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Analysis method and algorithm design of biological

sequence problem based on generalized k-mer vector

LIU Wen-li1,2 WU Qing-biao1,∗

Abstract. K-mer can be used for the description of biological sequences and k-mer distribution

is a tool for solving sequences analysis problems in bioinformatics. We can use k-mer vector as

a representation method of the k-mer distribution of the biological sequence. Problems, such as

similarity calculations or sequence assembly, can be described in the k-mer vector space. It helps

us to identify new features of an old sequence-based problem in bioinformatics and develop new

algorithms using the concepts and methods from linear space theory. In this study, we defined

the k-mer vector space for the generalized biological sequences. The meaning of corresponding

vector operations is explained in the biological context. We presented the vector/matrix form of

several widely seen sequence-based problems, including read quantification, sequence assembly,

and pattern detection problem. Its advantages and disadvantages are discussed. Also, we

implement a tool for the sequence assembly problem based on the concepts of k-mer vector

methods. It shows the practicability and convenience of this algorithm design strategy.

§1 Introduction

Sequence analysis is a fundamental problem in the bioinformatics area [1, 2, 3]. Developing

algorithms for the sequence analysis problems is a hot topic due to the rapid updating speed of

sequencing technology [4].

Except for the most common string representation of biological sequences, other sequence

forms also exist. For example, the graphical representation of sequences with geometric features

[5, 6]. As for the vector and matrix representation methods, researchers have given us some

excellent results. In the work of Ding et al., the frequency of short k-words (length≤7) was used
to give a simple feature representation vector for DNA sequences [7]. In the work of Wren et

al., they built a matrix by extracting s set of position-dependent features to represent a DNA

Received: 2020-02-05. Revised: 2020-04-03.
MR Subject Classification: 92B05.
Keywords: vector space, biological sequence, k-mer, algorithm design, analysis method.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-021-4033-x.
Supported by the National Natural Science Foundation of China(11771393,11632015) and the Natural Sci-

ence Foundation of Zhejiang Province, China (LZ14A010002).
∗Corresponding author.



LIU Wen-li, WU Qing-biao. Analysis method and algorithm design of biological... 115

sequence [8]. Wen et al. used a Boolean logic value for the existence of each k-mer to build a

matrix [9]. There are also works on the protein sequences as well [10]. However, these methods

are incompatible with each other which makes the vector method of biological sequences limited

when being extended to new problems. A more general definition is required.

Biological sequence data and sequence-based problems have some features in common. The

large size of the data set has increased the problem complexity. Massive information redundancy

exists in many cases while some are not necessary. The sequence length, read depth of coverage

and the sequencing accuracy are some common variables seen within the analysis problems.

And the calculation of sequence similarity is a key node in the network of the sequence-based

problems. These bioinformatics features must be linked to the concepts in linear algebra and

matrix theory when constructing the vector spaces. Then a myriad of methods and research

findings from linear algebra and computational mathematics can be applied to the biological

sequence-based problems in their matrix form.

K-mer is a frequently-used concept in solving sequence-based problems in bioinformatics.

K-mers are short subsequences of a biology sequence. Using short subsequences can reduce the

complexity of a problem by only considering part of the information. Researchers have given

us a lot of analysis tools using k-mer as the key element in algorithm design, such as Kallisto

[11] and Sailfish [12] while the k-mer length ranges from a few bps (base pair) to dozens of bps

in different research work. Especially the sequencing reads quantification tool, kallisto. It has

a highly efficient alignment-free algorithm by using the counts of k-mer, showing the ability of

k-mer in solving a sequence-based problem. Also, there are some efficient methods for counting

k-mers ([13] , KMC2 [14] and Kmer-SSR [15]) and discussions on the suitable k-mer length [16,

17]. These conditions make the k-mer a priority option for building solutions to sequence-based

problems.

In this study, we defined the k-mer vector for the DNA sequence and sequence set. We

constructed a vector space of the sequence vectors and defined the operations over it. Then we

presented three basic sequence-based bioinformatics problems in their matrix form, including

read quantification, sequence assembly problem, and sequence pattern detection. Moreover, we

designed an algorithm and implemented a tool for the sequence assembly problem using the

k-mer vector method. It is an instance of applying the concepts of sequence vector space and

vector operations in solving a practical problem.

§2 The k-mer vector space for biological sequence

Biological sequences are sequences with limited alphabet size. In this work, we are mainly

dealing with the DNA sequence ({A, G, C, T}) as a simplified model for discussion.

2.1 k-mer vector generated from a biological sequence

Let s be a DNA sequence of length ls. So s is a string of length ls over the alphabet

Σ = {A,G,C, T}. Let the k-mer set of s with defined k-mer length k be Ks = {ki|i ∈
{1, 2, · · · , ls − k + 1}}, where ki is the subsequence of s starting from location i. We have
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|Ks| = ls − k + 1. Then a set of sequences can be denoted as S = {si|i ∈ {1, 2, 3, · · · , nS}},
where si stands for one sequence and nS denotes the number of sequences in set S.

The total number of all possible k-mers with defined k-mer length k is 4k. If we sort all the

k-mers with the dictionary order, which is (k1mer, k
2
mer, · · · , k4

k

mer), a vector can be generated

from sequence s by v⃗s = (v1, v2, · · · , v4k), where vi = 1 if kimer ∈ Ks, vi = 0 if kimer /∈ Ks. We

call v⃗s the k-mer vector of s. Thus a set S with nS sequences can be denoted by a matrix:


v⃗s1
v⃗s2
· · ·
v⃗snS

=


v1,1 v1,2 · · · v1,4k

v2,1 v2,2 · · · v2,4k

· · · · · ·
. . . · · ·

vnS ,1 vnS ,2 · · · vnS ,4k

, vi,j =
{

1, kj
mer ∈ Ksi

0, kj
mer /∈ Ksi

. (1)

In many sequence-based bioinformatics problems, there is a concept of read depth of coverage

over each position along the sequence. When we introduce depth into the definition of k-mer

vector, we have v⃗s = (v1, v2, · · · , v4k), where vi = di, di is the depth on position i along sequence

s and di ∈ N+. Moreover, different sequencing technologies have different sequencing accuracy.

The actual depth d′i on position i should be calculated as di ∗ p where ∗ is the multiplication

of real numbers and the sequencing accuracy is denoted by p. It shows that the depth value

can be adjusted from a positive integer to a positive real number. Thus v⃗s = (v1, v2, · · · , v4k),
where vi = d′i, d

′
i is the depth of coverage on position i along sequence s and d′i ∈ R. A negative

value in the vector can be similarly given a practical meaning as well. It can stand for the

unsupported degree of a position. Thus the definition of the matrix for sequence set S can be

broadened to 
v1,1 v1,2 · · · v1,4k

v2,1 v2,2 · · · v2,4k

· · · · · ·
. . . · · ·

vnS ,1 vnS ,2 · · · vnS ,4k

, vi,j =
{

di, kj
mer ∈ Ksi , di ∈ R

0, kj
mer /∈ Ksi

. (2)

Using the above definition, any sequence can be transformed into a k-mer vector. A k-mer

vector can represent one read in a sequence set S or the whole set S by [1, 1, · · · , 1]1∗nSSnS∗4k .

We can treat a single sequence as a special case of sequence set which has size 1. So the k-mer

vector is describing the k-mer set of a sequence set. Two identical sequences will have the same

k-mer vector while the reverse does not hold. But in practice, the possibility that two different

sequences have the same k-mer vector is small.

2.2 Generalized k-mer vector and the properties of k-mer vector space

A k-mer vector is defined as v⃗s = (v1, v2, · · · , v4k), where vi ∈ R. It stands for a generalized

biological sequence s. The concept of sequences has been extended here: not limited to contin-

uous strings. So the sequence s is represented by its k-mer set which is described by the k-mer

vector. From this definition of k-mer vector, we can generate a k-mer vector space.

Let V be the set of all possible k-mer vectors which is nonempty and R the real number
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set. We use the addition and multiplication between real numbers to define the operation on V .

Define the addition operation between v⃗ = (v1, v2, · · · , v4k) ∈ V and v⃗′ = (v′1, v
′
2, · · · , v′4k) ∈ V

as v⃗+ v⃗′ = (v1 + v′1, v2 + v′2, · · · , v4k + v′4k). It can be seen as the merging of two sequence sets

which result in a new set. Define the multiple operation between v⃗ = (v1, v2, · · · , v4k) ∈ V and

k ∈ R as kv⃗ = k(v1, v2, · · · , v4k) = (kv1, kv2, · · · , kv4k). The multiplication is the scaling of the

k-mer vector for a sequence set. We have

Theorem 1. V is a linear space on R.

Proof of Theorem 1. For the defined vector space V and field R with two operations, the fol-

lowing conditions are satisfied:

a.∀v⃗, v⃗′ ∈ V, v⃗+v⃗′ = (v1+v′1, v2+v′2, · · · , v4k+v′4k). Since vi+v′i ∈ R, i ∈ 1, 2, · · · , 4k, v⃗+v⃗′ ∈
V ;

b.∀v⃗ ∈ V, k ∈ R, kv⃗ = (k ∗ v1, k ∗ v2, · · · , k ∗ v4k). Since k ∗ vi ∈ R, i ∈ 1, 2, · · · , 4k, kv⃗ ∈ V .

So V is closed for the linear operations.

Using the linear operations over the k-mer vector space V , we can merge the sequencing

data from different samples into one, get the difference between two sequence sets, or do the

normalization for multiple data. Now introduce the definition of the inner product on the k-mer

space. The set of all possible k-mer vectors, V , is a linear space over R. ∀v⃗, v⃗′ ∈ V , define the

inner product of v⃗ and v⃗′ as ⟨v⃗, v⃗′⟩ =
∑4k

i=1 vi ∗ v′i. Obviously we have

Theorem 2. V is a Euclidean space with an inner product ⟨v⃗, v⃗′⟩.

Denote ⟨v⃗, v⃗′⟩ as v⃗v⃗′T , v⃗, v⃗′ ∈ V . From the geometry, the inner product ⟨v⃗, v⃗′⟩ gives us the

production of the projection of one vector on the direction of the other vector. It introduces

the concept of included angle in the k-mer vector space.

The length of k-mer vector v⃗ is ||v⃗|| =
√
⟨v⃗, v⃗⟩ =

√
v⃗v⃗T =

√
v21 + v22 + · · ·+ v2

4k
, where k is

the k-mer length. For a sequence with uniform distribution of depth, it reflects the sequence

length. Since the total number of kmer is
∑4k

i=1 vi, the average depth of coverage is
∑4k

i=1 vi

k∗L .

It is the principle of genome size (L) estimation using the k-mer distribution. We also have

the Cauchy-Schwarz inequation |⟨v⃗, v⃗′⟩| ≤ ||v⃗||||v⃗′||. The equality holds when v⃗, v⃗′ have a linear

dependence relation. It means that these two sequences are composed of the same k-mers. They

can be two identical sequences with different read depths.The distance between k-mer vectors

is defined as d(v⃗, v⃗′) = ||v⃗ − v⃗′||.
The included angle of k-mer vector v⃗ and v⃗′ is φ = arccos ⟨v⃗,v⃗′⟩

||v⃗||||v⃗′|| . Then ⟨v⃗,v⃗′⟩
||v⃗||||v⃗′|| gives us

the cosine similarity between two k-mer vectors which stands for two sequences. It shows how

close the directions of two sequences are in the k-mer vector space. For a sequence set S in

(2), SST gives us a symmetric matrix with each element the inner product of two vectors. We

calculate it by

SST =


v⃗s1
v⃗s2
· · ·
v⃗snS




v⃗s1
v⃗s2
· · ·
v⃗snS


T

(3)
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=


∑4k

i=1 v1,i∗ v1,i
∑4k

i=1 v1,i∗ v2,i · · ·
∑4k

i=1 v1,i∗ vnS ,i∑4k

i=1 v2,i∗ v1,i
∑4k

i=1 v2,i∗ v2,i · · ·
∑4k

i=1 v2,i∗ vnS ,i

· · · · · ·
. . . · · ·∑4k

i=1 vnS ,i∗ v1,i
∑4k

i=1 vnS ,i∗ v2,i · · ·
∑4k

i=1 vnS ,i∗ vnS ,i


nS∗nS

(4)

→



∑4k

i=1 v1,i∗v1,i√∑4k
i=1 v2

1,i

∑4k
i=1 v2

1,i

· · ·
∑4k

i=1 v1,i∗vnS,i√∑4k
i=1 v2

1,i

∑4k
i=1 v2

nS,i∑4k

i=1 v2,i∗v2,i√∑4k
i=1 v2

2,i

∑4k
i=1 v2

2,i

· · ·
∑4k

i=1 v2,i∗vnS,i√∑4k
i=1 v2

2,i

∑4k
i=1 v2

nS,i

· · ·
. . . · · ·∑4k

i=1 vnS,i∗v1,i√∑4k
i=1 v2

nS,i

∑4k
i=1 v2

1,i

· · ·
∑4k

i=1 vnS,i∗vnS,i√∑4k
i=1 v2

nS,i

∑4k
i=1 v2

nS,i


nS∗nS

. (5)

Denote expression (4) as TS = SST and expression (5) as Tsim. Tsim is the cosine similarity

matrix of the sequence set S. In some practical problems, for example the de novo transcriptome

assembly of RNA-Seq reads where the reads have identical read length, using TS/length is

equivalent to Tsim since all the vectors have the same length.

The columns of S show the distribution of each distinct k-mer in the sequence set. The

row rank of S shows the maximum number of linearly independent sequences. And since the

row rank equals the column rank, if the nS sequences in S are linearly independent, k selected

k-mers will be sufficient to distinguish them. It is a theoretical support for using part of the

k-mers in RNA-Seq quantification in Sailfish [12].

§3 The matrix forms of sequence-based problems

In this section, we will describe three sequence-based problems in their k-mer vector/matrix

forms. It offers us a new angle to look at these problems and helps us to build new analysis

algorithms.

3.1 Quantification of short reads to reference sequences

In some problems, such as RNA-seq analysis, one of the main steps is aligning the short

reads back to the reference sequence and get the quantification result.

Let the matrix of reference sequences be Sr, and the matrix of short reads be S. So the

total aligned reads number of each sequence in Sr can be obtained the following from.

SSr
T =


v1,1 v1,2 · · · v1,4k

v2,1 v2,2 · · · v2,4k

· · · · · ·
. . . · · ·

vnS ,1 vnS ,2 · · · vnS ,4k




v′1,1 v′2,1 · · · v′nSr ,1

v′1,2 v′2,2 · · · v′nSr ,2

· · · · · ·
. . . · · ·

v′1,4k v′2,4k · · · v′nSr ,4k

 (6)
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=


∑4k

i=1 v1,i ∗ v
′
1,i

∑4k

i=1 v1,i ∗ v
′
2,i · · ·

∑4k

i=1 v1,i ∗ v
′
nSr ,i∑4k

i=1 v2,i ∗ v
′
1,i

∑4k

i=1 v2,i ∗ v
′
2,i · · ·

∑4k

i=1 v2,i ∗ v
′
nSr ,i

· · · · · ·
. . . · · ·∑4k

i=1 vnS ,i ∗ v′1,i
∑4k

i=1 vnS ,i ∗ v′2,i · · ·
∑4k

i=1 vnS ,i ∗ v′nSr ,i


nS∗nSr

. (7)

When a reference sequence is highly expressed in the RNA-seq problem, the duplicated short

reads will result in a high module value of the corresponding k-mer vector. The sum of each

column in SST is correlated with the total number of the short reads belong to each reference

sequence:

ct =

nS∑
j=1

4k∑
i=1

vj,i ∗ vt,i, t ∈ 1, 2, · · · , nSr
. (8)

The widely used RPKM value is defined as RPKM= total exon reads/ (mapped reads (Millions)

* exon length(KB)). It counts the reads over each sequence while some other methods use the

number of fragments over each sequence. Short subsequence with fixed length can also be used

in quantification [9]. From ct in (8), we can get an approximation of the RPKM value of s′t in

S by
ct ∗ 109∑nSr ct
t=1 ∗||s′t||

. (9)

Further adjustment can be applied when some necessary assumptions were made in the analysis.

The follow-up differentially expressed gene analysis can also be presented in the matrix form.

Suppose we have an experimental group and control group with three repetitions each. Then

these six data set can be merged into a 6 ∗ nSr matrix using (7)(8):

A6∗nSr
=



1, · · · , 1 0, · · · , 0
0, · · · , 0 1, · · · , 1 0, · · · , 0

0, · · · , 0 1, · · · , 1 0, · · · , 0
0, · · · , 0 1, · · · , 1 0, · · · , 0

0, · · · , 0 1, · · · , 1 0, · · · , 0
0, · · · , 0 1, · · · , 1





S1,1

S1,2

S1,3

S2,1

S2,2

S2,3


Sr

T (10)

=



a1,1 a1,2 · · · a1,nSr

a2,1 a2,2 · · · a2,nSr

a3,1 a3,2 · · · a3,nSr

a4,1 a4,2 · · · a4,nSr

a5,1 a5,2 · · · a5,nSr

a6,1 a6,2 · · · a6,nSr


6∗nSr

(11)

For each reference gene gj , j ∈ {1, 2, · · · , nSr}, its fold change and t-test value between

experimental group and control group can be calculated by:{
FCj = mean(a1,j , a2,j , a3,j)/mean(a4,j , a5,j , a6,j),

tj
mean(a1,j ,a2,j ,a3,j)−mean(a4,j ,a5,j ,a6,j)√
sd(a1,j ,a2,j ,a3,j)2/3+sd(a4,j ,a5,j ,a6,j)2/3

, j ∈ 1, 2, · · · , nSr

. (12)
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3.2 Sequence assembly problem

A sequence assembly problem is a clustering problem of the input sequence set based on

the similarities. Using the similarity matrix Tsim (5), we can quickly get the similarity value

between any two sequences in the set. Moreover, by doing the line and column switching of the

similarity matrix, we can generate a block diagonal matrix. Each block is a cluster of sequences.

Here we will discuss the de novo transcriptome assembly problem of RNA-Seq reads. To

simplify the problem, assume all the vectors have the same length. So we use TS as the similarity

matrix for discussion. For a set of sequenced reads, let the matrix of k-mer vectors be S. Then,

we have

TS = SST =


ss1,1 ss1,2 · · · ss1,nS

ss2,1 ss2,2 · · · ss2,nS

· · · · · ·
. . . · · ·

ssnS ,1 ssnS ,2 · · · ssnS ,nS


nS∗nS

(13)

line/column switching
−→


T

(1,1)
S 0 · · · 0

0 T
(2,2)
S · · · 0

· · · · · ·
. . . · · ·

0 0 · · · T
(m,m)
S


nS∗nS

. (14)

For T
(i,i)
S , i ∈ {1, 2, · · · ,m}, where m is the number of the diagonal blocks, it can generate

an assembled unique sequence. The vectors clustered into a same block T
(i,i)
S have a high

probability to have the same origin. To get a more accurate clustering result, we can set a

cutoff of the similarity value in the similarity matrix. For TS = SST ,

TS
set cutoff−→


ss′1,1 ss′1,2 · · · ss′1,nS

ss′2,1 ss′2,2 · · · ss′2,nS

· · · · · ·
. . . · · ·

ss′nS ,1 ss′nS ,2 · · · ss′nS ,nS


nS∗nS

(15)

→


T

(1,1)
S 0 · · · 0

0 T
(2,2)
S · · · 0

· · · · · ·
. . . · · ·

0 0 · · · T
(m,m)
S


nS∗nS

, ss′i,j =

{
ssi,j ssi,j ≥ psim∗ l
0 ssi,j < psim∗ l

, (16)

i, j ∈ {1, 2, · · · , nS}, l the read length and psim the predefined similarity cutoff.

In TS , take the first line t⃗1s for example, t⃗1s stands for the similarity between s⃗1 and s⃗i, i ∈
1, 2, · · · , nS . Thus t⃗1s shows us the correlated vectors in S of s⃗i whose value is greater than 0

(or the cutoff psim ∗ l). These vectors form a set generated from s⃗1. Then TS ∗ t⃗1s is

TS ∗ t⃗1s =


t1s
t2s
· · ·
tnS
s




v⃗s1
v⃗s2
· · ·
v⃗snS


T

=


∑nS

i=1 ss1,i ∗ ssi,1∑nS

i=1 ss2,i ∗ ssi,1
· · ·∑nS

i=1 ssnS ,i ∗ ssi,1


nS∗1

, (17)
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shows the correlation between any vector in S and the vector cluster generated from s⃗1. TS ∗ t⃗1s
gives us a clustered group generated from s⃗1 with high accuracy since it is not considering the

correlation between two vectors but a vector and a cluster of vectors.

3.3 Pattern detection

The detection of a fixed pattern from a sequence set, such as the detection of motifs [18, 19],

is a widely seen sequence analysis problem. It can help us find a conserved domain or make the

function prediction of a sequence. Here we will discuss two simplified possible situations with

pattern length smaller than k-mer length k.

Let S be a set of candidate sequences. Let sp be a query pattern and lp the length of sp,

lp < k. Then we have a set of 4(k−lp) possible k-mers that contains sp. Denote it as Sp. Use

all these 4(k−lp) k-mers to build a sequence vector, v⃗p.

v⃗p = (vp1 , v
p
2 , · · · , v

p
4k
), vpi =

{
1 kmj ∈ Sp

0 kmj /∈ Sp

, i ∈ {1, 2, · · · , 4k}. (18)

So we have

S ∗ v⃗p =


v⃗s1
v⃗s2
· · ·
v⃗snS




vp1
vp2
· · ·
vp
4k


T

=


∑4k

i=1 ss1,i ∗ v
p
i∑4k

i=1 ss2,i ∗ v
p
i

· · ·∑4k

i=1 ssnS ,i ∗ vpi


nS∗1

. (19)

Any positive value in S ∗ v⃗p indicates a sequence in S with a possible pattern sp.

Let spp be the query pattern and lpp the length of spp, lpp < k. Now suppose the first and

second base of spp is not fixed. Let P1(x) (P2(x)), x ∈ {A,G,C, T}, denote the probability

of the first (second) base being A/G/C/T, respectively. Then we have C1
4 ∗ C1

4 = 16 possible

query patterns with occurrence possibility P1(x) ∗ P2(y), x, y ∈ {A,G,C, T}. From each one of

the 16 patterns, we can get a k-mer vector as we did in the above situation:

v⃗ppi = (vppi,1, v
pp
i,2, · · · , v

pp

i,4k
), vppii =

{
P (x) ∗ P (y) kmj ∈ Spp

0 kmj /∈ Spp

j∈ {1, 2, · · · , 4k},
x, y∈ {A,G,C, T}.

(20)

i ∈ {1, 2, · · · , 16}. So we have

S ∗


v⃗pp1
v⃗pp2
· · ·
v⃗pp16


T

16∗4k

=


∑4k

i=1 ss1,i ∗ v
p
1,i, · · · ,

∑4k

i=1 ss1,i ∗ v
p
16,i∑4k

i=1 ss2,i ∗ v
p
1,i, · · · ,

∑4k

i=1 ss2,i ∗ v
p
16,i

· · ·∑4k

i=1 ssnS ,i ∗ vp1,i, · · · ,
∑4k

i=1 ssnS ,i ∗ vp16,i


nS∗16

. (21)

Any positive value in expression (21) indicates a sequence in S with a possible form of

pattern spp. It is an example of solving a sequence-based problem with indeterminate bases

using the k-mer vector method. For more complicated situations, the Monte Carlo method

could be a choice.
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§4 Algorithm implementation and discussion

Many methods are capable of solving the assembly problem of biological sequences [20, 21,

22]. Most of their algorithm design strategy is based on the common string representation of

sequences. Here, we will take the assembly problem in the matrix form discussed in section 3.2

as an example of the algorithm design in k-mer vector space. We will explain how the theory of

k-mer vector and matrix is connected with real problems in sequence-based biological problem

analysis.

4.1 Design and implementation of vector-based algorithm for assem-

bly problem

We developed a program named iLoqu to implement the use of the similarity matrix in the

k-mer space for sequence assembly. It is written in C++ and can be executed under either

32-bit or 64-bit Linux systems or windows system. To calculate the similarity matrix, we used

the hashmap from C++. iLoqu contains three main steps: 1. extract the k-mers from the

sequences to generate a hashmap; 2. use the hashmap to calculate the similarity matrix; 3.

cluster the k-mer vectors into groups and do the assembly of each group.

iLoqu takes Fasta file as its input. The program starts with reading the sequences from

the Fasta file and extracts all the k-mers to create a hashmap. The matrix of k-mer vectors

generated from the sequence set is a sparse matrix. The data structure of the hashmap provides

us with a feasible method to calculate the similarity matrix while reducing storage requirement.

The k-mers from each sequence are added to the hashmap within a for-loop. Each k-mer is

a key in the hash table, and other corresponding information of the sequence is stored in its

value. Thus in the hashmap, the key is the column index of the matrix while the value contains

the line information.

The second step is generating the similarity matrix using the hashmap built in the first step.

While executing the algorithm, the generating of the similarity matrix is operated with step

one in the same while loop of reading sequences. See algorithm-1. The similarity matrix is built

from the upper-left corner to the right-bottom corner and it is a symmetric matrix. Mention

that a symmetric matrix is a square matrix that is equal to its transpose: A is symmetric if

and only if A = AT . Here we set a cutoff value to remove the low similarity data. Also, two

vectors coming up with an extremely high production value can be merged into one in advance

before the following clustering step. Here, the inner product of two k-mer vectors, v⃗, v⃗′, was set

to 0 if it is smaller than the preset similarity cutoff.

The last step is clustering the k-mer vectors basing on the similarity matrix. After processing

the inner product value by filtering with a cutoff, the line coordinate and column coordinate

of any positive value in the similarity matrix gives us two vectors that could be grouped into

one. For the final assembly, since the number of sequences in each group is greatly reduced

compared to the whole sequence set, many assembly methods can handle this situation. Here

in the iLoqu, we also presented an assembling procedure using the k-mer. On the other hand,
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Algorithm 1 Read the input sequences, build hashmap and calculate the similarity

1: while read-in sequence s do
2: for i← 1 to n− k + 1 do
3: kmer ← Getkmer(s, i, k)
4: Array.Add(Hash seq(kmer))
5: Hash seq(kmer)← seq info
6: end for
7: for i← 1 to Array.length do
8: Hash seq(id) + +
9: end for

10: similarity ← Hash seq(id)/sqrt(seq1.length ∗ seq2.length)
11: end while

if the assembly result is going to be used in the k-mer vector form in the downstream analysis,

such as the quantification step described in section 3.1, there is no need for an actual assembly.

We can generate a set of reference vectors from the block diagonal matrix result.

The assembly algorithm is described in algorithm 2. Starting from vectors with big length,

we select one seed k-mer from the vector and look up the next k-mers on its two sides from the

hash map.

Algorithm 2 Sequence assembly from the hashmap

1: for i← 1 to m do
2: for j ← 1 to n− k + 1 do
3: kmer ← Getkmer(s, i, k)
4: Hash assembly(kmer)← seq info
5: end for
6: end for
7: for key in Hash assembly do
8: if key is not used as seed yet then
9: seed← key

10: nextkey ← substring(seed, 2, k − 1) + (A/C/G/T )
11: while Hash assembly(nextkey) exists do
12: Seed← seed+ (A/C/G/T )
13: nextkey ← substring(seed, length(seed)− k + 2, k − 1) + (A/C/G/T )
14: end while
15: end if
16: end for

4.2 Numerical example

iLoqu is a tool designed for sequence assembly based on the concept of the k-mer vector.

It is suitable for the overlap-based assembly problems of RNA-Seq. As mentioned above, the

assembly process from the grouped vectors to string form is not necessary if it is going to be used

in the downstream sequence-based analysis in vector/matrix form. So we will not compare the
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Table 1. The test result of iLoqu with the simulating data and real data.

data size data cov-
erage/
depth

assembled
size

assembled
coverage

running
time

Arabidopsis thaliana
simulated test data 400 98.3%,

10x
10 98.3% 3.2 s

real test data 18,438 79.2%,
50x

24 68.3% 8.5 min

Homo sapiens
simulated test data 400 96.6%,

10x
10 96.6% 4.8 s

real test data 27,199 92.9%,
50x

16 77.1% 6.1 min

assembly speed with other tools but show the assembly accuracy. We made a test on simulating

data and real biology data using iLoqu software. For the real RNA-Seq data, we used the reads

that can be aligned to ten selected genes by Bowtie [23]. These ten genes are randomly selected

from the cDNA file of Arabidopsis/Homo sapiens (file Araport11 genes.201606.cdna.fasta of

Arabidopsis thaliana and the file GCF 000001405.38 GRCh38.p12 rna.fna of Homo sapiens)

with a high expression level (at least 1000 reads covered) in the RNA-Seq sequencing dataset

(SRR4024923.sra of Arabidopsis thaliana and ERR2870199.sra of Homo sapiens). These files

can be downloaded from NCBI. These ten genes are also used for the generation of simulated

data as a reference. We randomly generated a set of sequences normally distributed along with

the reference genes with a length greater than 100 bp. And we set a 1% random SNP (single

nucleotide polymorphism) variation on the simulated sequence dataset. The parameters used

in iLoqu are minimum similarity percentage 1%, k-mer size 19, a minimum count of tag 30 and

minimum assembly similarity 90%. Table 1 shows the assembly results of both test data. The

assembly results were aligned back to the reference to show the accuracy using [24].

From Table 1, we can see that iLoqu successfully assembled the test data. In the test of

Arabidopsis thaliana data, 98.3% and 68.3% of the reference is covered by the assembly result

from the simulating data and real data, respectively. In the test of Homo sapiens data, the

percentage is 96.6% and 77.1%. The depth and variations will affect the assembly quality. This

result proves that the k-mer vector methods is a feasible solution for the assembly problem and

it worth further studies.

4.3 Discussion

The usage of the generalized k-mer vector defined in this work is a method for describing a

biological sequence or sequence set from its k-mer set. It is defined using the most basic com-

mon features extracted from different sequence analysis problems. Thus, it is a more general

description method with better applicability and scalability when compared to existing research
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on matrix methods for sequence analysis problems. It has higher adaptability facing new prob-

lems. It also has better problem analysis capabilities when multiple sequence-based problems

are combined as a whole. Many sequence-based problems in bioinformatics can be converted

to their corresponding vector/matrix form using the k-mer vector under this definition. It can

unmask part of the real nature of the sequence analysis problems that cannot be seen directly

in other basic forms. It offers us a chance to rebuild a new analysis system.

There are complete research findings on linear space, matrix and matrix operation from

linear algebra and computational mathematics. It gives us a whole new set of methods to deal

with the sequence-based problems in bioinformatics studies. The challenge here is to use the

language of biology to explain the mathematical concepts. In this work, we extend the value

domain of the element in the k-mer vector from integer to real number. Furthermore, the vector

operations are interpreted as operations of the k-mer sets of generalized sequences. It makes

the matrix methods of biological sequences a practical tool for problem analysis and algorithm

design.

The computation of sequence similarity is one of the common features of many sequence-

based biological problems, such as the sequence alignment with reference, sequence assembly

problem, and sequence evolution analysis. These features can be described uniformly using the

k-mer vector form. It links different sequence-based problems or their upstream and downstream

analysis as a whole, reducing the computational costs of the associated algorithm. The success-

ful algorithm design examples using k-mer (for example, kallisto that avoid sequence alignment

using k-mer [11]), indicates that k-mer is an effective tool for solving high complexity bioinfor-

matics problems. While complimenting the algorithm design using k-mer vector/matrix form

in the instance of sequence assembly problem, we find that the hashmap structure, k-mer and

the sparse matrix match very well in the real problem. It is another evidence to support the

feasibility of applying the sequence matrix methods theories in the bioinformatics.

The k-mer vector uses features extracted from a sequence to represent it. It has better

control of the information redundancy which could be a burden for the design of computational

analysis algorithms. On the other hand, it may cause a loss of information. More theoretical

analysis and quantification tests need to be done to find the balance between different forms.

The mapping between vectors in the space and the sequences is not a bijection. In practice,

the effect of this shortcoming is limited and ignorable. It has been proved and used as a

reasonable assumption by other researchers [6]. A remaining big challenge is the visualization

of the sequences from its matrix form. The string representation of biological sequences has its

advantage naturally while the vector form makes the sequence structure abstract visually.

In the future work, we will present a solution for sequence visualization from its vector

form. Then match more concepts from matrix analysis in algebra with the sequence analysis.

Finally, try to build equations from sequence analysis problems and solve them in matrix form.

Moreover, we need a high-effective data structure and improved algorithms for solving real

problems.
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§5 Conclusions

We gave a generalized definition of the k-mer vector and its linear space for the biological

sequences. It is a method of representing k-mer set in the vector form to describe a sequence-

based problem. The basic concepts and operations in vector space are reasonably related to their

corresponding biological meanings. We use three examples to explain the theory, including the

use of basic operations, the relationship between upstream and downstream analysis steps, and

cases with probabilities. This is a way to discover new features of sequence analysis problems

in bioinformatics and generate new algorithm design strategies. Also, we proposed a solution to

the sequence assembly problem as an application example of algorithm design using the vector

form of biological sequence, which proves the feasibility of the vector (matrix) method in real

sequence analysis.
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