data coming from a heterogeneous

population in this paper. The issues of maximum likelihood estimation are addressed. In

particular, Minorization-Maximization (MM) algorithm for estimating the regression parameters

is developed. Properties of the estimators of the regression coefficients are evaluated through

Monte Carlo simulations. Results from the analysis of two real data sets are presented.

§1 Introduction

MoE regression models have received considerable attention in various applications and

are known as powerful tools in heterogeneous populations. MoE regression models are widely

studied in statistics, econometrics and machine learning for modeling heterogeneity in data for

regression, clustering and classification. They were first introduced by Jacobs et al.[1], included

mixing proportions (known as the gating network), and the component densities. A complete

review of the MoE regression models can be found in Yuksel et al.[2]. MoE regression models

for continuous data are usually based on the normal distribution. However, it is well-known

that the normal distribution is sensitive to outliers. Recently, Chamroukhi[3] applied mixture of

experts based on t distribution to model non-linear regression data. Laplace mixture of experts

(LMoE) for non-linear regression data were put forward by Nguyen and McLachlan [4].

Received: 2018-01-15. Revised: 2019-12-16.
MR Subject Classification: 62F10, 62H12.
Keywords: mixture of experts regression models, heteroscedastic mixture of experts regression models,

Laplace distribution, MM algorithm.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-021-3591-2.
Supported by the National Natural Science Foundation of China (11861041, 11261025).
∗Corresponding author.



WU Liu-cang, et al. Heteroscedastic Laplace mixture of experts regression models 61

Similar to the ordinary regression models in a homogeneous population, the homoscedastic-

ity of every the component densities (known as the experts) is a basic assumption in the MoE

regression model. Under this assumption, it can be feasible to make routine statistical inference.

If the variances of observations in the every subpopulations are heterogeneous and unknown,

the regression analysis will meet many troubles. Moreover, we encounter that there are many

heteroscedastic data around our real life. Therefore, the assumption of the homoscedasticity in

the every subpopulations is not consistent with the reality.

To the best of our knowledge, in the framework of the MoE regression models, it is assumed

that the equal variance for each component is constant across observations, e.g., Yuksel et al.

[2] and references therein . However, little work has been done to model variance in the MoE.

Huang and Yao [5] investigated models which allow the mixing proportions to depend on the

covariates nonparametric. Huang et al.[6] proposed a fully nonparametric mixture of regression

models by assuming that the mixing proportions, the regression functions, and the variance

functions are nonparametric functions of a covariate.

The main objective of this paper is to develop a heteroscedastic mixture of experts re-

gression models determine which variables how to drive the mean and variance parameters in

different subpopulations, that is, the mean and variance parameters may change with different

covariates in different subgroups of observations. Similar to modelling variance parameter in

a homogeneous population (see Aitkin[7]; Taylor and Verbyla[8]; Wu et al.[9] and references

therein), we propose and study a new novel class of models: heteroscedastic mixture of experts

regression models based on the Laplace distribution to analyze the heteroscedastic data coming

from a heterogeneous population in this paper. We extend the homogeneous heteroscedasticity

data to heterogeneous heteroscedasticity data in Laplace mixture of linear experts. Firstly,

we propose the heteroscedastic Laplace mixture of experts regression models. Next, we show

the maximum likelihood estimator (MLE) using Minorization-Maximization (MM) algorithm

estimates the regression parameters. Properties of the estimators of the regression coefficients

are evaluated through Monte Carlo experiments. Results from the analysis of two real data sets

are presented.

The paper is organized as follows. The heteroscedastic Laplace mixture of experts regression

models are described in Section 2. The MM algorithm for model fitting is given in Section 3.

In Section 4, several simulations present the performance of parameter estimation, and Section

5 demonstrates two real data applications of the model. Finally, we conclude with a discussion

in Section 6.

§2 Heteroscedastic Laplace mixture of experts regression models

2.1 Heteroscedastic Laplace mixture of experts regression models

The MoE framework can be define as follows. Let z ∈ {1, ...,m} be a categorical random

variable such that
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P (z = j|νi) = πj(νi;α) =


exp(νT

i αj)

1+
m−1∑
j′=1

exp(νT
i αj′ )

, if j = 1, ...,m− 1,

1

1+
m−1∑
j′=1

exp(νT
i αj′ )

, otherwise.
(1)

and Figure 1 shows the structure of an MoE regression models with m = 2 experts, where the

two experts are mixed by the gating network.

Figure 1. The structure of a MoE model with m = 2 experts.

Let Y be a response variable that follows Laplace distribution and composed of m categories

in an LMoE model, the density function of Y is

LaplaceY (y|ν, x, h) =
m∑
j=1

πj(ν, α)Laplace(y;µj(x, β), σ
2
j (h, γ)). (2)

This paper aims at mixture of regression and heteroscedasticity data in Laplace mixture of

linear experts, simultaneously modelling mixing proportions, location parameters and scale

parameters. We consider the following heteroscedastic Laplace mixture of experts regression

models: 
yi ∼

m∑
j=1

πjLaplace(yi;µij , σ
2
ij),

µij = xT
i βj ,

log σ2
ij = hT

i γj ,

i = 1, . . . , n; j = 1, . . . ,m.

(2.3)

where:

πj =


exp(νT

i αj)

1+
m−1∑
j′=1

exp(νT
i αj′ )

, if j = 1, ...,m− 1,

1

1+
m−1∑
j′=1

exp(νT
i αj′ )

, otherwise.

νi = (νi1, ..., νit)
T , xi = (xi1, ..., xip)

T , hi = (hi1, ..., hiq)
T is explain vector and αj = (αj1, ..., αjt)

T ,

βj = (βj1, ..., βjp)
T , γj = (γj1, ..., γjq)

T is unknown parameters and 0 < πj < 1,
m∑
j=1

πj = 1 and

Laplace(yi;µj , σ
2
j ) =

1√
2σj

exp(−
√
2|yi−µj |

σj
).
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2.2 Identifiability

Identifiability is not a negligible issue in finite mixture models. Titterington et al. [11] have

given the related conclusion that the finite mixture models of continuous distribution in most

cases is identifiable. In this paper, the necessary and sufficient condition that model can be

identifiable is:
m∑
j=1

πj(ν, α)Laplace(y;µj(x, β), σ
2
j (h, γ)) =

m∗∑
j=1

πj(ν, α
∗)Laplace(y;µj(x, β

∗), σ2
j (h, γ

∗)).

If and only if m = m∗, α = α∗, β = β∗,γ = γ∗. Obviously the model is identifiable, for different

parameters, the corresponding distribution is also different, up to a permutation.

§3 Parameter Estimation

3.1 α phase

EM algorithm require specialist knowledge of probabilistic characterizations in order to

express the iterative updates. Instead of EM algorithm, we will introduce a equation (4)

that proposed by Nguyen and McLachlan [4], see Section 2.1 of Nguyen and McLachlan [4], a

monotonic iterative scheme using the Minorization-Maximization (MM) algorithm (Hunter and

Lange [10]) framework, which can violate the usual monotonicity to make the update:

α
(k+1)
j = 4∆−1δ

(k+1)
j + δ

(k)
j , (1)

where : ∆ =
n∑

j=1

νjν
T
j , δ

(k+1)
j =

n∑
j=1

[τ
(k+1)
ij − πj(νi;α

(k)
j )]νi,

τ
(k+1)
ij =

πj(νi;α
(k))Laplace(yi;x

T
i β

(k)
j , hT

i γ
(k)
j )

m∑
j=1

πj(νi;α(k))Laplace(yi;xT
i β

(k)
j , hT

i γ
(k)
j )

.

3.2 β and γ phase

First, we should determine the number of components. As BIC (Bayesian information

criterion) tends to outperform the other criteria, such as, AIC (Akaike information criterion),

CLC (Classification likelihood criterion), it can be applied this section(McLachlan and Peel[12]).

Suppose that m0 ∈ {r1, ..., rs} is the true value of m. For each , we fit heteroscedastic Laplace

mixture of experts regression models with rl components and compute its MLE θ̂(l)n. The BIC

for each l can be given as

BIC(l) = −2 logLn(θ̂(l)n) + log n[rl(t+ p+ q)− t], (2)

and rl(t+ p+ q)− t is the total number of parameter elements in model l. Under BIC criteria

the number of components is selected by m = rl̂,using the rule l̂ = argminBIC(l).

Then, EM algorithm (McLachlan and Krishnan[13]) is utilized to estimate β and γ phase.

The flow path divided into two steps: E-step and M-step. E-step calculates the expectation

of logarithmic likelihood function according to the parameters initial values or the result of
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the previous iteration. M-step maximizes the logarithm likelihood function to get the new

parameter values. Using the new parameter values to instead of initial values or the previous

iteration results, repeat the above two steps until convergence.

The specific procedures of EM algorithms:

E-step: Utilize the θ(k) and α(k) to calculate τ̂
(k+1)
ij :

τ̂
(k+1)
ij = E(τ

(k)
ij |yi, xi, hi, θ

(k), α(k)) =
πj(νi;α

(k))Laplace(yi;x
T
i β

(k)
j , hT

i γ
(k)
j )

m∑
j=1

πj(νi;α(k))Laplace(yi;xT
i β

(k)
j , hT

i γ
(k)
j )

.

Then calculate expectation of logarithmic likelihood function:

Q(·) = E(lc|yi, xi, hi, θ
(k), α(k)).

M-step: Using the Gaussian–Newton algorithm for the simultaneous maximum likelihood

estimate of Θj = (βT
j , γ

T
j )

T , the the updated estimates at the (k+1)th iteration are

Θ
(k+1)
j = Θ

(k)
j + [− ∂2Q

∂Θj∂ΘT
j

(Θ
(k)
j )]−1U(Θ

(k)
j ), j = 1, 2, · · · ,m,

where ∂2Q2

∂Θj∂ΘT
j
(Θj) is the observed Fisher information matrix and U(Θj) is the score function.

The E-step and M-step are alternated repeatedly until convergence is obtained.

See Appendix for detailed calculation process.

§4 Monte Carlo Simulation

To evaluate the performance of the proposed MM and EM estimation algorithms, we conduct

some Monte Carlo simulations. The performance of estimator θ̂, will be assessed by using the

mean square error (MSE), defined as

MSE(θ̂) = E(θ̂ − θ0)
T (θ̂) = E(θ̂ − θ0).

We simulate data from the following model (4.1)
yi ∼ π1Laplace(yi;µi1, σ

2
i1) + π2Laplace(yi;µi2, σ

2
i2),

µij = xT
i βj ,

log σ2
ij = hT

i γj ,

i = 1, . . . , n; j = 1, 2.

(4.1)

where:

πj =


exp(νT

i αj)

1+exp(νT
i αj)

, j = 1,
1

1+exp(νT
i αj)

, j = 2.

To perform this simulation, we take the α1 = (0, 1)T , β1 = (0, 1)T , β2 = (0,−1)T , γ1 = (0, 1)T ,

γ2 = (0,−1)T , and νj ∼ U(−1, 1), xj ∼ U(−1, 1) and hj ∼ U(−1, 1). yi is generated according

to the model (4.1). The sample sizes considered are n = 64, 128, 256, 512, 1024. The following

simulation results are all based on 1000 independent repetitions. Table 1 reports the average of

estimator. Furthermore, the column labeled “Mean” and “MSE” give the average estimators

and the mean square errors of β̂j , γ̂j , j = 1, 2 and α̂1.
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Table 1. Simulation results for the model (4.1).
Parameter Sample Size Mean MSE
α1 64 (−0.0078, 0.9646)T 0.1126

128 (−0.0000, 0.9597)T 0.0524
256 (0.0005, 0.9498)T 0.0285
512 (−0.0000, 0.9507)T 0.0150
1024 (−0.0018, 0.9572)T 0.0083

β1 64 (0.0140, 1.0025)T 0.4173
128 (0.0121, 1.0016)T 0.1871
256 (0.0020, 1.0090)T 0.0867
512 (−0.0017, 1.0013)T 0.0397
1024 (0.0020, 1.0053)T 0.0211

γ1 64 (−0.0223, 0.9204)T 0.5747
128 (0.0079, 0.9657)T 0.3311
256 (0.0081, 0.9762)T 0.1929
512 (−0.0038, 0.9879)T 0.1039
1024 (−0.0051, 0.9967)T 0.0521

β2 64 (0.0029,−0.9975)T 0.4267
128 (−0.0033,−1.0075)T 0.1847
256 (0.0007,−0.9787)T 0.0889
512 (−0.0035,−0.9882)T 0.0411
1024 (0.0003,−1.0039)T 0.0202

γ2 64 (−0.0060,−0.9150)T 0.5545
128 (0.0147,−0.9559)T 0.3283
256 (0.0022,−0.9890)T 0.1831
512 (−0.0084,−0.9789)T 0.1026
1024 (−0.0042,−1.0079)T 0.0510

Table 1 shows that the following observations:

(1) The results in Table 1 indicate that the MM algorithm performs well in estimating the

coefficients. The MSEs for all the parameters decrease as the sample size increases from 64 to

1024.

(2) For the given sample size n, the performance of maximum likelihood estimation in the

location model is significantly better than that of maximum likelihood estimation in the scale

model in terms of the MSE.

§5 Application

In this section, two real data sets from the Air Quality Index(AQI) data[14] and Sheep Time

Series Data[15] are used to illustrate the proposed methods.

5.1 Air Quality Index

In recent years, Beijing as the capital of China, is also China’s political and cultural center,

air pollution issues are quite serious, which must be pay much attention, and to do a good

job of environmental protection in Beijing is great significance. Air Quality Index (AQI) is a
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quantitative description of Air Quality Index dimensionless. The main pollutants is divided into

six types: fine particulate matter, particulate matter, sulfur dioxide, nitrogen dioxide, ozone,

carbon monoxide.

We collected 365 days AQI data of Beijing in 2015 from Ministry of Environmental Pro-

tection of the Peoples Republic of China Data Center(http://datacenter.mep.gov.cn/)[14], ex-

planatory variables are X1–fine particulate matter (PM2.5, µg/m3), X2–particulate matter

(PM10, µg/m3), X3–sulfur dioxide (SO2, µg/m
3), X4–nitrogen dioxide (NO2, µg/m

3), X5–

ozone (O3, µg/m
3), X6–carbon monoxide (CO,mg/m3), respectively. According to the results

of cluster analysis, we get the BIC values: BIC(2)=4504.903 and BIC(3)=4574.886, so we choose

to use two-component heteroscedastic Laplace mixture of experts regression models for fitting

the data.

The data can be divided into two categories by contrast observing, heavier pollution area

(including January, February, March, April, October, November, December seven months) and

lighter pollution area (including May, June, July, August, September five months).

Figure 2. Histogram of heavier area. Figure 3. Histogram of lighter area.

Figure 2 and Figure 3 show the histogram of AQI data for heavier pollution area and lighter

pollution area. We find the histogram of the two parts of AQI data is different obviously, need

to use mixture models to fit. Applying the proposed model (2.3), MLE estimators for the

parameters see Table 2.

Table 2. The results for the Air Quality Index(AQI) data.

Parameter Const X1 X2 X3 X4 X5 X6

α1 5.540 0.022 0.027 0.321 -0.056 -2.938 -0.098

β1 63.226 1.095 -0.029 0.315 -0.035 -11.708 -0.124

β2 7.239 0.980 0.140 -0.342 0.012 0.639 0.214

γ1 9.716 -0.016 0.016 -0.046 -0.041 -0.107 -0.014

γ2 0.972 0.004 -0.001 -0.038 0.002 -0.061 0.019

In fact, the AQI values of Beijing city are influenced by season and month in different

degrees, this is because Beijing is located in the north of China. From November each year

to March next year, Beijing city need heating to residents, then chemical compounds make

contribution to pollute the air produce by burning coal.
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5.2 Sheep Time Series Data

In addition, we also found that heteroscedastic Laplace mixture of experts regression models

can fit time series data better, we collected data, annual sheep population in England and

Wales 1867–1939 from Time Series Data Library (http://robjhyndman.com/TSDL/)[15]. Let

the dependent y is the sheep population, explaining variables for νj = xj = hj = (1, tj),

tj = j + 1867, here j = 1, ..., 73.

Figure 4. The scatter of sheep population.

Observing the scatter from Figure 4, we consider two-component heteroscedastic Laplace

mixture of experts regression models should be used to fitting, and BIC values confirmed our

speculation: BIC(2)=43.239 and BIC(3)=47.720. Applying the proposed model (2.3), MLE

estimators for the parameters see Table 3.

Table 3. The results for the Sheep Time Series Data.
Parameters Const X1

α1 42491.956 -21.796
β1 -222.185 0.121
β2 -8375.5 0.004
γ1 -70.096 0.037
γ2 -278.421 0.143

We find that the growth speed of sheep number has changed a lot around 1950, we refer

to the relevant information, that may be IVF (In Vitro Fertilization) technique succeed in the

1950s, and developed rapidly in next 20 years, now become an important guide and conventional

animal breeding biotechnology in developed countries such as Europe, America and Oceania.

§6 Conclusion

In this paper, in order to analyze the heteroscedastic data coming from a heterogeneous

population, we proposed and studied a new novel class of models: heteroscedastic Laplace mix-

ture of experts regression models. We developed a Minorization-Maximization (MM) algorithm
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to estimate the regression parameters. The obtained results on simulated data show the good

performance. The analysis and applications of two practical data confirm the usefulness for the

heteroscedastic Laplace mixture of experts regression models.

As a final remark, we only considered the heteroscedastic Laplace mixture of experts re-

gression models in their standard (non-hierarchical) version. One interesting future direction

is therefore to extend the proposed models to the hierarchical MoE framework (Jordan and

Jacobs[16]). Furthermore, a natural future extension of this work is to consider the case of

heteroscedastic Laplace mixture of experts regression models for multiple regression on multi-

variate data rather than simple regression on univariate data.

Appendix

In this section, we add some derivatives pertinent in M-step of EM algorithms.

∂2Q

∂Θj∂ΘT
j

=

 ∂2Q
∂βj∂βT

j

∂2Q
∂βj∂γT

j

∂2Q
∂γj∂βT

j

∂2Q
∂γj∂γT

j

 ,

∂2Q

∂βj∂βT
j

=

n∑
i=1

τ̂
(k+1)
ij (

√
2

σij
· ∂2µij

∂βj∂βT
j

),

∂2Q

∂γj∂γT
j

=

n∑
i=1

τ̂
(k+1)
ij [(− 1

σ2
ij

· ∂σij

∂γT
j

· ∂σij

∂γj
− 1

σij
· ∂2σij

∂γj∂γT
j

)

+ (
2
√
2 | yi − µij |

σ3
ij

· ∂σij

∂γT
j

· ∂σij

∂γj
−

√
2 | yi − µij |

σ2
ij

· ∂2σij

∂γj∂γT
j

)]

∂2Q

∂βj∂γT
j

=
n∑

i=1

τ̂
(k+1)
ij (−

√
2

σ2
ij

· ∂µij

∂βj
· ∂σij

∂γT
j

),

∂2Q

∂γj∂βT
j

=
n∑

i=1

τ̂
(k+1)
ij (

√
2

σ2
ij

· ∂σij

∂γj
· ∂µij

∂βT
j

),

∂Q

∂βj
=

n∑
i=1

τ̂
(k+1)
ij (

√
2

σij
· ∂µij

∂βj
),

∂Q

∂γj
=

n∑
i=1

τ̂
(k+1)
ij (− 1

σij
−

√
2 | yi − µij |

σ2
ij

) · ∂σij

∂γj
.

Here referred a method of taking derivative to absolute about parameter βj , we can consider

a function f(βj) =
n∑

i=1

| yi − xT
i βj | derivative to βj :

∂f(β)
∂βj

= −
n∑

i=1

xisgn(yi − xT
i βj), where

sgn(·) is the sign function which takes -1, 0, 1 if the argument is negative, 0, and positive

respectively. Let ωi =
1

|yi−xT
i βj |

, and
∂f(βj)
∂βj

=
n∑

i=1

ωixisgn(yi − xT
i βj). Thus we can defuse this

problem.
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