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Global asymptotical stability in a rational difference

equation

LI Xian-yi∗ LI Wei

Abstract. In this paper we prove a global attractivity result for the unique positive equilibrium

point of a difference equation, which improves and generalizes some known ones in the exist-

ing literature. Especially, our results completely solve an open problem and some conjectures

proposed in [1, 2, 3, 4].

§1 Introduction

Due to the strong practical application background [1, 3, 8, 12, 13, 17, 20], the subject of

the dynamical behaviors of difference equations, including stability, oscillation, boundary value

problem, periodic and homoclinic orbits [2, 3, 4, 17-19], has undergone a rapid development in

the last three decades. In particular, the study on qualitative properties of rational difference

equations (for short, RDEs) has received much attention in the past two decades. For example,

we may refer to the monographs [3, 4], the articles [2, 5-7, 9-11, 14-16] and the references

cited therein. RDEs may display very complicate dynamical behaviors. One may refer to [4]

in which the bifurcation phenomenon of trichotomy of period two was found by a very simple

second order RDE. Moreover, we have not found any effective methods to deal with this kind

of behavior.

Our main aim in this paper is to investigate the global asymptotic stability of the following

difference equation

xn+1 =
p+ qxn

1 + rxn−k
, n = 0, 1, · · · ,

where p, q ∈ [0,∞), r > 0, k ≥ 1 is an integer and initial conditions x−k, · · · , x−1, x0 ∈ (0,∞).

Our motivation comes from a flourishing stream of the following known work.
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G. Ladas et al [3] considered the following RDE

xn+1 =
a+ bxn

A+ xn−1
, n = 0, 1, · · · (1.1)

where

a, b, A ∈ (0, ∞) (1.2)

and the initial values x−1, x0 are arbitrary positive numbers.

Eq.(1.1) has a unique positive equilibrium point x̄, which is the unique positive root of the

equation

x̄ =
a+ bx̄

A+ x̄
, namely, x̄ =

b−A+
√
(b−A)2 + 4a

2
.

It can be easily shown that x̄ is locally asymptotically stable [2, 3] when (1.2) is satisfied. For

the global asymptotic stability of x̄, V.L. Kocic and G. Ladas [3] in 1993, G. Ladas [1] in 1994,

G. Ladas [2] in 1995 obtained some results, respectively.

Theorem 1.1 [1, 2, 3] Suppose that (1.2) holds, and one of the following conditions is true

(1) b < A;

(2) b ≥ A and a < Ab;

(3) b ≥ A and Ab < a < 2A(b+A);

(4) b ≥
√
(1 +

√
5)/2A, Ab < a and b2/A < x̄ < 2b.

Then x̄ is globally asymptotically stable.

Here, the positive equilibrium point x̄ of Eq.(1.1) is said to be globally asymptotically stable

if it is both locally asymptotically stable and globally attractive. While, x̄ is said to be globally

attractive if for arbitrary positive initial values x−1, x0, the solution {xn} of Eq.(1.1) converges

to x̄. Clearly, the positive equilibrium x̄ of Eq.(1.1) is globally asymptotically stable if and only

if x̄ is globally attractive because x̄ is locally asymptotically stable.

For RDEs, there has been a point of view that the local asymptotical stability of an equi-

librium point implies its global asymptotical stability. Especially in Mathematical Biology this

has been the case. Hence, many research projects in [3] and Open Problems and Conjectures

[3, 4] are given based on this kind of idea. Indeed, most of known results [3, 4] support this

kind of point of view. But later V.L. Kocic and G. Ladas’ work provided counter examples for

this. How about Eq.(1.1)? Computer simulations show that the declaration is also true; that is,

the local asymptotical stability of the positive equilibrium point x̄ of Eq.(1.1) implies its global

asymptotical stability, which is equivalent to its global attractivity as long as (1.2) holds. But,

except the partial results mentioned in the above Theorem 1.1, this point of view can not be

completely and theoretically proved. So, G. Ladas presented the following conjecture in [1-3]

respectively.

Conjecture 1.1 [3, Conjecture 6.1.1, P154] Assume that (1.2) holds. Then the positive

equilibrium point x̄ of Eq.(1.1) is globally asymptotically stable.

Many researchers have paid attention to this conjecture. In 2000, Ou et al [5] obtained the

following results.

Theorem 1.2 [5, Theorem 1, P33−34] Assume that a, b, A ∈ (0, ∞) and b = A or

b > A with Ab < a < 2A(b+A) + 4A3/(b−A) + 2A2
√
b4 −A4/(b−A)2, (1.3)
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then x̄ of Eq.(1.1) is a global attractor of all positive solutions.

Although Theorem 1.2 does not solve the Conjecture 1.1 completely, it is obvious that

the result of Theorem 1.2 is better than (3) of Theorem 1.1. In 2002, by further analysis of

semi-cycle of Eq.(1.1), Li, et al [6] obtained the following three results.

Theorem 1.3 [6, Theorem 1, P10] Suppose that (1.2) holds and that b = A and Ab < a

or b > A and Ab < a ≤ 2Ab + ( 2Ab
b−A )2 is true. Then every positive solution {xn} of Eq.(1.1)

tends to a finite limit as n → ∞.

Theorem 1.4 [6, Theorem 2, P10] Suppose that (1.2) and a(b − A) + b2<̄2A2
√
a+A2

are valid. Then x̄ is a global attractor of any positive solution {xn} of Eq.(1.1).

Theorem 1.5 [6, Theorem 3, P10] Suppose that (1.2) and r < 4A3 hold, where r =

x̄(A+ x̄)2. Then x̄ is a global attractor of any positive solution {xn} of Eq.(1.1).

In Theorem 1.5, r < 4A3 is equivalent to x̄ < A, i.e.,
√
(b−A)2 + 4a < 3A − b. These

results in Theorems 1.3–1.5 partly include and improve the corresponding ones in Theorem 1.1.

To see this, refer to [6, Remarks 1, 2, 3]; but they do not contain each other.

In 2003, by studying the global attractivity of a general difference equation, Li, et al [7]

showed the next global attractivity theorem.

Theorem 1.6 [7, Theorem 2, P272] Suppose that (1.2) holds and that a < A(2A − b).

Then the positive equilibrium point of Eq.(1.1) is globally attractive.

This result is obviously different from the known ones. In the same year, by studying

the global attractivity of a general difference equation of non-increasing nonlinearities, H. A.

El-Morshedy derived the following result for the global attractivity of Eq.(1.1).

Theorem 1.7 [8, Theorem 3.2, P757] Assume that b ≥ A,Ab < a and

(b− a)x̄ < b2 +A2.

Then the unique positive equilibrium of Eq.(1.1) is globally asymptotically stable.

In the above Theorem 1.7, (b− a)x̄ < b2 +A2 is equivalent to a ≤ 2Ab+ ( 2Ab
b−A )2, which has

actually been formulated in Theorem 1.3. Note that Theorems 1.1 to 1.7 only partially answer

the above Conjecture 1.1. Hence, it is worth further considering the Conjecture 1.1.

For the special case of Eq.(1.1) with the form [4, P79]

xn+1 =
p+ qxn

1 + xn−1
, n = 0, 1, · · · (1.4)

where p, q ∈ (0, ∞) and the initial values x−1, x0 are arbitrary positive numbers, the following

question is presented.

Conjecture 1.2 [4, Conjecture 6.10.1, P124] Assume p, q ∈ (0, ∞). Show that every

positive solution of Eq. (1.4) has a finite limit.

In 2007, Nussbaum considered this conjecture and derived the following conclusion.

Theorem 1.8 [10, Theorem 6.1, P1083] Assume either that 0 < q ≤ 1 and p > 0 or that

q > 1 and 0 < p ≤ 2q +
4q2

(q − 1)2
.

Then if x−1 > 0, x0 > 0 and xn, n ≥ 1, is defined by (1.4),

lim
n→∞

xn = x̄ = (q − 1 +
√
(q − 1)2 + 4p)/2.
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Noticing 2 < 4q2

(q−1)2 for q > 1, Theorem 1.8 evidently improves Theorem 1.7. However,

Theorem 1.8 does not entirely solve the Conjecture 1.2, either.

V. L. Kocic and G. Ladas again considered in [3] the generalization of Eq.(1.1), i.e., (k +

1)− th order rational difference equation

xn+1 =
a+ bxn

A+ xn−k
, n = 0, 1, · · · , (1.5)

where

a, b ∈ [0, ,∞), A ∈ (0, ∞), k ∈ {1, 2, · · · } (1.6)

and the initial values x−k, · · · , x−1, x0 are arbitrary positive numbers. Eq.(1.5) has a positive

equilibrium x̄, which is the same as Eq.(1.1), provided that

either a > 0 or a = 0 and b > A. (1.7)

The following results are obtained.

Theorem 1.9 [3, Theorem 3.4.3, P71] Assume that (1.6) and (1.7) hold. Then the

positive equilibrium x̄ of Eq.(1.5) is a global attractor of all positive solutions provided that

one of the following six conditions is satisfied:

(a) a > 0 and A > b > 0;

(b) a > 0 and b = 0;

(c) b > 0, k ≥ 2, Ab < a, and x̄k ≤ A;

(d) b > 0, k ≥ 2, a ≤ Ab, and x̄(k − 1) ≤ A;

(e) b > 0, k = 1, a ≤ Ab;

(f) b > 0, k = 1, and Ab ≤ a ≤ 2Ab+ 2A2.

For related work associated with Eq.(1.5), refer also to [21, 22]. If Conjecture 1.1 is true,

then, as a special case of Eq.(1.5), i.e, Eq.(1.5) with k = 1, the holding condition (1.2) for the

attractivity of Eq.(1.1) should be included in Theorem 1.10. Obviously, it is not so. Therefore,

it is also worthy for further studying the attractivity of Eq.(1.5). These problems motivate us

to investigate in this paper the global stability of the following difference equation

xn+1 =
p+ qxn

1 + rxn−k
, n = 0, 1, · · · , (1.8)

where p, q ∈ [0,∞), r ∈ (0, ∞), k ≥ 1 is a positive integer and the initial conditions

x−k, · · · , x−1, x0 ∈ (0,∞). To avoid the trivial case, we suppose that p+ q > 0.

Eq.(1.8) has a unique nonnegative equilibrium point, still denoted by x̄, i.e.,

x =
q − 1 +

√
(q − 1)2 + 4pr

2r
.

When p = 0 and q ∈ (0, 1], x̄ = 0. At this time, it is easy to see from Eq.(1.8) that

xn+1 < qxn and so xn eventually monotonically approaches x̄. Hence, in the sequel one will

only consider the behavior of positive equilibrium point of Eq.(1.8), namely, one will assume

that p > 0 or q ∈ (1, ∞). Our main result in this paper is the following.

Theorem XY Assume that p > 0 or q ∈ (1, ∞), r ∈ (0, ∞) and k ≥ 1 is a positive

integer. Then the unique positive equilibrium x̄ of Eq.(1.8) is a global attractor of all of its

positive solutions.

The proof of Theorem XY will be given in Section 3. It is easy to see from Theorem XY that
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Conjectures 1.1 and 1.2 are true. Up to here, the above two conjectures have been completely

solved. Furthermore, our results include and improve the corresponding ones in [1-10]. In

addition, our results also include and improve the corresponding ones in [14, 15], completely

solve the conjecture in [3, P76 ] and answer the open problem in [4, P129 ] stated in Section 4.

2. Several Key Lemmas

For readers’convenience, we present here some known lemmas used in the sequel.

Lemma 2.1 [3, Theorem 2.3.1, P40 ] Consider the difference equation

xn+1 = xnf(xn, xn−k1 , · · · , xn−kr ), (2.1)

where k1, k2, · · · , kr are positive integers. Denote by k the maximum of k1, k2, · · · , kr. Also,

assume that the function f satisfies the following hypotheses:

(H1) f ∈ C[(0,∞)× [0,∞)r, (0,∞)] and g ∈ C[[0,∞)r+1, (0,∞)],

where g(u0, u1, · · · , ur) = u0f(u0, u1, · · · , ur) for u0 ∈ (0,∞)

and u1, · · · , ur ∈ [0,∞), g(0, u1, · · · , ur) = limu0→0+ g(u0, u1, · · · , ur);

(H2) f(u0, u1, · · · , ur) is nonincreasing in u1, · · · , ur;

(H3) The equation f(x, x, · · · , x) = 1 has a unique positive solution x;

(H4) Either the function f(u0, u1, · · · , ur) does not depend on u0 or for every x > 0 and

u ≥ 0,

[f(x, u, · · · , u)− f(x, u, · · · , u)](x− x) ≤ 0

with

[f(x, x, · · · , x)− f(x, x, · · · , x)](x− x) < 0 for x ̸= x.

Define a new function F given by

F (x) =

{
maxx≤y≤xG(x, y) for 0 ≤ x ≤ x

minx≤y≤xG(x, y) for x > x
(2.2)

where

G(x, y) = yf(y, x, · · · , x)f(x, x, · · · , x, y)[f(x, x, · · · , x)]k−1. (2.3)

Then

(a) F ∈ C[(0,∞), (0,∞)] and F is nonincreasing in [0,∞);

(b) Assume that the function F has no periodic points of prime period 2. Then x is a global

attractor of all positive solutions of Eq.(2.1).

Lemma 2.2 [3, Lemma 1.6.3 (a) and (d)] Let F ∈ [[0,∞), (0,∞)] be a nonincreasing func-

tion and let x denote the unique fixed point of F , then the following statements are equivalent:

(a) x is the only fixed point of F 2 in (0,∞);

(b) x is a global attractor of all positive solutions of the difference equation

xn+1 = F (xn), n = 0, 1, · · · (2.4)

with x0 ∈ [0,∞).

Lemma 2.3 [11 ] Consider the difference Eq.(2.4), where F is a decreasing function which

maps some interval I into itself. Assume that F has negative Schwarzian derivative

SF (x) =
F ′′′(x)

F ′(x)
− 3

2
(
F ′′(x)

F ′(x)
)2 = [

F ′′(x)

F ′(x)
]′ − 1

2
(
F ′′(x)

F ′(x)
)2 < 0
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everywhere on I, except for point x, where F ′(x) = 0. Then the positive equilibrium x of

Eq.(2.4) is globally attractor of all positive solutions of Eq.(2.4).

3. Proof of Main Result

In this section we shall give the proof of our main result in this paper.

Proof of Theorem XY We will mainly utilize Lemma 2.1 to prove our results. Eq.(1.8)

can be rewritten into

xn+1 = xn

p
xn

+ q

1 + rxn−k
. (3.1)

Set

f(u0, u1, · · · , uk) =

p
u0

+ q

1 + ruk
.

It is easy to verify that the function f satisfies the hypotheses (H1)-(H4) of Lemma 2.1.

The function G defined by (2.3) takes the form G(x, y) = p+qy
1+ry (

1+rx̄
1+rx )

k. Moreover, ∂G(x,y)
∂y =

q−pr
(1+ry)2 (

1+rx̄
1+rx )

k. In order to apply Lemma 2.1, one has to calculate the function F defined by

(2.2). There are two cases to be considered.

Case(I) 0 ≤ q ≤ pr.

In this case, the function F of (2.2) is given by

F (x) = A
p+ qx

(1 + rx)k+1
, x ∈ (0,∞), where A = (1 + rx)k.

We now show that the function F has no periodic points of prime period 2.

Notice that F ′(x) = −Akqrx+(k+1)pr−q
(1+rx)k+2 < 0. Take I = [0, pA]. For any given x ∈ I, one has

0 ≤ F (x) ≤ F (0) =: limx→0+ F (x) = pA. So, F (I) ⊂ I. Again,

F ′′(x) = A(k + 1)r
(k + 2)pr − 2q + kqrx

(1 + rx)k+3
> 0.

So, one has
F ′′(x)

F ′(x)
= −(k + 1)r

(k + 2)pr − 2q + kqrx

(1 + rx)(kqrx+ (k + 1)pr − q)
and hence

(
F ′′(x)

F ′(x)
)′ =

(k + 1)r△
(1 + rx)2(kqrx+ (k + 1)pr − q)2

,

where △ takes this form

△ = −kqr(1 + rx)(kqrx+ (k + 1)pr − q)

+[(k + 2)pr − 2q + kqrx][2kqr2x+ ((k + 1)pr − q)r + kqr]

= kqr[kqr2x2 + 2((k + 1)pr − q)rx+ pr − q] + ((k + 1)pr − q)((k + 2)pr − 2q)r > 0.

Accordingly,

SF (x) = (
F ′′(x)

F ′(x)
)′ − 1

2
[
F ′′(x)

F ′(x)
]2 =

(k + 1)rΓ

2[(1 + rx)(kqrx+ (k + 1)pr − q)]2
,

where Γ has the following expression

Γ = 2△− (k + 1)r[((k + 2)pr − 2q + kqrx]2

= −(k − 1)k2q2r3x2 − 2k2qr2[(k + 1)pr − 2q]x− kr[(k + 2)pr − 2q][(k + 1)pr − q] < 0.

Therefore, SF (x) < 0. By Lemma 2.3, x is a global attractor of all positive solutions of Eq.(2.4).

Thereout, according to Lemma 2.2, x is the only fixed point of F 2 in (0,∞), which, together

with Lemma 2.1 (b), indicates that x is a global attractor of all positive solutions of Eq.(3.1),

i.e, Eq.(1.8).
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Case(II) q > pr.

In this case, the function F in (2.2) has the form

F (x) =
B

(1 + rx)k
, x ∈ (0,∞), where B = (p+ qx)(1 + rx)k−1. (3.2)

It suffices to show that the function F has no periodic points of prime period 2. Let L =

F (M) and M > 0 is the fixed point of F 2(x), that is to say, F 2(M) = M . Then B
(1+rM)k

=

L and B
(1+rL)k

= M, which imply

(1 + rM)k

M
=

(1 + rL)k

L
. (3.3)

If k = 1, then it follows from (3.3) that L = M . So, M = F (M). Namely, M is the fixed

point of F (x). But from the obvious facts that F is nonincreasing, F (x) > 0 for x ∈ (0,∞)

and F (+∞) = 0, it follows that F has a unique fixed point. Therefore, M = x. So x is the

unique fixed point of F 2(x) in x ∈ (0,∞). Namely, the function F has no periodic points of

prime period 2 for k = 1.

Now, suppose k > 1. Since F (x) in (3.2) is decreasing, setting I = [0, B], for every x ∈ I,

we have 0 < F (x) ≤ F (0) =: limx→0+ F (x) = B, i.e., F (I) ⊂ I. In order to apply Lemma 2.3,

it requires to show that the Schwarzian derivative of F is negative. By calculation one gets

F ′(x) =
−krB

(1 + rx)k+1
, F ′′(x) =

k(k + 1)r2B

(1 + rx)k+2
,
F ′′(x)

F ′(x)
=

−(k + 1)r

1 + rx
and [

F ′′(x)

F ′(x)
]′ =

(k + 1)r2

(1 + rx)2
.

Thus,

SF (x) = [
F ′′(x)

F ′(x)
]′ − 1

2
(
F ′′(x)

F ′(x)

2

=
(1− k2)r2

2(1 + rx)2
< 0.

By Lemma 2.3, x is a global attractor of all positive solutions of Eq.(2.4). Thereout, in view

of Lemma 2.2, x is the only fixed point of F 2 in (0,∞). So, Lemma 2.1 (b) tells us that the

unique positive equilibrium x̄ of Eq.(1.8) is a global attractor of all of its positive solutions.

Combining the cases (I) and (II) completes the proof of Theorem XY.

4. Applications

In this section, we present some applications for our results.

Example 4.1 [3, Eq.4.1.1 in P75 or Eq.4.1.6 in P76 ]. Consider discrete logistic model

xn+1 =
αxn

1 + βxn−k
, n = 0, 1, · · · (4.1)

where

α ∈ (1, ∞), β ∈ (0, ∞), k ∈ {0, 1, · · · } (4.2)

and the initial conditions x−k, · · · , x−1, x0 ∈ (0,∞), which was proposed by Pielou in her books

[12, P22] and [13, P79] as a discrete analogue of the delay logistic equation

x′(t) = rx(t)[1− x(t− τ)

P
], t ≥ 0.

The following results are obtained.

Theorem 4.1 [3, Theorem 4.1.1 (b) P76 ] The positive equilibrium x̄ = (α − 1)/β of

Eq.(4.1) is globally asymptotically stable if (α − 1)(k − 1) ≤ 1. In particular, the positive

equilibrium of Eq.(4.1) is globally asymptotically stable if k = 0 or k = 1.

On the basis of computer observations the authors in [3] believe that the following conjecture
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is true.

Conjecture [3, P76 ] Assume that (4.2) holds. Show that the positive equilibrium x̄ =

(α− 1)/β of Eq.(4.1) is globally asymptotically stable if and only if it is locally asymptotically

stable.

Indeed, we show that the above conjecture holds. The results are as follows.

Theorem XY-1 Assume that (4.2) holds. Then the positive equilibrium x̄ = (α− 1)/β

of Eq.(4.1) is globally asymptotically stable if and only if it is locally asymptotically stable.

Proof By Theorem 4.1, the positive equilibrium x̄ = (α − 1)/β of Eq.(4.1) is globally

attractive for k = 0. We now consider the case k ≥ 1. Evidently, Eq.(4.1) is a special of

Eq.(1.8) with p = 0, q = α > 1 and r = β > 0. It follows from Theorem XY that the positive

equilibrium x̄ = (α − 1)/β of Eq.(4.1) is globally attractive. So, the positive equilibrium of

Eq.(4.1) is globally asymptotically stable if and only if it is locally asymptotically stable.

Remark 4.1 Without loss of generality, we may suppose r = 1 in Eq.(1.8). To coincide

with Example 4.1, we still write it as r.

Example 4.2 [4, P129 ] Consider difference equation

xn+1 =
p+ qxn

1 + xn−k
, n = 0, 1, · · · (4.5)

where

p, q ∈ [0, ∞), k ∈ {1, · · · } (4.6)

and the initial values x−k, · · · , x−1, x0 ∈ (0,∞). Kulenovic and Ladas gave the following

questions.

Open Problem 6.10.17 [4, P129 ] Assume that p, q ∈ [0, ∞), k ∈ {2, 3, · · · }. Investigate
the global behavior of all positive solutions of Eq.(4.5).

Invoking Lemma 2.1 and Theorem 4.1, Mehdi Dehghan and Reza Mazrooei-Sebdani studied

in [15] the global asymptotic stability of Eq.(4.5) and derived some results which requires p > 0.

Anyway, according to Theorem XY, one can easily derive the following results.

Theorem XY-2 Assume that (4.6) holds. If p = 0 and 0 < q ≤ 1, then the zero

equilibrium of Eq.(4.5) is a global attractor of all positive solutions of Eq.(4.3). Assume that

p > 0 or q > 1. Then the unique positive equilibrium of Eq.(4.5) is globally attractive.
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