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Tracy-Widom distribution, Airy2 process and its sample

path properties

SU Zhong-gen LEI Yu-huan SHEN Tian

Abstract. Tracy-Widom distribution was first discovered in the study of largest eigenvalues

of high dimensional Gaussian unitary ensembles (GUE), and since then it has appeared in a

number of apparently distinct research fields. It is believed that Tracy-Widom distribution

have a universal feature like classic normal distribution. Airy2 process is defined through finite

dimensional distributions with Tracy-Widom distribution as its marginal distributions. In this

introductory survey, we will briefly review some basic notions, intuitive background and funda-

mental properties concerning Tracy-Widom distribution and Airy2 process. For sake of reading,

the paper starts with some simple and well-known facts about normal distributions, Gaussian

processes and their sample path properties.

§1 Normal Distributions and Gaussian Processes

This section contains some simple and well-known facts about normal distributions and

Gaussian processes. The reader can find them in most of advanced probability and mathemat-

ical statistics textbooks for graduate students, see [4, 5] by Billingsley, [12] by Durrett, [23] by

Lin, Lu and Su. The purpose of this section is to provide some helpful clues about the next

research work around Tracy-Widom distribution and Airy2 process from well-studied normal

distributions and Gaussian processes. Tracy-Widom distributions are quite novel compared

with normal distributions, and have been very hot words in probability and statistics in the

past twenty-five years.

Throughout the paper, c1, c2, · · · , stand for positive constants possibly varying from place

to place.

1.1 Normal Distributions

The normal distribution is arguably the most important distribution in probability theory

and mathematical statistics. The normal density function is defined as follows.

p(x;µ, σ2) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R
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where µ ∈ R and σ > 0 are two parameters. In particular, p(x) = 1√
2π
e−x

2/2 is the so-called

standard normal density function. It consist of a symmetric bell-shaped curve asymptotically

close to the x-axis as |x| → ∞. It is an elegant and nontrivial exercise to verify∫ ∞

−∞
e−

x2

2 dx =
√
2π.

The standard normal distribution function Φ(x) is defined as

Φ(x) =
1√
2π

∫ x

−∞
e−

u2

2 du.

Φ(x) is a strictly increasing positive function with bounded derivative. However, there is no

closed form for Φ(x), people usually use the approximate values in practice. It is easy to see

Φ(0) = 1
2 , Φ(x) = 1− Φ(−x), and

1− Φ(x) = p(x)
( 1

x
− 1

x3
+ · · ·+ (−1)k

(2k − 1)!!

x2k+1
+ · · ·

)
, x > 0. (1)

A widely used simple inequality is for each x > 0
x

x2 + 1
p(x) < 1− Φ(x) <

1

x
p(x).

Let X be a random variable with probability density function p(x). Then it follows

EX2k−1 = 0, EX2k = (2k − 1)!!, k ≥ 1

EetX = e
t2

2 , t ∈ R.
Let Y = µ+ σX, then Y has probability density function p(x;µ, σ2).

1.2 Central Limit Theorems

The first landmark achievement in probability theory is Bernoulli’s law of large numbers for

binomial random variables. It gives a completely new and rigorous mathematical interpretation

for the belief that frequency has always a limit as the number of times of trials is sufficiently

large. In particular, suppose that ξ1, ξ2, · · · , is a sequence of i.i.d.random variables, P (ξ1 =

1) = p, P (ξ1 = 0) = 1− p, where 0 < p < 1. Let Sn =
∑n
i=1 ξi, then as n→ ∞,

P
(
|Sn
n

− p| > ε
)
=

∑
k:| kn−p|>ε

(
n

k

)
pk(1− p)n−k → 0.

This is the most important result in Bernoulli’s celebrated book Ars conjectandi published in

1713. In modern terminology, it reads as follows
Sn
n

P−→ p, n→ ∞.

Following Bernoulli’s work, the second great achievement is the central limit theorem. De

Moirve (p = 1
2 , 1733) and Laplace (p ̸= 1

2 , 1812) established

Sn − np√
np(1− p)

d−→ N(0, 1), n→ ∞.

In other words, for any real numbers a < b

P (a ≤ Sn ≤ b) ≈ Φ
( b− np√

np(1− p)

)
− Φ

( a− np√
np(1− p)

)
.

This can be seen from the asymptotic formula n! =
√
2πnnne−n(1 + o(1)) discovered by De

Movire and Stirling.



130 Appl. Math. J. Chinese Univ. Vol. 36, No. 1

de Movire and Laplace discovered the above limit distribution for a very simple and special

model. A natural question is whether such a result holds true for other cases. This is absolutely

not an easy problem. As a matter of fact, it was not solved until 1920s with the introduction

of characteristic functions. The Lévy-Feller central limit theorem states that if X1, X2, · · · is a

sequence of i.i.d.r.v.’s and Sn =
∑n
i=1Xi, then

Sn − nµ√
nσ2

d−→ N(0, 1), n→ ∞

if and only if EX1 = µ and V ar(X1) = σ2 < ∞. There have since then been several different

proofs in the literature, among which are characteristic function method (Lévy continuity the-

orem), Linderberge replacement trick, and Stein’s equation (Stein’s continuity theorem). The

importance of this theorem lies in that there is no assumption about the underlying distribution

of random variables Xi’s. The limit distribution is normal for normalized sums of i.i.d.r.v.’s

whenever the second-order moment exists and is finite. Not only this, the above limit theorem

is still valid for a more general class of random variables. In fact, it has been proven for sums

of non-i.i.d.r.v.’s, martingale differences, m-dependent r.v.’s, mixing sequences, and even for

random matrix eigenvalues, determinantal point processes. In other words, the central limit

theorem is really a universal principle in probability theory. As you notice, the linear structure

of partial sums plays an essential role for the validity of the central limit theorem.

Due to its universality and simplicity, the normal distribution and central limit theorems

have been widely used in a lot of research areas, like statistical inferences (hypothesis testing

and confidence interval estimation), financial market (stock pricing), insurance risk (premium

pricing), particle physics (motion path).

1.3 Functional Central Limit Theorems

In 1950-60s, a culminated work in probability theory is the following Donsker invariance

principle. Let ξ1, ξ2, · · · , be a sequence of random variables with mean zero and variance 1, let

Sn =
∑n
i=1 ξi. Define for each t ∈ [0, 1]

Xn(t) =
1√
n

[nt]∑
i=1

ξi +
nt− [nt]

n
ξ[nt]+1.

Then

Xn ⇒ B.

where Xn = (Xn(t), 0 ≤ t ≤ 1), B = (B(t), 0 ≤ t ≤ 1) is Brownian motion (see Subsection 1.5

below). Namely, for any bounded continuous function f : C[0, 1] 7→ R, Ef(Xn) 7→ Ef(B).

This theorem does not only prove the existence of Brownian motion, but also provides a

unified frame of solving diverse problems. Let h : C[0, 1] 7→ Rd (d ≥ 1) be a continuous (or

even slightly discontinuous) mapping, then

h(Xn)
d−→ h(B), n→ ∞. (2)

This is referred to as functional central limit theorem. Note the limit h(B) does not depend

on the distribution of ξi, either. As an illustration, we consider the following case. Letting

h(x) = sup0≤t≤1 x(t), then by (2)

lim
n→∞

P
( 1√

n
max

1≤k≤n
Sk ≤ u

)
= P

(
sup

0≤t≤1
B(t) ≤ u

)
.

In turn, to figure out explicitly the limit P
(
sup0≤t≤1B(t) ≤ u

)
, we let ξi be a special random
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variable P (ξi = ±1) = 1
2 , and apply the formula (2) once again,

P
(

sup
0≤t≤1

B(t) ≤ u
)
= lim
n→∞

P
( 1√

n
max

1≤k≤n
Sk ≤ u

)
.

Now we can apply the reflection principle of simple symmetric random walks to yield

P ( sup
0≤t≤1

B(t) ≤ u) = P (|N(0, 1)| ≤ u) = 2Φ(u)− 1.

Thus we get the limit distribution of P
(

1√
n
max1≤k≤n Sk ≤ u

)
for general random variables.

This methodology is expounded at length in the classic book by Billingsley [4], and its use is

endless. Here we emphasize that such ideas will be repeatedly used in the context of GUE

Tracy-Widom distribution and Airy2 process as well.

1.4 Multivariate Normal Distributions

Let m ≥ 1. An m-dimensional random vector X = (X1, X2, · · · , Xm)′ is normal if the joint

probability density function is given by

p(x) =
1

(2π)m/2|Σ|1/2
e−

1
2 (x−µ)

′Σ−1/2(x−µ), x ∈ Rm,

where µ = (µ1, µ2, · · · , µm)′ and Σ = (σij)m×m > 0 with σii = σ2
i > 0, σij = ρijσiσj , and

−1 ≤ ρij = ρji ≤ 1, 1 ≤ i ̸= j ≤ m.

It is easy to see EX = µ, V ar(Xi) = σ2
i , and Cov(Xi, Xj) = ρijσiσj for i ̸= j. Xi and

Xj are uncorrelated if and only if they are independent of each other. For any 1 ≤ l < m,

(Xi1 , Xi2 , · · · , Xil) is an l-dimensional normal random vector. It is easy to show that X is

normal if and only if its any linear combination is normal. More generally, let A = (aij)l×m
be a real matrix, then Y = AX is an l-dimensional normal (possibly degenerate) random

vector with EY = Aµ and Cov(Y) = AΣA′. In particular, letting A = Σ−1/2, then Y is a

normal vector consisting of i.i.d. standard normal components. Note a normal random vector

is uniquely determined by its mean vector and covariance structure.

1.5 Gaussian Processes with Sample Paths

A random process G = (G(t), t ≥ 0) is Gaussian if for any k ≥ 1 and any t1, t2, · · · , tk ≥ 0,(
G(t1), G(t2), · · · , G(tk)

)
is a k-dimensional normal random vector. Gaussian processes have

been well-studied and have a wide range of applications. We only take Brownian motions and

Ornstein-Ulenbeck processes as two representative examples below.

Brownian motion is named after English botanist Brown, who first observed the zigzag mo-

tion of pollen power in the liquid. Following Bachalier, Einstein, Frechét, Hilbert and Lebesgue,

Wiener (1920s) proved the existence of Brownian motion by a rigorous construction and found

many fundamental and nice properties like non-differentiablity, 1
2 − δ Hölder continuity, un-

bounded variation and quadratic variational processes.

A standard Brownian motion B = (B(t), t ≥ 0) is a Gaussian process with EB(t) = 0 and

EB(s)B(t) = min(s, t). It is easy to see

E|B(t)| =
√

2

π
t, EB(t)2 = t,

and

E(B(t)−B(s))2 = t− s, E(B(t)−B(s))4 = 3(t− s)2.
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According to Kolmogorov’s continuity criterion, there exists a continuous version for B =

(B(t), t ≥ 0). But the sample paths are extremely irregular, in particular, nowhere differen-

tiable, and even have unbounded variation.

Note a Gaussian vector is independent if and only if they are pairwise uncorrelated. Hence

B = (B(t), t ≥ 0) has stationary independent increments, and so is a Lévy process. Further, it

is a continuous time strong Markov process starting at 0 with transition density function

ps,t(x; y) =
1√

2π(t− s)
e−

(y−x)2

2(t−s) , s < t, x, y ∈ R.

Still, B = (B(t), t ≥ 0) is also a continuous martingale with linear variation process.

Assume that B = (B(t), t ≥ 0) is a Brownian motion, then so are the following three random

processes.

(1) For any stopping time T , X(t) = B(T + t)−B(T ), t ≥ 0;

(2) For any constant c > 0, X(t) = 1√
c
B(ct), t ≥ 0;

(3) X(0) = 0, X(t) = tB( 1t ), t > 0.

As noticed above, the sample paths of Brownian motion are extremely irregular. But there

have been a number of fine characterizations about the module of continuity in the literature.

The remarkable uniform modulus of continuity went back to Lévy as early as in 1930s. It states

lim sup
t→∞

|B(t)|√
2t log log t

= 1 a.s.

and so by the time reciprocal change,

lim sup
t→0

|B(t)|√
2t log | log t|

= 1 a.s.

Since for any s < t and x > 0

P
(
|B(t)−B(s)| > x

)
≤ 2e−x

2/2(t−s),

then a standard chaining argument easily gives

sup
s,t∈[0,1]

|B(t)−B(s)|√
|t− s|| log |t− s||

≤ Υ a.s.

where Υ is a random variable with P (Υ > x) ≤ c2e
−c1x2

.

More refinement has been done. In particular, there has been a lot of refined results about

how big or how small the increments of Brownian motion (even Gaussian processes) is in the

past decades. The reader is referred to a classic book by Csörgő and Révész [9] for more

information.

As Brown first observed, Brownian motion walks along a zigzag path. How far does it reach

within an interval of time [0, 1]? It turns out that

P
(

sup
0≤t≤1

B(t) > x
)
= 2(1− Φ(x)), x ∈ R+

and

P
(

sup
0≤t≤1

|B(t)| ≤ x
)
=

∞∑
k=−∞

(−1)k(Φ((2k + 1)x)− Φ((2k − 1)x)), x ∈ R.

By the scaling property, namely
(
B(Tt), 0 ≤ t ≤ 1

) d
=

(√
TB(t), 0 ≤ t ≤ 1

)
, one can

compute the probability P (sup0≤t≤T B(t) > x). Trivially, sup0≤t≤T B(t) increases to infinity

as T → ∞.

The maximum of B(t)− t2 over [0,∞) plays an important role in certain recent studies on
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the asymptotic distributions of tests for monotone hazards, based on integrals type statistics

measuring the distance between the empirical cumulative hazard functions and its greatest

convex minorant. Groeneboom and Temme [16] in 2010 analyzed the tail behavior of the

maximum and gave an asymptotic expansion for P (supt≥0(B(t)− t2) > x):

P
(
sup
t≥0

{B(t)− t2} > x
)
∼ 1√

3
exp

(
− 8

3
√
3
x3/2

) ∞∑
k=0

τkx
−3/2k, x→ ∞ (3)

where τk is a sequence of numeric constants. The maximum of a two-sided Brownian motion

on (−∞,∞) originated at zero can be obtained by the independence and a simple probabilistic

analysis.

Let us turn to the second example, Ornstein-Ulenbeck process. Let B = (B(t), t ≥ 0) be a

standard Brownian motion, λ > 0. Define

X(t) = e−
λt
2 B(eλt), t ∈ R.

Obviously, EX(t) = 0, EX(t)2 = 1 for each t. So each X(t) is a standard normal random

variable. Also, for s < t it follows

Cov(X(s), X(t)) = EX(s)X(t) = e−
λ(t−s)

2

and

E|X(t)−X(s)|2 = 2(1− e−
λ(t−s)

2 ).

Hence X = (X(t), t ∈ R) is a stationary Gaussian process, whose correlation decays exponen-

tially as the gap of time increases, and so is ergodic in the sense of mean.

This process can also be induced by a stochastic differential equation

dX(t) = −X(t)dt+ dB(t), X(0) ∼ N(0, 1).

The probability density function p(x, t) satisfies the Fokker-Planck equation

∂p

∂t
=

1

2

∂2p

∂x2
+

1

2

∂

∂x
(xp)

with initial value p(0, x) = 1√
2π
e−x

2/2.

We also remark that the Ornstein-Uhlenbeck process can be interpreted as a scaling limit

of a discrete process, in the same way that Brownian motion is a scaling limit of random walks.

Before concluding the Introduction, we would like to take a quick look at the regularity

properties of sample paths of general Gaussian processes. Suppose X = (X(t), t ∈ T ) is a

centered Gaussian process, where T is an index set. Define the pseud-metric

dX(s, t) = E(X(t)−X(s))2, s, t ∈ T.

Let N(T, dX , δ) denote the number of finite δ-nets covering the set T , i.e., metric entropy. Then

for any δ > 0

c3 logN(T, dX , δ) ≤ E sup
t∈T

X(t) ≤ c4

∫ ∞

0

(
logN(T, dX , δ)

)1/2
dδ. (4)

The LHS of (4) follows from the Slepian comparison lemma, while the RHS of (4) follows from

the chaining argument due to Dudley in the 1960-70s. However, there is a gap between the

upper bound and lower bound. This was resolved by Fernique and Talagrand by introducing

the concepts of majorizing measures and using the refined generic chaining argument. The final

result is as follows. Let

γ2(T, dX) = inf
{Tk}

sup
t∈T

∞∑
k=0

2k/2dX(t, Tk),
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where the infimum is with respect to all admissible sequences. Then

c5γ2(T, dX) ≤ E sup
t∈T

X(t) ≤ c6γ2(T, dX).

As for the tail probability estimates, we have the following rough result: Let ∥X∥2T =

supt∈T EX(t)2, then

P
(
sup
t∈T

|X(t)| > x
)
≤ 2e

− x2

2∥X∥2
T , x > 0.

The reader is referred to recent nice graduate textbooks by Vershynin [36] and Wainwright [38]

for more information.

§2 Tracy-Widom Distribution

The Tracy-Widom distribution was first discovered in the study of spectral properties of

high dimensional random matrices by two mathematicians C.Tracy and H.Widom from Cali-

fornia in 1990s. Their paper Level-spacing distributions and the Airy kernel, published in 1994

in Communications in Mathematical Physics, was awarded the 2020 Steele prize for seminal

contribution to research in analysis/probability theory.

From a statistician’s perspective, the introduction of the Tracy-Widom distributions has been

a breakthrough of lasting importance. The Tracy-Widom distributions characterize the limiting

distribution of the top eigenvalue in the null hypothesis case of no structure, a challenge for

statisticians since the 1950s. In particular, the distribution function F(2;s) governs the complex-

valued data of signal processing.

We remark that Tracy-Widom distributions usually refer to a family of distributions in

literature. However, the present paper shall mainly focus on the Tracy-Widom distribution

related to GUE matrix model, and so we simply use the terminology Tracy-Widom distribution

without confusion. In Subsection 2.1 we shall start by the definition of the Tracy-Widom

distribution, denoted by F2, in terms of solution to Painlevé II equation, and then briefly

review some basic properties like expectation and variance and tail asymptotics, and finally

give the Fredholm determinant expression for F2. In Subsection 2.2 we address the issue how

the F2 arises by a quick look at Tracy and Widom’s original GUE model. The domain around

F2 is rapidly growing.

2.1 Tracy-Widom Distribution

To introduce the Tracy-Widom distribution, we need some notations. Let q(x) be the unique

solution to the following Painlevé II equation
q′′(x) = xq(x) + 2q3(x),

q(x) ∼ − 1
2
√
πx1/4 e

− 2
3x

3/2

, x→ ∞

q(x) ∼
√

|x|
2 , x→ −∞.

Now we define the Tracy-Widom distribution

F2(x) = e−
∫ ∞
x

(u−x)q2(u)du, x ∈ R. (5)

It is not clear from the above formula (5) whether F2 is a distribution function. But it is,

namely

F2(−∞) = 0, F2(+∞) = 1, F ′
2(x) > 0, x ∈ R



SU Zhong-gen, et al. Tracy-Widom distribution, Airy2 process and its... 135

Figure 1 displays the density curve of F2. Obviously, it is no longer symmetric. As x→ ∞,

1− F2(x) =
1

32πx3/2 e
−4x3/2/3(1 +O(x−3/2)), (6)

F2(−x) = 21/2eζ
′(−1)

x1/8 e−x
3/12

(
1 + 3

26x3 +O(x−6)
)
. (7)

where ζ stands for zeta function. It is easy to see that the left tail probability decays faster

than e−x
2/2, while the right tail probability is slower than e−x

2/2. We also remark that it takes

in contrast to (1) lengthy and laborious effort to obtain the exact constants in the asymptotic

expansions (6) and (7).

Figure 1: The density curve of F2.

Let X be a random variable distributed as F2. Then

µ = EX ≈ −1.7710868074, σ2 = V ar(X) ∼= 0.81319479283,

Skewness(X) = E(
X − µ

σ
)3 ≈ 0.2240842036, Kurtosis(X) ≈ 0.09344808.

It turns out that F2 has another Fredholm determinant representation, which is very helpful

in manipulation. Let Ai(x) be a solution to the following equation{
Ai′′(x) = xAi(x),

Ai(x) → 0, x→ ∞.

It can be written as

Ai(x) =
1

π

∫ ∞

0

cos
(1
3
t3 + xt

)
dt, x ∈ R.

The extension to the whole complex plane is given by

Ai(z) =
1

2πi

∫
C

et
3/3−ztdt, z ∈ C

where C denotes the contour in the complex plane consisting of the ray joining e−iπ/3∞ to

the origin plus the ray joining the origin to eiπ/3∞. The Airy function and associated Airy

kernel A(x, y), see (8) below, will repeatedly appear in literature. The reader is referred to the

book [37] by Vallée and Soares for commonly used properties. Let A(x, y) be the Airy kernel
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defined by

A(x, y) =

{
Ai(x)Ai′(y)−Ai(y)Ai′(x)

x−y , x ̸= y

Ai′(x)2 −Ai(x)Ai′′(x), x = y

=

∫ ∞

0

Ai(x+ t)Ai(y + t)dt. (8)

The Fredholm determinant of A in L2(x,∞) is defined by

det(1−A)|L2(x,∞) =
∞∑
k=0

(−1)k

k!

∫ ∞

x

· · ·
∫ ∞

x

det(A(xi, xj))k×kdx1 · · · dxk. (9)

The sum in the RHS of (9) is convergent by Hadamard’s inequality for determinant and the

upper bound of Ai(x). The reader is referred to Chapter 3 of the book [1] by Anderson, Guionnet

and Zeitouni for a rigorous proof and more information.

It is Tracy and Widom who prove for any x ∈ R,
F2(x) = det(1−A)|L2(x,∞).

Indeed, after first taking logarithm and then making second-order derivative at both sides, it

reduces to proving

∂2

∂x2
log det(1−A)|L2(x,∞) = −q2(x), x ∈ R.

See [1] for the remaining computation.

2.2 How does F2 arise?

Having F2 and its basic properties, it is curious where F2 arises from. It turns out that F2

was first discovered when Tracy and Widom studied the limiting behaviours of spectral gaps of

high dimensional Gaussian unitary ensemble (GUE) in their seminal paper [34] in the 1990s.

The study of random matrics went back to 1930s in applied multivariate statistics, and reached

its golden epoch in physics in 1950-60s, and entered a rapidly developing new era since the

discovery of F2.

GUE is a prototype of random matrix models. Let Zii, i ≥ 1, be a sequence of i.i.d. standard

normal random variables, Zij , 1 ≤ i < j, a sequence of i.i.d. complex standard normal random

variables. All of these random variables are defined in a common probability space, and are

independent of each other. Let Hn = (Zij)n×n be an n× n complex conjugate random matrix,

where Zji = Z∗
ij . It is easy to see

P (Hn) =
2n(n−1)/2

(2π)n2/2
e−trH2

n/2.

Let λ1, λ2, . . . , λn be its n eigenvalues. They are almost surely distinct real numbers since Hn

is a conjugate matrix with continuous entries. The remarkable result due to Weyl is that the

distributions of eigenvalues are absolutely continuous with respect to the Lebesgue measure and

have joint probability density function

pn(x) =
1

(2π)n/2
∏n
k=1 k!

∏
1≤i<j≤n

|xi − xj |2
n∏
k=1

e−x
2
k/2, x = (x1, x2, . . . , xn). (10)

As you notice, the density function pn consists of two distinct parts, one is the square of van de

Monde determinant,
∏

1≤i<j≤n |xi − xj |2 (the power 2 corresponds to the complex conjugate

matrix), and the other is the product of independent normal densities,
∏n
k=1 e

−x2
k/2. So the
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eigenvalues repel each other and keep a certain gap between.

Let h0(x) = 1, hl(x), l ≥ 1 be a sequence of Hermite orthogonal polynomials, namely

hl(x) = (−1)lex
2/2 d

l

dxl
e−x

2/2,

and let φl(x) be the normalized Hermite wave function

φl(x) = (2π)−1/4(l!)−1/2hl(x)e
−x2/4.

It is easy to check ∫ ∞

−∞
φl(x)φl(x)dx = δl,m, l,m ≥ 0.

By a series of transformations of van de Monde determinant, (10) can be written as

pn(x) =
1

n!
det(Kn(xi, xj))n×n, (11)

where Kn(x, y) =
∑n−1
l=0 φl(x)φl(y).

(11) plays an important role in the study of GUE. In fact, this is a prototype of determinantal

point processes coined by Bordoin and Olshanski around 2000. It is easy to derive from (11)

any k-dimensional marginal density of (λ1, λ2, . . ., λk):

pn,k(x1, x2, . . . , xk) =
(n− k)!

n!
det(Kn(xi, xj))k×k. (12)

In particular, 1-dimensional probability density is

pn,1(x) =
1

n
Kn(x, x), x ∈ R. (13)

Now one can derive the celebrated Wigner semicircle law for empirical spectral measure

from (13) and asymptotic behaviours of Hermite polynomials. For any a < b,

1

n
♯{1 ≤ i ≤ n : λi ∈

√
n (a, b)} −→

∫ b

a

ρsc(x)dx, n→ ∞,

where ρsc(x) =
1
2π

√
4− x21[−2,2](x).

The above semicircle law basically tells that the majority of eigenvalues lies in [−2
√
n, 2

√
n]

with high probability. In fact, set

λ(1) = min
1≤k≤n

λk, λ(n) = max
1≤k≤n

λk,

then by the concentration inequality for a Gaussian random variable and the Borel-Cantelli

lemma,
λ(1)√
n

→ −2,
λ(n)√
n

→ 2, a.s.

Next, a very interesting and challenging issue: what is the asymptotic distribution of λ(n)
around 2

√
n? It follows form (12)

P (λ(n) ≤ x) = P
(

max
1≤k≤n

λk ≤ x
)
= E

n∏
k=1

(1− 1(λi>x))

=

n∑
k=0

(−1)k

k!

∫ ∞

x

· · ·
∫ ∞

x

det(Kn(xi, xj))k×kdx1 · · · dxk

= det(1−Kn)L2[x,∞), (14)

where the last term in (14) is a finite series of Fredholm determinant. And again by asymptotic

properties of Hermite polynomials,
1

n1/6
Kn

(
2
√
n+

1

n1/6
x, 2

√
n+

1

n1/6
y
)
→ A(x, y), n→ ∞,
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where A(x, y) is Airy kernel given by (8).

In summary, we have sketched out the proof that for x ∈ R,
P
(
n1/6(λ(n) − 2

√
n) ≤ x

)
d−→ det(1−A)L2[x,∞), n→ ∞.

As noticed above, Tracy and Widom [34] only considered a very special case of GUE so that they

could apply Weyl’s joint probability density representation and nice determinantal structure.

How universal is the F2 distribution?

In fact, soon after the work of Tracy-Widom, Baik, Defit and Johansson [2] proved that F2

is the asymptotic distribution of the lengths of longest increasing subsequences for a random

permutation. Specifically speaking, let n ≥ 1, and let Sn be a symmetric permutation group

of {1, 2, · · · , n}. Given at random a permutation π =
(
π(1), π(2), . . . , π(n)

)
∈ Sn, define the

length of longest increasing subsequences of π by

Ln(π) = max{1 ≤ k ≤ n : π(i1) < π(i2) < · · · < π(ik), i1 < i2 < · · · < ik}.
Logan and Shepp [24], Vershik and Kerov [35] almost at the same time in 1977 proved

Ln√
n

P−→ 2, n→ ∞.

A longstanding problem is what the fluctuation around 2
√
n looks like. It turns out

Ln − 2
√
n

n1/6
d−→ F2, n→ ∞.

This is so amazing. As reader might notice, there is no link between GUE and random

permutations in terms of finite models, but they have a common limit distribution F2. This

is an encouraging and enlightening result. There have since then been an intensive research

activities around the F2, and a dozen of apparently distinct models have actually been found

to have F2 as the asymptotic fluctuation law of a certain suitably scaled statistic. Below is a

short (absolutely not exhaustive) list of the models, detailed references are readily available in

the literature. The interested reader is referred to a survey [33] for model patterns and main

results.

(1) Complex Wishart matrices;

(2) Hermitian Wigner matrices;

(3) Invariant matrix ensembles;

(4) Directed last passage percolation time in the planar lattice;

(5) Random Plancherel integers partitions;

(6) Log-gamma directed polymer models;

(7) Semi-discrete directed polymer models;

(8) Totally asymmetric simple exclusion processes;

(9) Kardar-Parisi-Zhang stochastic dynamic equations.

We remark that a seemingly big difference trivially exists between the above models. In

fact, each individual model has its own feature in either algebraic or analytic structure. There

is no unified approach working well with all models.

Deift presented a series of unsolved problems in random matrix and integrable systems in

the 2006 conference, where Problem 10 was called a Tracy-Widom central limit theorem, see [3].

We rephrase it as follows.

Let ξ1, ξ2, · · · , be a sequence of i.i.d.r.v.’s, perform an operation f on them,

(ξ1, ξ2, · · · , ) 7→ (X1, X2, · · · , ).
What is the operation f so that the Xn’s converges in distribution to F2?
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Important progress towards answering this question has been made recently, and indepen-

dently by Baik and Suidan, Bodineau and Martin, but the full problem remains wide open and

very challenging.

§3 Airy2 process

The Airy2 process was first introduced by Prähofer and Spohn [27] in the study of random

fields, and has attracted a lot of attentions recently. In Subsection 3.1 we shall define the Airy2
process through finite dimensional distributions and give two alternative representations. In

Subsection 3.2 we give the short range correlation due to Prähofer and Spohn [27] , which implies

the process is continuous in probability, as well as the long range correlation due to Widom [39],

which decays polynomially. In Subsection 3.3 we describe the amazing local Brownian motion

behaviors of Airy2 process. In Subsection 3.4 we explain how the Airy2 process arise from

Dyson’s Brownian motions, while in Subsection 3.5 we introduce an extended Airy point process,

whose largest particle locations induce the Airy2 process.

3.1 Airy2 process

The precise definition of Airy2 process goes as follows. The extended Airy kernel is defined

by

Aext(t, x; t′, x′) =

{ ∫∞
0
e−λ(t−t

′)Ai(x+ λ)Ai(x′ + λ)dλ, t ≥ t′

−
∫ 0

−∞ e−λ(t−t
′)Ai(x+ λ)Ai(x′ + λ)dλ, t < t′

(15)

Obviously, Aext(t, x; t, x′) = A(x, x′). Note by a result due to Okounkov [25], for t > t′∫ ∞

−∞
e−λ(t−t

′)Ai(x+ λ)Ai(y + λ)dλ =
1√

4π(t− t′)
e
− (x−y)2

4(t−t′)−
t−t′

2 (x+y)+
(t−t′)3

12 . (16)

We remark that the RHS of (16) is a form of normal density function for fixed t, t′, and it

follows

Aext(t, x; t′, x′) =

∫ ∞

0

e−λ(t−t
′)Ai(x+ λ)Ai(x′ + λ)dλ

− 1√
4π(t− t′)

e
− (x−x′)2

4(t−t′) − t−t′
2 (x+x′)+

(t−t′)3
12 1(t<t′). (17)

The Airy process A2 = (A2(t), t ∈ R) is defined through its finite dimensional distributions,

which are given by a Fredholm determinantal formula: given x1, x2, · · · , xm and t1 < t2 < · · · <
tm in R,

P
(
A2(t1) ≤ x1, · · · ,A2(tm) ≤ xm

)
= det

(
1− χ1/2Aextχ1/2

)
L2({t1,··· ,tm}×R)

, (18)

where we have counting measure on {t1, · · · , tm} and Lebesgue measure on R, χ is defined on

{t1, · · · , tm} × R by

χ(ti, x) = 1(xi,∞)(x).

We remark that the operator χ1/2Aextχ1/2 in the RHS of (18) is actually a trace class operator

on L2({t1, · · · , tm} × R), and the determinant is well-defined and equals
∞∑
n=0

(−1)n

n!

m∑
i1,··· ,in=1

∫ ∞

−∞
· · ·

∫ ∞

−∞

n∏
k=1

χ(tik , uk) det(Aext(tik , uk; til , ul))1≤k,l≤ndu1 · · · dun.

Trivially, for any t ∈ R, A2(t) ∼ F2.
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The above Fredholm determinant allows another expression. Let H denote the Airy Hamil-

tonian operator:

H = − ∂2

∂x2
+ x (19)

and P̄a denote the projection onto the interval (−∞, a]:

Paf(x) = 1(a,∞)(x)f(x), P̄a = 1− Pa. (20)

Prähofer and Spohn [27] asserted

det
(
1− χ1/2Aextχ1/2

)
L2({t1,··· ,tm}×R)

= det
(
1−A+ P̄x1e

(t1−t2)H P̄x2e
(t2−t3)H · · · P̄xme

(tm−t1)HA
)
L2(R)

. (21)

Indeed, let

P = P(x1, · · · , xm) = diag(Px1 , Px2 , · · · , Pxm)m×m,

K0(x, y) = diag
(
A(x, y),A(x, y), · · · ,A(x, y)

)
m×m,

T−(x, y) =


1 0 · · · 0 0

e(t2−t1)H 1 · · · 0 0
...

...
. . .

...
...

e(tm−1−t1)H e(tm−1−t2)H · · · 1 0

e(tm−t1)H e(tm−t2)H · · · e(tm−tm−1)H 1


m×m

,

T+(x, y) =


0 e−(t2−t1)H · · · e−(tm−1−t1)H e−(tm−t1)H

0 0 · · · e−(tm−1−t2)H e−(tm−t2)H

...
...

. . .
...

...

0 0 · · · 0 e−(tm−tm−1)H

0 0 · · · 0 0


m×m

.

Define

K = P
(
T−K0 + T+K0 − T+

)
P.

Note HA = AH, and

e(t−s)HA(x, y) =

{
Aext(s, x; t, y), s < t

Aext(s, x; t, y)− 1, s ≥ t.

Then it follows

det
(
1− χ1/2Aextχ1/2

)
L2({t1,··· ,tm}×R)

= det(1− K)L2(R).

On the other hand, note T+ is an upper triangular matrix, and

(PT+)m = 0, tr
(
(PT+)k

)
= 0, 1 ≤ k ≤ m− 1,

and hence

(1+ PT+)−1 = 1− PT+ + (PT+)2 + · · ·+ (−1)m−1(PT+)m−1.

We have

det(1− K)L2(R) = det
(
1+ PT+P− P(T− + T+)K0P

)
L2(R)

= det(1+ PT+)L2(R) · det
(
1− (1+ PT+)−1P(T− + T+)K0

)
L2(R)

= det
(
1− (1+ PT+)−1P(T− + T+)K0

)
L2(R)

,

where we have used the fact that det(1+ PT+)L2(R) = 1.
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Furthermore,

(T− + T+)(1+ T+)−1 =


1 0 · · · 0 0

e(t2−t1)H 0 · · · 0 0
...

...
. . .

...
...

e(tm−1−t1)H 0 · · · 0 0

e(tm−t1)H 0 · · · 0 0


m×m

and

(1 + T+)(1+ PT+)−1 =

Then letting

B = (1 + T+)(1+ PT+)−1P(T− + T+)(1 + T+)−1K0,

it follows

(B)11 = A− P̄x1e
(t1−t2)H P̄x2e

(t2−t3)H · · · P̄xme
(tm−t1)HA

and

(B)ij = 0, 1 ≤ i ≤ m, 2 ≤ j ≤ m.

In combination, we have

det(1− K)L2(R)

= det(1− (1+ PT+)−1P(T− + T+)K0)L2(R)

= det(1− B)L2(R)

= det(1− (B)11)L2(R),

which is as desired.

Both (18) and (21) are very useful in the exploration of Airy2 process. The operator in the

formula (18) acts on the extended space L2
(
{t1, · · · , tm}×R

)
, while the Fredholm determinant

in (21) is computed on the Hilbert space L2(R). The latter formula avoids a big difficulty when

the number m of times ti goes to infinity. Another advantage of (21) is that it makes apparent

that A2 is a stationary process since the time increments ti− ti+1 appear explicitly in the joint

distribution.

In summary, the Airy2 process (A2(t), t ∈ R) is a stationary stochastic process whose f.d.d.’s

are given through a Fredholm determinant with extended Airy kernel Aext as in (18), and 1-

dimensional distribution is F2.

3.2 Short and Long Range Correlations

In this subsection we look at the short and long range correlation for A2(t). Since it is

stationary, we focus on Cov(A2(0),A2(t)) where t > 0.

The short range correlation was first investigated by Prähofer and Spohn [27], in which the

Airy2 process was introduced. Their result is as follows

Cov(A2(0),A2(t)) = V ar(A2(0))− 2t+O(t2), t→ 0

In particular, we have

E|A2(t)−A2(0)|2 = 2t+O(t2), t→ 0 (22)

which immediately implies that A2(t) is continuous in probability. However, (22) does not

directly imply the a.s. continuity of sample paths of A2(t), see Section 4.
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The long range correlation was first studied by Widom [39], who got the following result:

Cov(A2(0),A2(t)) =
1

t2
+

2EA2(0)

t4
+O(

1

t5
), t→ ∞ (23)

Later on, Shinault and Tracy [32] improved this result to any finite orders.

To see (23), let f2(x) = F ′
2(x) be the probability density function of GUE Tracy-Widom

distribution, and define

C2(x1, x2) = f2(x1)f2(x2)

and

C4(x1, x2) = (x1 + x2)f2(x1)f2(x2) +
1

2
f ′2(x1)f

′
2(x2).

By the integration formula by parts and noting F2 and f2 exponentially decays at ±∞, it is

easy to check ∫ ∞

−∞

∫ ∞

−∞
x1x2dC2(x1, x2) = 1

and ∫ ∞

−∞

∫ ∞

−∞
x1x2dC4(x1, x2) = 2EA2(0).

So it is sufficient to show as t→ ∞
P (A2(0) ≤ x1,A2(t) ≤ x2)− P (A2(0) ≤ x1)P (A2(t) ≤ x2)

=
C2(x1, x2)

t2
+
C4(x1, x2)

t4
+O(

1

t5
). (24)

In turn, let

P = diag(Px1 , Px2), K1(x, y) = diag
(
A(x, y),A(x, y)

)
K2(x, y) =

(
0 Aext(0, x; t, y)

Aext(t, x; 0, y) 0

)
2×2

,

and denote K(x, y) = K1(x, y) + K2(x, y). Then

P (A2(0) ≤ x1,A2(t) ≤ x2) = det(1− PKP)L2(R)

= det(1− PK1P− PK2P)L2(R)

= det(1− PK1P)L2(R) det(1− (1− PK1P)
−1PK2P)L2(R).

Note

det(1− PK1P)L2(R) = P (A2(0) ≤ x1)P (A2(t) ≤ x2).

So, we turn to analyze the determinant det
(
1− (1− PK1P)

−1PK2P
)
L2(R). Repeatedly applying

the integration by part formula, we get

Aext(0, x; t, y) =

∫ ∞

0

etλAi(x+ λ)Ai(y + λ)dλ

=
1

t
Ai(x)Ai(y)− 1

t2
(
Ai′(x)Ai(y) + Ai(x)Ai′(y)

)
+

1

t2

∫ ∞

0

etλ
d2

dλ2
(
Ai(x+ λ)Ai(y + λ)

)
dλ
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and

Aext(t, x; 0, y) = −
∫ 0

−∞
e−tλAi(x+ λ)Ai(y + λ)dλ

=
1

t
Ai(x)Ai(y)− 1

t2
(
Ai′(x)Ai(y) + Ai(x)Ai′(y)

)
+

1

t2

∫ 0

−∞
e−tλ

d2

dλ2
(
Ai(x+ λ)Ai(y + λ)

)
dλ.

For clarity of writing, we introduce the following notations. Denote f ⊗g(x, y) = f(x)g(y), and

let

T12(x, y) =
1

t
(1− Px1APx1)

−1Px1Ai⊗AiPx2(x, y)

+
1

t2
(1− Px1APx1)

−1Px1(Ai′ ⊗Ai + Ai⊗Ai′)Px2(x, y) +O(
1

t3
)

and

T21(x, y) =
1

t
(1− Px2APx2)

−1Px2Ai⊗AiPx1(x, y)

+
1

t2
(1− Px2APx2)

−1Px2(Ai
′ ⊗Ai + Ai⊗Ai′)Px1(x, y) +O(

1

t3
).

Then

1− (1− PK1P)
−1PK2P =

(
1 −T12

−T21 1

)
and so

det
(
1− (1− PK1P)

−1PK2P
)
L2(R)

= det(1−T12T21)L2(R)

= etr ln(1−T12T21)

= 1− tr(T12T21)−
1

2

(
tr(T12T21)

2 − (tr(T12T21))
2
)
+ · · ·

It remains to evaluate traces tr(T12T21) and tr(T12T21)
2. To this end, we use the fact

(f ⊗ g)(h ⊗ k) = ⟨g, h⟩L2f ⊗ k whose trace is ⟨g, h⟩L2⟨f, k⟩L2 . Shinault and Tracy [32] found

that

tr(T12T21) =
f2(x1)f2(x2)

t2

and

tr(T12T21)
2 = 2

f2(x1)f2(x2)

t4
.

In combination, we have proved (24), and so (23).

Since (A2(t), t ∈ R) is a stationary asymptotically uncorrelated stochastic process, then it

is ergodic in the sense of mean. Namely,

1

2T

∫ T

−T
A2(t)dt

L2

−→ EA2(0) ≈ −1.7710868074, T → ∞.

As a by-product of (23), (A2(t), t ∈ R) is not Markovian. In fact, for a stationary Markov

process, its correlation must exponentially decay if it decay.
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3.3 Local Brownian Motion Phenomena

As observed above, a normal distribution usually arises as a limiting distribution of nor-

malized sums for i.i.d.r.v.’s with finite second-order moments, while the F2 is typically used to

described a new class of extremal phenomena like the largest eigenvalue of Hermite matrices

with i.i.d. random entries under certain moment conditions. Brownian motion is a Gaussian

process with stationary independent increments (Markovian), while Airy process is a station-

ary non-Markovian process with 1-dimensional distribution F2. At a first glance, they are two

totally different objects appearing in different settings. However, as the following result shows,

the Airy2 process behaves locally like a Brownian motion. It is so amazing. How does a normal

distribution appear in the extremal phenomena?

Define for ε > 0

Zε(t) =
A2(tε)−A2(0)√

ε
, t ≥ 0

and consider the process Zε = (Zε(t), t ≥ 0). The so-called local Brownian motion property

mathematically reads as follows:

Zε ⇒ B, ε→ 0 (25)

The proof of (25) consists of two parts as usual: finite dimensional distributions weakly

converges, and Zε is uniformly tight in C[0,∞). The uniform tightness of Zε was first established

by Pimentel [26] using the comparison theorem on last passage percolation models. In fact, it

now readily follows from the tail probability estimate (40) on modulus of continuity for Airy2
process.

In the following paragraphs we will briefly outline the basic ideas for finite dimensional

convergence due to Hägg [17]. It suffices to show for any m ≥ 1 and t1 < t2 < · · · < tm,(
Zε(t1), Zε(t2), · · · , Zε(tm)

) d−→
(
B(t1), B(t2), · · · , B(tm)

)
, ε→ 0.

Namely, for any z1, z2, · · · , zm ∈ R
P
(
Zε(t1) = z1, Zε(t2) = z2, · · · , Zε(tm) = zm

)
→ P

(
B(t1) = z1, B(t2) = z2, · · · , B(tm) = zm

)
=

m∏
i=1

1√
2πsi

exp (− x2i
2si

),

where s1 = t1, x1 = z1, si = ti − ti−1, xi = zi − zi−1, 2 ≤ i ≤ m.

Note

P
(
Zε(t1) = z1, Zε(t2) = z2, · · · , Zε(tm) = zm|A2(0) = x0

)
= lim
δ0,··· ,δm→0

P
(
A2(0) ∈ (x0 − δ0, x0],A2(εti) ∈ (yi −

√
2εδi, yi], 1 ≤ i ≤ m]

)
(
∏m
i=1 δi)P

(
A2(0) ∈ (x0 − δ0, x0]

)
where yi = x0 +

√
2εzi.

Hence, it is sufficient to prove for any x0, x1, · · · , xm ∈ R and s1, s2, · · · , sm > 0,

lim
δ0,··· ,δm→0

P
(
A2(0) ∈ (x0 − δ0, x0],A2(εti) ∈ (yi −

√
2εδi, yi], 1 ≤ i ≤ m]

)
(
∏m
i=1 δi)P

(
A2(0) ∈ (x0 − δ0, x0]

)
−→

m∏
i=1

1√
2πsi

exp (− x2i
2si

), ε→ 0 (26)

where yi = x0 +
√
2εxi, t1 = s1, ti = ti−1 + si, 2 ≤ i ≤ m.
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Let us start with the probability P
(
A2(0) ∈ (x0−δ0, x0]

)
in the denominator of (26). Denote

N0 = ♯(x0 − δ0, x0] and N̄0 = ♯[x0,∞) and Ñ0 = N0 − 1(N0≥1). Then

P
(
A2(0) ∈ (x0 − δ0, x0]

)
= E1(N0≥1)1(N̄0=0)

= EN01(N̄0=0) − EÑ01(N̄0=0).

Note an elementary calculus gives

1(N̄0=0) = lim
β→∞

e−βN̄0

= lim
β→∞

(
1− (1− e−β)

)N̄0

= lim
β→∞

∞∑
k=0

(−1)k

k!
N0(N̄0 − 1) · · · (N̄0 − (k − 1))

(
1− e−β

)k
=

∞∑
k=0

(−1)k

k!
N0(N̄0 − 1) · · · (N̄0 − (k − 1)) lim

β→∞

(
1− e−β

)k
=

∞∑
k=0

(−1)k

k!
N̄0(N̄0 − 1) · · · (N̄0 − (k − 1)).

Thus it follows

EN01(N̄0=0) =

∞∑
k=0

(−1)k

k!
EN0N̄0(N̄0 − 1) · · · (N̄0 − (k − 1)). (27)

On the other hand,

EN0N̄0(N̄0 − 1) · · · (N̄0 − (k − 1))

=

∫ x0

x0−δ0

∫
[x0,∞)k

ρk+1(v0, u1, · · · , uk)dv0du1 · · · duk. (28)

Here we used the relation (38) and the correlation formula (37) for extended Airy point process

in Subsection 3.5, the time line was R0. In the sequel we will also use such an approach to

moment estimates, the time lines will be clear from the context. For brevity we omit the

subscript in ρ.

Hence we have

lim
δ0→0

1

δ0
EN01(N̄0=0) =

∞∑
k=0

(−1)k

k!

∫
[x0,∞)k

ρk+1(x0, u1, · · · , uk)du1 · · · duk.

Similarly, since Ñ0 ≤ N0(N0 − 1), then it follows

lim
δ0→0

1

δ0
EÑ01(N̄0=0) ≤ lim

δ0→0

1

δ0
EN0(N0 − 1)1(N̄0=0)

= 0.

Let us turn to the probability in the numerator of (26). Denote Ni = ♯(yi − δi, yi] and

N̄i = ♯[yi,∞) and Ñi = Ni − 1(Ni≥1). Then

P
(
A2(0) ∈ (x0 − δ0, x0],A2(εti) ∈ (yi − δi, yi], 1 ≤ i ≤ m

)
= P

(
N0 ≥ 1, N̄0 = 0, N1 ≥ 1, N̄1 = 0, · · · , Nm ≥ 1, N̄m = 0

)
= P

(
N0 ≥ 1, N1 ≥ 1, · · · , Nm ≥ 1, N̄0 = 0

)
−P

(
N0 ≥ 1, N1 ≥ 1, · · · , Nm ≥ 1, N̄0 = 0,∪mi=1{N̄i ̸= 0}

)
.
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The major term is

P
(
N0 ≥ 1, N1 ≥ 1, · · · , Nm ≥ 1, N̄0 = 0

)
= E

m∏
i=0

1(Ni≥1)1(N̄0=0)

= E

m∏
i=0

(Ni − Ñi)1(N̄0=0)

= E
( m∏
i=0

Ni

)
1(N̄0=0) + EU

(
Ñ0, Ñ1, · · · , Ñm

)
1(N̄0=0), (29)

where U
(
Ñ0, Ñ1, · · · , Ñm

)
=

∏m
i=0(Ni− Ñi)−

∏m
i=0Ni. And the term E(

∏m
i=0Ni)1(N̄0=0) will

play a major role in estimating (29).

Analogously to (27) and (28), it follows

E
( m∏
i=0

Ni

)
1(N̄0=0) =

∞∑
k=0

(−1)k

k!
E
( m∏
i=0

Ni

)
N̄0(N̄0 − 1) · · · (N̄0 − (k − 1))

and

E
( m∏
i=0

Ni

)
N̄0(N̄0 − 1) · · · (N̄0 − (k − 1))

=

∫ x0

x0−δ0

∫ y1

y1−
√
2εδ1

· · ·
∫ ym

ym−
√
2εδm

∫
[x0,∞)k

ρ(v0, v1, · · · , vm;u1, · · · , uk)
m∏
i=0

dvi

k∏
i=1

dui.

It follows as δ0, · · · , δm → 0

1∏m
i=0 δi

∫ x0

x0−δ0

∫ y1

y1−
√
2εδ1

· · ·
∫ ym

ym−
√
2εδm

∫
[x0,∞)k

ρ(v0, v1, · · · , vm;u1, · · · , uk)
m∏
i=0

dvi

k∏
i=1

dui

−→ (
√
2ε)m

∫
[x0,∞)k

ρ(x0, y1, · · · , ym;u1, · · · , uk)
k∏
i=1

dui.

In combination, we have

lim
δ0,··· ,δm→0

1∏m
i=0 δi

E
( m∏
i=0

Ni

)
1(N̄0=0)

= (
√
2ε)m

∞∑
k=0

(−1)k

k!

∫
[x0,∞)k

ρ(x0, y1, · · · , ym;u1, · · · , uk)
k∏
i=1

dui.

It remains to prove

lim
ε→0

(
√
2ε)mρ(x0, y1, · · · , ym;u1, · · · , uk) = ρ(x0;u1, · · · , uk)

m∏
i=1

1√
2πsi

exp (− x2i
2si

). (30)

This is quite technical and lengthy. For an illustration, we only consider a simple case, that is

m = 1 and k = 1. Note

ρ(x0, y1;u1) = det

 A(x0, x0) Aext(0, x0; εt1, y1) A(x0, u1)

Aext(εt1, y1; 0, x0) A(y1, y1) Aext(εt1, y1; 0, u1)

A(u1, x0) Aext(0, u1; εt1, y1) A(u1, u1)

 ,
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where by (17)

Aext(0, x0; εt1, y1) = −
∫ 0

−∞
eεt1λAi(x0 + λ)Ai(y1 + λ)dλ

=

∫ ∞

0

eεt1λAi(x0 + λ)Ai(y1 + λ)dλ

− 1√
4πεt1

exp
(
− (y1 − x0)

2

4εt1
− εt1

2
(x0 + y1) +

(εt1)
3

12

)
=: Ãext(0, x0; εt1, y1)− ϕ0,εt1(x0, y1).

Hence a simple algebra yields

ρ(x0, y1;u1) = det

 A(x0, x0) Aext(0, x0; εt1, y1) A(x0, u1)

Aext(εt1, y1; 0, x0) A(y1, y1) Aext(εt1, y1; 0, u1)

A(u1, x0) Aext(0, u1; εt1, y1) A(u1, u1)


= det

 A(x0, x0) Ãext(0, x0; εt1, y1) A(x0, u1)

Aext(εt1, y1; 0, x0) A(y1, y1) Aext(εt1, y1; 0, u1)

A(u1, x0) Ãext(0, u1; εt1, y1) A(u1, u1)


− det

 A(x0, x0) −ϕ0,εt1(x0, y1) A(x0, u1)

Aext(εt1, y1; 0, x0) 0 Aext(εt1, y1; 0, u1)

A(u1, x0) −ϕ0,εt1(u1, y1) A(u1, u1)

 . (31)

We need to compute the limit of each entry in the matrix of RHS of (31) as ε → 0. Note

y1 = x0 +
√
2ϵx1, and so it follows

Aext(εt1, y1; 0, x0) =

∫ ∞

0

e−εt1λAi(x0 + λ)Ai(y1 + λ)dλ

→ A(x0, x0),

Aext(εt1, y1; 0, u1) =

∫ ∞

0

e−εt1λAi(u1 + λ)Ai(y1 + λ)dλ

→ A(u1, x0).

Aext(0, u1; εt1, y1) =

∫ ∞

0

eεt1λAi(u1 + λ)Ai(y1 + λ)dλ

− 1√
4πεt1

e−
(y1−u1)2

4εt1
− εt1

2 (u1+y1)+
(εt1)3

12

→ A(u1, x0),

lim
ε→0

Ãext(0, x0; εt1, y1) = lim
ε→0

Aext(εt1, y1; 0, x0) = A(x0, x0),

lim
ε→0

Ãext(0, u1; εt1, y1) = lim
ε→0

Aext(εt1, y1; 0, u1) = A(u1, x0)

and

lim
ε→0

A(y1, y1) = A(x0, x0).

Also, t1 = s1, and u1 > x0, so it follows

lim
ε→0

√
2εϕ0,εt1(x0, y1) =

1√
2s1

exp (− x21
2s1

),

lim
ε→0

ϕ0,εt1(u1, y1) = 0.
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In combination, we have

lim
ε→0

det

 A(x0, x0) Ãext(0, x0; εt1, y1) A(x0, u)

Aext(εt1, y1; 0, x0) A(y1, y1) Aext(εt1, y1; 0, u1)

A(u1, x0) Ãext(0, u1; εt1, y1) A(u1, u1)

 = 0

and

lim
ε→0

√
2εdet

 A(x0, x0) −ϕ0,εt1(x0, y1) A(x0, u1)

Aext(εt1, y1; 0, x0) 0 Aext(εt1, y1; 0, u1)

A(u1, x0) −ϕ0,εt1(u1, y1) A(u1, u1)


=

1√
2s1

exp (− x21
2s1

) det

(
A(x0, x0) A(x0, u1)

A(u1, x0) A(u1, u1)

)
.

Thus we have completed the proof of (30) in the case of m = k = 1.

To conclude this subsection, we mention a simple result about Brownian bridge. Let B0(t) =

B(t)− tB(1), 0 ≤ t ≤ 1. Trivially, B0(0) = B0(1) = 0. Then as ε→ 0
1√
ε

(
B0(εt), 0 ≤ t ≤ 1

)
⇒

(
B(t), 0 ≤ t ≤ 1

)
.

3.4 How does Airy2 process arise?

The Airy2 process A2(t) was first introduced by Prähofer and Spohn [27] in exploring

polynuclear growth processes. It turns out that A2(t) has since been found to appear in a

dozen of apparently distinct fields. Only recently, it is proved that the directed landscape has

KPZ fixed point as its marginal, while the KPZ fixed point has Airy processes as its marginals.

We shall give a quick introduction from the eigenvalues of stationary random matrix-valued

processes in this subsection.

Let Bij = (Bij(t), t ≥ 0), i, j ≥ 1 be an array of i.i.d. standard real Brownian motions, let

(B̃ij , i, j ≥ 1) an independent copy of (Bij , i, j ≥ 1). Define

Aij(t) = Bij(t) + iB̃ij(t)

and then

Hij(t) =
1

2

(
Aij(t) +A∗

ij(t)
)
.

The Hermitian matrix-valued Brownian motion is defined by

Hn(t) = (Hij(t))n×n, t ≥ 0 (32)

In particular, Hn(1) is a well-known GUE. What we are concerned with in the following para-

graphs are stationary Ornstein-Ulenbeck matrix valued random processes defined by SDE

dMn(t) = −Mn(t)dt+ dHn(t), t > 0

The stationary distribution associated with Mn(t) is GUE. For any finite times t1 < t2 < · · · <
tm, the joint probability density function for

(
Mn(t1),Mn(t2), · · · ,Mn(tm)

)
is

P
(
Mn(t1) = A1,Mn(t2) = A2, · · · ,Mn(tm) = Am

)
= P (Mn(t1) = A1)

m∏
i=2

P
(
Mn(ti) = Ai|Mn(ti−1) = Ai−1

)
=

1

Zn,m
e−

1
2 tr(A

2
1)

m∏
i=2

exp
(
−
tr((Ai − ρti−1,tiAi−1)

2)

2(1− ρ2ti−1,ti)

)
,

where ρs,t = e−(t−s)/2, Zn,m is a normalized constant.
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Let λn(t) =
(
λn,1(t), λn,2(t), · · · , λn,n(t)

)
be the eigenvalues of Mn(t) in an increasing order.

Then as a result of Itô’s formula, λn(t) is a diffusion process and satisfies the following SDE

dλn,i(t) = dWi(t) +
(
− λn,i(t) +

∑
j ̸=i

1

λn,i(t)− λn,j(t)

)
dt, 1 ≤ i ≤ n

where Wi, 1 ≤ i ≤ n are n independent standard Brownian motions. The corresponding

diffusion operator is

L =
1

2
∆ +

n∑
i=1

(
− xi +

∑
j ̸=i

1

xi − xj

) ∂

∂xi
.

Furthermore, the equilibrium distribution associated with L is given by dν(x) = p(x)dx, where

p(x) =
1

Zn

∏
1≤i<j≤n

(xj − xi)
2
n∏
i=1

e−x
2
i /2, x = (x1, x2, · · ·xn) ∈ Rn

This is the joint probability density function of eigenvalues of GUE, which is same up to a

constant factor as in (10)

The above diffusion process (λn(t), t ≥ 0) was first introduced by Dyson [13] to describe the

diffusion of n mutually repelling particles with positions. Now it is named Dyson’s Brownian

motion in the literature. According to a classic Karlin-McGregor formula for non-intersecting

diffusion process, it follows for s < t

P (λn(t) = y|λn(s) = x) =

∏
1≤i<j≤n(yj − yi)∏
1≤i<j≤n(xj − xi)

det
(
exp

(
− (yj − ρs,txi)

2

2(1− ρ2s,t)

))
,

and so by the Markovian property we have

P
(
λn(t1) = x1, λn(t2) = x2, · · · , λn(tm) = xm

)
= P (λn(t1) = x1)

m∏
i=2

P
(
λn(ti) = xi|λn(ti−1) = xi−1

)
=

1

Zn,m
∆(x1)

n∏
i=1

e−(x1
i )

2
m∏
i=2

det
(
exp (−

(xik − ρti,ti−1x
i−1
l )2

2(1− ρ2ti,ti−1
)

)
)
1≤k,l≤m

∆(xm). (33)

This is a basic example of extended determinantal point processes. Indeed, let X0 = Xm =

{0, 1, 2, · · · , n− 1}, Xr = R, 1 ≤ r ≤ m− 1, and equip Xr with the Lebesgue measure dµr. Let

x0
i = xmi = i − 1 for i = 1, 2, · · · , n. Set ϕ0,1(i, x) = hi(x)e

−x2

, ϕm−1,m(x, i) = hi(x) where

hi(x) is the normalized Hermitian polynomials (see (11)), and

ϕr,r+1(x, y) =
1√

π(1− q2r)
exp(−(y − qrx)

2/(1− q2r)).

Then (33) is written as follows

1

Zn,m

m−1∏
r=0

det
(
ϕr,r+1(x

r
i , x

r+1
j )

)
1≤i,j≤n

dµn1 (x
1) · · · dµn1 (xm−1). (34)

It is proved in [20,21] that the probability measure (34) has determinantal correlation function,

that is, the probability density with respect to the reference measure dµr1(y1) · · · dµrk(yk) of

finding particles at z1 = (r1, y1), · · · , zk = (rk, yk) is given by

det
(
Kn,m(zi, zj)

)
1≤i,j≤k,
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where Kn,m is the so called correlation kernel. This kernel is given by

Kn,m(r, x; s, y) = −ϕr,s(x, y) +
n∑

i,j=1

ϕr,m(x, xmi )(A−1)i,jϕ0,s(x
0
j , y),

where A = (ϕ0,m(x0i , x
m
j ))1≤i,j≤n, ϕr,s : Xr ×Xs 7→ R for r < s is given by

ϕr,s(x, y) =

∫
ϕr,r+1(x, z1) · · ·ϕs−1,s(zr−s−1, y)dµr+1(z1) · · · dµs−1(zr−s−1).

Return to Dyson’s Brownian motion. Note the following expansion

1√
π(1− q2)

exp(− (y − qx)2

1− q2
) =

∞∑
k=0

hk(x)hk(y)q
ke−y

2

,

where 0 < q < 1. Repeated use of this identity gives

ϕ0,s(j, y) = e−j(ts−t1)hj(y)e
−y2 , ϕr,m(x, j) = e−j(tm−r−tr)hj(x) (35)

and

ϕr,s(x, y) =
1√

π(1− e(tr−ts))
exp(− (y − etr−ts/2)2

1− etr−ts
)

=

∞∑
k=0

hk(x)hk(y)e
k(tr−ts)e−y

2

. (36)

Set χt,s = 1 if t < s and χt,s = 0 if t ≥ s. We get the extended Hermite kernel

Kext
Herm(t, x; s, y) =

1√
π(1− e(t−s))

exp(− (y − et−s/2x)2

1− et−s
)χt,s

+
n−1∑
k=0

hk(x)hk(y)e
k(t−s)e−y

2

.

Using the second equality in (36) we obtain the alternative formula

Kext
Herm(t, x; s, y) =

{ ∑n−1
k=0 hk(x)hk(y)e

k(t−s)e−y
2

, t ≥ s

−
∑∞
k=n hk(x)hk(y)e

k(t−s)e−y
2

, t < s

Let γ be a positively oriented circle around the origin with radius r > 0, and Γ the line

R+ iL with L > γ. Using the integral formulas,

Hn(x) =
2n

i
√
π
ex

2

∫
Γ

ew
2−2xwwndw,

Hn(x) =
n!

2πi

∫
γ

e−z
2+2xz 1

zn+1
dz,

it is not difficult to show that

Kext
Herm(t, x; s, y) =

1√
π(1− e(t−s))

exp(− (y − et−s/2x)2

1− et−s
)χt,s

+
2

(2πi)2

∫
Γ

dw

∫
γ

dz
wn

zn
1

w − z
ew

2−2yw−et−sz2+2et−s/2xz.

The double contour integral representation can be useful for asymptotic computations in the

proof of convergence to the extended Airy kernel when we have the edge scaling.

Also, note the kernel is not unique. We can multiply it by ψ(r,x)
ψ(s,y) for an arbitrary function

ψ ̸= 0 and get the same correlation functions. In particular, we can get the extended Hermite



SU Zhong-gen, et al. Tracy-Widom distribution, Airy2 process and its... 151

kernel multiplying with exp(−x2/2 + y2/2),

Kext
Herm(t, x; s, y) =

{ ∑n−1
k=0 φk(x)φk(y)e

k(t−s), t ≥ s

−
∑∞
k=n φk(x)φk(y)e

k(t−s), t < s

where φk(x) = hk(x)e
−x2/2. Note

P
(
λn,n(t1) ≤ x1, · · · , λn,n(tm) ≤ xm

)
= det

(
1− χ1/2Kext

Hermχ
1/2

)
L2({t1,··· ,tm}×R).

Now consider the rescaled largest eigenvalue given by

λ̃n,n(u) =
√
2n1/6

(
λn,n(

u

n1/3
)−

√
2n

)
, u ∈ R.

Recall the Plancherel-Rotach formula for asymptotics of Hermitian polynomials

lim
n→∞

2−1/4n1/12φn

(√
2n+

x√
2n1/6

)
= Ai(x) x ∈ R.

It follows that for t > s

Kext
Herm

( t

n1/3
,
√
2n+

x√
2n1/6

;
s

n1/3
,
√
2n+

y√
2n1/6

)
=

1√
2n1/6

n−1∑
k=0

ϕk

(√
2n+

x√
2n1/6

)
ϕk

(√
2n+

x√
2n1/6

)
ek(t−s)/n

1/3

=
1√

2n1/6

n−1∑
k=0

ϕn−1−k

(√
2n+

x√
2n1/6

)
ϕn−1−k

(√
2n+

x√
2n1/6

)
e(n−1−k)(t−s)/n1/3

∼ e(n−1)(t−s)/n1/3

∫ ∞

0

e−(t−s)λAi(x+ λ)Ai(y + λ)dλ

∼ en
2/3(t−s)Aext(t, x; s, y).

Similarly, for t < s

Kext
Herm

( t

n1/3
,
√
2n+

x√
2n1/6

;
s

n1/3
,
√
2n+

y√
2n1/6

)
∼ en

2/3(t−s)
( 1√

2π(s− t)
e−

(y−x)2

2(s−t) +

∫ ∞

0

e−(t−s)λAi(x+ λ)Ai(y + λ)dλ
)

∼ en
2/3(t−s)Aext(t, x; s, y).

As a consequence, we have so far proved the following

λ̃n,n(t) ⇒ A2(t), n→ ∞
in the sense of convergence of finite dimensional distributions.

3.5 The extended Airy point process

Motivated by the Dyson’s Brownian motions, we can give the third representation of Airy2
process as a marginal process of an extended Airy point process.

Let m ≥ 1 be an arbitrary integer, and let t1 < t2 < · · · < tm points in R which we shall

think of as times. Define

E = Rt1 ∪ Rt2 ∪ · · · ∪ Rtm .
Rtj is referred to as the time line tj . Assume that X is the space of all locally finite countable

configurations of points (or particles) in E . Let Σ be the minimal σ-algebra that contains all

cylinder sets. The so-called extended Airy point process is such a measure on the space (E ,Σ)
that its k-point (1 ≤ k ≤ m) correlation function has the extended Airy kernel Aext, see (15).



152 Appl. Math. J. Chinese Univ. Vol. 36, No. 1

In particular, let z1 = (tr1 , x1), · · · , zk = (trk , xk) be k points from E , where r1, · · · , rk are

possibly same, then

ρk(z1, z2, · · · , zk) = P
(
{z1, z2, · · · , zk} ⊆ X

)
= det(Aext

(
tri , xi; trj , xj)

)
1≤i,j≤k. (37)

It is a well-known fact that at each time line Rti there is almost surely a largest particle λ(ti).

Moreover, it follows

(λ(t1), · · · , λ(tm))
d
=

(
A2(t1), · · · ,A2(tm)

)
. (38)

The determinatal point process has become a very hot object of study in probability theory

since Borodin and Olshanski coined around 2000. Interestingly, both Poisson processes and

Brownian motions are determinantal point processes.

§4 Sample Path Properties

4.1 Modulus of Continuity for Airy2 process

As we observed, the determinantal formula (18) and its equivalent expression (21) are very

useful in the definition of Airy2 process and in the study of long range correlations, stationarity,

and local Brownian motion behaviours. However, it is difficult to derive even the most basic

path properties, such as continuity, from it directly, see Prähofer and Spohn [27]. There has

been a good advance in the exploration of sample path properties recently. In particular, a

useful technique, called the Brownian Gibbs property, was developed by [6–8,10,11].

The main result of this subsection is the modulus of continuity for Airy2 process. It reads

as follows.

sup
s,t∈[0,1]

|A2(t)−A2(s)|√
|t− s|| log |t− s||

<∞ a.s. (39)

More precisely, there exist two positive constants c7 and c8, and a random variable Ξ so that

|A2(t)−A2(s)| ≤ Ξ
√
|t− s|| log |t− s||

for all s, t ∈ [−T, T ], and
P (Ξ > x) ≤ c7e

−c8x2

.

In addition, for any t ∈ R, 0 < δ ≤ 1, it follows

P
(

sup
0<h<δ

|A2(t+ h)−A2(t)| > xδ1/2
)
≤ c9e

−c10x2

(40)

for any x > 0.

It is enough to prove that there are constants c11, c12 such that for every t ∈ R, δ ∈ (0, 1)

P (|A2(t)−A2(t+ δ)| > x
√
δ) ≤ c11e

−c12x2

. (41)

Indeed, (39) directly follows from (41) according to a classical Lévy’s technique (i.e. a generic

chaining argument).

Proceed with the proof of (41). We need to introduce the concept of a line ensemble and

the Brownian Gibbs property.

A line ensemble L = (L(i, t), i ≥ 1, t ∈ R) is a collection of random continuous curves

indexed by N, each L(i, ·) of which maps R into R. If for all i < j, L(i, t) > L(j, t) for all t ∈ R,
then L is said to be a non-intersecting line ensemble.

Let k ≥ 1, x̄ = (x1, x2, · · · , xk) and ȳ = (y1, y2, · · · , yk) are two points of k-decreasing lists.
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Let a < b, and let f, g : [a, b] → R̄ be two continuous functions that satisfy f(t) > g(t) for all

t ∈ [a, b] as well as the boundary conditions f(a) > x1, f(b) > y1 and g(a) < xk, g(b) < yk. A

line ensemble Q with index {1, 2, · · · , k} is called a (f, g)-avoiding Brownian line ensemble on

[a, b] with entrance data x̄ and exit data ȳ if the law of Q is equal to the law of k-independent

Brownian bridges {Bi : (a, b) → R} from Bi(a) = xi to Bi(b) = yi conditioned on the event

that for all t ∈ [a, b]

f(t) > B1(t) > B2(t) > · · · > Bk(t) > g(t).

For any k1 < k2 and any a < b, write Da,b
k1,k2

= {k1, k1 + 1, · · · , k2} × [a, b] and D̄a,b
k1,k2

=

N× R \Da,b
k1,k2

. A line ensemble L is said to have the Brownian Gibbs property if

L|Da,b
k1,k2

conditional onL|D̄a,b
k1,k2

d
= Q, (42)

where Qi = Q̃i−k1+1 and Q̃i−k1+1 is the (f, g)-avoiding Brownian line ensemble on [a, b] with

x̄ = (Lk1(a), · · · , Lk2(a)) and ȳ = (Lk1(b), · · · , Lk2(b)), f = Lk1−1 and g = Lk2+1 by convention

L0 = −∞.

A line ensemble R = (R(i, t), i ≥ 1, t ∈ R) is called the Airy line ensemble if its finite dimen-

sional distributions are given by the extended Airy point process (see Subsection 3.5). Corwin

and Hammond [6] proved the existence of the Airy line ensemble: There exists a unique con-

tinuous non-intersecting N-indexed line ensemble with finite dimensional distributions given by

the extended Airy point process. Moreover, they also proved that the N-indexed line ensemble

L given by L(i, t) = 2−1/2(R(i, t)− t2) for each i ∈ N has the Brownian Gibbs property. Some

authors refer to L as the parabolic Airy line ensemble. Trivially, R(1, t) = A2(t).

To prove (41), we may and do assume x > 7δ3/2, otherwise, just change the values of

constants. Set b = δ2 + x
√
δ. Since A2(t), t ∈ R is stationary, then

P
(
|A2(t)−A2(t+ δ)| > x

√
δ
)

= 2P
(
A2(0)−A2(δ) > x

√
δ
)

= 2P
(
L(1, 0)− L(1, δ) > b

)
.

Set r = b/8δ, then trivially r > δ. By the Brownian Gibbs property, conditionally on the set

{L(1, 0), L(1, δ)} ∪ {L(2, u), u ∈ [0, r]},(
L(1, u), u ∈ [0, r]

) d
=

(
B0(u), u ∈ [0, r]

)
,

where (B0(u), u ∈ [0, r]) is a Brownian bridge of variance parameter 2 with B0(0) = L(1, 0),

B0(r) = L(1, r) conditioned to avoid (L(2, u), u ∈ [0, r]).

Construct a linear function y(u) with y(0) = L(1, 0) and y(0) = L(1, r):

y(u) = L(1, 0) +
L(1, r)− L(1, 0)

r
u, u ∈ [0, r] (43)

Then it follows

P (L(1, 0)− L(1, δ) > b)

= E
(
P
(
L(1, 0)− L(1, δ) > b|{L(1, 0), L(1, δ)} ∪ {L(2, u), u ∈ [0, r]}

))
= E

(
P
(
B0(0)−B0(δ) > b|{L(1, 0), L(1, δ)} ∪ {No touch (L(2, u), u ∈ [0, r])}

))
≤ P

(
(B̃0(0) + y(0))− (B̃0(δ) + y(δ)) > b

)
,

where (B̃0(u), u ∈ [0, r]) is a standard Brownian bridge and B0(u) = B̃0(u) + y(u).

On the other hand, we have

P
(
(B̃0(0) + y(0))− (B̃0(δ) + y(δ)) > b

)
≤ P

(
y(0)− y(δ) >

b

2

)
+ P

(
B̃0(δ) < − b

2

)
.
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Note it follows

P
(
y(0)− y(δ) >

b

2

)
= P

(
L(1, 0)− L(1, δ) >

br

2δ

)
= P

(
A2(0)−A2(δ) + δ2 >

br

2δ

)
= P

(
A2(0) ≥ EA2(0) +

br

4δ

)
+ P

(
A2(δ) ≤ EA2(δ) + δ2 − br

4δ

)
≤ P

(
A2(0) ≥ EA2(0) +

b2

32δ2

)
+ P

(
A2(δ) ≤ EA2(δ)−

b2

64δ2

)
,

where in the last inequality we used the fact b > 8δ2.

It is known that there exist c13, c14 such that for any x > c14

P
(
|A2(0)− EA2(0)| > x

)
≤ c13e

−c14x (44)

and

P
(
|B̃0(δ)| > x

√
δ
)
≤ c15e

−c16x2

. (45)

We refer to Dauvergne and Virág [10] for the proofs of (44) and (45). Putting these together

concludes the proof of (41).

As a corollary, we have for any x > c17 > 0

P
(

sup
t∈[0,1]

|A2(t)− EA2(t)| > x
)
≤ c18e

−c19x.

We remark that the proof of (39) do depend on the intricacies of the jump ensemble method,

a method that exploits the Brownian Gibbs property of the parabolic Airy line ensemble in order

to make inferences about its curves, notably the ones at its edge, such as A2 after parabolic

shift. As Hammond pointed out (private communication): the method may seem complex and

indirect, though it is in its fundamentals attractively probabilistic and geometric. I am not aware

that the result can be proved by viewing the Airy process in isolation. It is by embedding it in

the richer Airy line ensemble that this valuable Brownian Gibbs method becomes available.

4.2 Maximum of Airy2 process

In this subsection, we turn to the distribution of the maximum of A2(t) over the real line

R. Define

M = max
t∈R

{A2(t)− t2}, T = argmax
t∈R

{A2(t)− t2}.

As an analogue of (3), we have the following remarkable result:

P (M ≤ x) = F1(4
1/3x), x ∈ R (46)

Here F1 is the limiting distribution of the largest eigenvalue of Gaussian Orthogonal Ensembles

(GOE), and has a close link with F2 through

F1(x) = F
1/2
2 (x)e−

1
2

∫ ∞
x
q(u)du

The formula (46) was first conjectured by Johansson [20], which explored the discrete growth

models like polynuclear growth models (PNG) and last passage percolation (LPP) times in the

planar lattice. Indeed, F2 and F1 are the limiting distributions of point-to-point LPP times

and point-to-line LPP times after properly scaled, respectively, see Johansson [20], Prähofer

and Spohn [27] for detailed information. on the other hand, the point-to-line LPP times can be

simply computed as the maximum of the point-to-point LPP times. Thus (46) can be proved,

though in a very indirect way.



SU Zhong-gen, et al. Tracy-Widom distribution, Airy2 process and its... 155

A direct proof was later provided by Corwin, Quastel and Remenik [8]. It largely relies on

the following two fundamental facts, which are of interest in their own right. The first one is

the determinantal representation of F1 obtained by Ferrari and Spohn [15]:

F1(x) = det(1− P0BxP0)|L2(R),

where Bx is the kernel

Bx(u, v) = Ai(u+ v + x).

The second fact is, if letting H be as in (19), R a reflection operator with kernel given by

RT (u, v) =
1√
8πT

e−(u+v−2x−2T 2)2/8T−(u+v)T+2T 3/3

and defining

ΘT = P̄x+T 2(e−2TH −RT )P̄x+T 2 ,

then it follows

P
(

sup
t∈[−T,T ]

{A2(t)− t2} ≤ x
)
= det

(
1−A+ eTHAΘT e

THA
)
|L2(R). (47)

Note eTHRT e
TH = ϱx, where ϱx is the reflection operator, i.e., ϱxf(u) = f(2x− u). Hence

P (M ≤ x) = lim
T→∞

P
(

sup
t∈[−T,T ]

{A2(t)− t2} ≤ x
)

= det(1−AϱxA)|L2(R).

Finally, to see the identity (46), we need only to note A = B0P0B0 and B0ϱxB0(u, v) =

2−1/3Ai(2−1/3(u + v + 2x)). The reader is referred to the survey on Airy2 processes and

variational problems by Quastel and Remenik [29] for explicit derivation.

Proceed with T . The study of T has received quite a bit of recent interest in the physics

literature since it is believed that the distribution of T is universal so that it governs the rescaled

endpoint of directed polymers in 1+1 dimensions for large time or temperature. Flores, Quastel

and Remenik [14] obtained an explicit expression for the distribution of T . Later on, Quastel

and Remenik [30] start from a probabilistic argument and use the continuum statistics formula

(47) to establish the following tail decay: There exists a c20 such that for every c21 >
32
3 and

large enough t

e−c20t
3

≤ P (|T | > t) ≤ c21e
(−4/3)t3+2t2+O(t3/2). (48)

The order e−ct
3

confirms a prediction made in the physics literature. It is believed that the

−4/3 in the upper bound is the correct exponent. In particular, it is open to show

logP (|T | > t)

t3
→ −4

3
, t→ ∞.

The key step for the proof of (48) is to prove that there exists a constant cT > 0 for each T ≥ 1

such that for every x > 0

P
(

sup
−T≤t≤T

A2(t) > x+ 1
)
≤ cT e

−4/3x3/2

.

4.3 Concluding Remarks

We have restricted ourselves to the Airy2 process A2 with its sample paths. As seen above,

A2 is a comparatively new stationary non-Markovian continuous random process, and is very

worthy of further attention. In addition to the Airy2 process A2, there have appeared other

new processes very alike, say A1, Astat, A27→1, A27→BM , A17→BM in the recent study around
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random growth models. A detailed survey is beyond the scope of this paper. Indeed, it is

widely open to estimate precisely the moduli of continuity for their sample paths. Hopefully, a

satisfactory progress would be made in the near future.
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