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Phase retrieval with PhaseLift algorithm

LI Hui-ping LI Song

Abstract. This paper provides a contemporary overview of phase retrieval problem with

PhaseLift algorithm and summarizes theoretical results which have been derived during the

past few years. Based on the lifting technique, the phase retrieval problem can be transformed

into the low rank matrix recovery problem and then be solved by convex programming known

as PhaseLift. Thus, stable guarantees for such problem have been gradually established for

measurements sampled from sufficiently random distribution, for instance, the standard normal

distribution. Further, exact recovery results have also been set up for masked Fourier measure-

ments which are closely related to practical applications.

§1 Introduction

1.1 Background

The problem of phase retrieval i.e., the recovery of a signal from its Fourier magnitude
[61,62], arises in many areas of engineering and applied physics, including optics [74], X-ray
crystallography [55], astronomical imaging [20], speech processing [64], computational biology
[70], blind deconvolution [6] and more details in [38]. Its origin comes from the fact that de-
tectors oftentimes can record only the squared modulus of the Fresnel or Fraunhofer diffraction
pattern of the radiation that is scattered from an object. In such settings, one cannot measure
the phase of the optical wave reaching the detector, and, therefore, much information about
the scattered object or the optical field is lost since, as is well known, the phase encodes a lot
of the structural content of the image we wish to form.

There are many ways in which one can pose the phase retrieval problem, for instance, de-
pending on whether one assumes a continuous or discrete space model for the signal. In this
paper, we focus on the discretized one-dimensional (1D) setting for simplicity and because nu-
merical algorithms ultimately operate with digital data. Let x0 = [x0[0], x0[1], · · · , x0[N − 1]]⊤
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be a signal of length N such that it has non-zero values only within the interval [0, N − 1].
Denote y = [y[0], y[1], · · · , y[N − 1]]⊤ as its N point discrete Fourier transform (DFT) and
let z = [z[0], z[1], · · · , z[N − 1]]⊤ be the Fourier magnitude-square measurements, namely,
|z[k]| = |y[k]|2. Then the phase retrieval problem can be mathematically stated as:

Find x

s. t. |z[k]| = |y[k]|2, 0 ≤ k ≤ N − 1,
(1)

where y[k] = ⟨fk,x0⟩ and fk being the conjugate of the k-th column of N point DFT matrix,
with elements e

i·2πkn
N , n = 0, 1, · · · , N − 1.

In the 1D setting, this problem is ill-posed since there are many different signals whose
Fourier transforms have the same magnitude. Clearly, if x is a solution to the phase retrieval
problem, then (i) c·x for any scalar c ∈ C obeying |c| = 1 is also a solution, (ii) the time-reversed
signal or (iii) the shifted signal is also a solution. Usually, these “trivial associates” of x are
acceptable ambiguities in view of physical aspect. But in general infinitely many solutions can
be obtained from {|y[k]|, 0 ≤ k ≤ N − 1} beyond these trivial ambiguities [67]. Furthermore,
it has been shown, using spectral factorization, that there is no uniqueness and the feasible set
of (1) can include up to 2N non-equivalent solutions and adding support constraints on x does
not help to ensure uniqueness [33]. For higher dimensions (for instance, 2D signal), it has been
shown by Hayes [32] using dimension counting that, with the exception of a set of signals of
measure zero, phase retrieval with oversampling is well posed up to trivial ambiguities.

As we further discuss below, to guarantee unique identification in the 1D case it is necessary
to assume additional constraints on the unknown signal such as sparsity or to introduce specific
redundancy into the measurements. Meanwhile, even when uniqueness of the underlying signal
is theoretically possible, it is important to recover this signal efficiently and robustly. By and
large, earlier methods for phase retrieval from oversampled data are alternating projection
algorithms pioneered by Gerchberg and Saxton [25] and Fienup [22, 23]. In their framework, the
key idea is to reformulate (1) into the following least-squares problem and apply alternating
projection to solve this non-convex problem:

min
x

N−1∑
k=0

(|y[k]|2 − |⟨fk,x⟩|2)2. (2)

Often, the objective is shown to be monotonically decreasing as the iterations progress. While
this algorithm is simple to implement and amenable to additional constraints such as the posi-
tivity of x0, its convergence remains problematic, due to the projections onto non-convex sets.
Thus such algorithms need careful exploitation of signal constraints and delicate parameter
selection to increase the likelihood of convergence to a correct solution, see [19, 49,50,59].

Recently, one of the popular approaches to treat phase retrieval problems is to use semidef-
inite programming (SDP) methods. Such algorithms have been shown to yield robust solutions
to various quadratic-constrained optimization problems, see [10–12,17,26,73]. As we can see from
(1), the quadratic constraints can be lifted up and interpreted as linear measurements about
the rank-one matrix X = xx∗. Namely,

|z[k]| = |y[k]|2 = |⟨fk,x⟩|2 = Tr(x∗fkf
∗
kx) = Tr(fkf

∗
kxx

∗) = Tr(fkf
∗
kX). (3)
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In what follows, we shall let A be the linear operator mapping positive semidefinite matrices
into {Tr(fkf

∗
kX), k = 0, · · · , N − 1}. Hence, the phase retrieval problem (1) is equivalent to

Find X

s. t. A(X) = y,

rank(X) = 1,

X ≽ 0.

⇔
min rank(X)

s. t. A(X) = y,

X ≽ 0.

(4)

As such, the problem (4) is a rank-minimization problem over an affine slice of the positive
semidefinite cone. The idea of linearizing the phase retrieval problem by reformulating it as a
problem of recovering a matrix from linear measurements can be found in [3]. Then we can
factorize the solution X of (4) as xx∗ in order to obtain the solutions to the phase retrieval
problem (1). Since the rank-minimization problem (4) is NP-hard and non-convex, many re-
searchers have recently attempted to replace the the rank functional rank(X) by the convex
surrogate Tr(X) [16, 65], giving the familiar SDP

min
X

Tr(X)

s. t. A(X) = y,

X ≽ 0.

(5)

The convex program (5) is known as PhaseLift algorithm which was proposed in [10, 17] and it is
a semidefinite program (SDP) in standard form, so there is a rapidly growing list of algorithms
for solving problems of this kind as efficiently as possible. Furthermore, SDP algorithms are
known to be robust in general. Consequently, when we consider noisy measurements with
bounded noise, namely, y = A(X) + ε with ∥ε∥ℓ2 ≤ η, a robust variant PhaseLift algorithm
was provided in [17],

min
X

Tr(X)

s. t. ∥y −A(X)∥ℓ2 ≤ η,

X ≽ 0.

(6)

In this case, the authors in [11, 17] do not claim X that has low rank. Instead, they suggest
estimating x0 by extracting the largest rank-one component. Namely, if we suppose the SVD
of X is

X =
n∑

i=1

λiuiu
∗
i , λ1 ≥ λ2 ≥ · · · ≥ λn, (7)

and u1, · · · ,un are mutually orthogonal, then let x =
√
λ1 · u1 be an estimator of x0. As

is stated above, the PhaseLift algorithm can transform what appears to be a combinatorial
problem into a convex program which offers tractable solutions. Moreover, the existence of a
noise-aware recovery procedure (6)-also based on a tractable convex program-is robust vis-à-vis
additive noise.

More recent methods described in [9, 10,13,18,75–77,82,83] retrieve the phase by applying tech-
niques such as matrix completion, non-convex formulations, and so on. Specifically, one of the
non-convex formulations based on the intensity measurements {|y[k]|2}N−1

k=0 or amplitude mea-
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surements {|y[k]|}N−1
k=0 , called the Wirtinger Flow (WF) [13] or Truncated Amplitude Flow

(TAF) [75], and another type of non-convex approaches are based on combining lifting tech-
nique and matrix recovery [9], which are all gradient descent method based on the Wirtinger
derivative. In addition, there are several alternates proposed and studied in [2, 27,48,57,71,80].
However, these methods mentioned above greatly depend on choosing good initializers.

1.2 Notations

We shall introduce some basic notations which will be used throughout this paper. Let
y∗ and y⊤ be the conjugate transpose and transpose of a vector y ∈ Cn or Rn, respectively.
Write Hn×n and Sn×n to mean the space of all Hermitian matrices and symmetric matrices.
Let x0 ∈ Rn or Cn be a signal we aim to recover, we define the space

T := {x0z
⊤ + zx⊤

0 : ∀z ∈ Rn} ⊂ Sn×n or T̃ := {x0z
∗ + zx∗

0 : ∀z ∈ Cn} ⊂ Hn×n, (8)

as the tangent space of the manifold of all rank one symmetric matrices or Hermitian matrices
at the point X0 = x0x

⊤
0 or x0x

∗
0. Also, we denote the projection of a matrix Y onto the

space T (T̃ ) by YT (YT̃ ) and its orthogonal complement is expressed as YT⊥(YT̃⊥). We use the
projector ΠY : Hn×n → Hn×n onto some matrix Y ∈ Hn×n which is defined as

ΠY (Z) = Y (Y ,Z) = tr(Y Z)Y , ∀Z ∈ Hn×n.

Let I : Hn×n → Hn×n be the identity map. Here, write ” ≥, ≤ ” and ” ≽, ≼ ” to mean
the positive or negative semi-definiteness of matrices and matrix-valued operators, respectively.
{ej}1≤j≤n represent the standard orthogonal basis in Cn. Denote ∥ · ∥1, ∥ · ∥2, ∥ · ∥1,1 as the
nuclear norm, Frobenius norm, and entry-wise ℓ1 norm of matirces, respectively. Denote ∥ · ∥ℓp
as the ℓp-norm of vectors, where p = 1, 2. Particularly, ∥ · ∥ℓ0 denotes the sparsity of a vector.
C > 0, (or c, c′, C0, C1, C

′, C ′′) denotes a universal constant that might be different in each
occurrence.

§2 PhaseLift under Random Measurements

2.1 Non-uniform Guarantees for PhaseLift algorithm

As is well known to us, the phase retrieval problem has attracted great attention in the
past few years, due to its wide occurrence in many physical applications. In the classical case
discussed above, the {fk}N−1

k=0 are complex exponentials at frequency e
i·2πkn

N so that one collects
the squared modulus of the Fourier transform of x0. In such case, we often call the phase prob-
lem as the classical phase retrieval problem. Later, many other choices for the measurement
vectors ak are frequently discussed in the literature; see [3, 24] for instance. In this case, we call
the phase problem as the general phase retrieval problem. A frame-theoretic approach to signal
recovery from magnitude measurements has been proposed in [3–5], where the authors derived
various necessary and sufficient conditions for the uniqueness of the solution, as well as various
polynomial time numerical algorithms for very specific choices of ak . While theoretically quite
appealing, the drawbacks are that the methods are (i) either algebraic in nature, thus severely
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limiting their stability in the presence of noise or slightly inexact data, or (ii) the number of
measurements is on the order of n2, which is much too large compared to the number of un-
knowns.

Hence, in a pioneering work by Candès et al. [11,17], a convex relaxation via trace norm min-
imization, known as PhaseLift, was studied. As is introduced in the Section 1, This algorithm
consists in lifting up the original problem of vector recovery from a quadratic system into that
of recovering a rank-one matrix by a trace-norm relaxation. The crucial questions are whether
and under which conditions the combinatorially hard problem (4) and the convex problem (5)

are formally equivalent in the noiseless case and robustly recover the true solution by the convex
program (6). Thus, many researchers have attemptted to take advantage of sufficiently random
measurements to overcome these problems, so that to show the feasibility and robustness of the
PhaseLift algorithms. To the best of our knowledge, these analyses are mainly based on two
kinds of technical tools, namely, the standard duality arguments in semidefinite programming
and the Mendelson’s Small Ball Method [40,45,52–54,72]. In what follows, before introducing
stable guarantees for PhaseLift algorithm, we redefine the linear operator A as follows:

A : Hn×n → Rm

X → A(X) =

n∑
k=1

tr(AkX)ek,
(9)

where Ak = aka
∗
k with ak being different measurement vectors in each occurrence. Corre-

spondingly, the adjoint operator A∗ maps real-valued inputs into Hermitian matrices and is
given by

A∗ : Rm → Hn×n

z → A∗(z) =
n∑

k=1

zk ·Ak.
(10)

Then the first recovery result under random Gaussian measurements or uniformly distributed
measurements was established by Candès et al. in [17] as follows:

Theorem 2.1. ( [17]) Consider an arbitrary signal x0 ∈ Rn or Cn and suppose that the number
of measurements obeys m = c0 · n log n, where c0 is a sufficiently large constant. Then in both
the real and complex cases, the solution to the trace-minimization program is exact with high
probability in the sense that (5) has a unique solution obeying

X̂ = x0x
∗
0. (11)

This holds with probability at least 1− 3e−γ m
n , where γ is a positive absolute constant.

This result shows that the convex program recovers x0 exactly (up to global phase), provided
the number m of magnitude measurements is on the order of n log n in the noiseless case.
Expressed differently, Theorem 2.1 establishes a rigorous equivalence between a class of phase
retrieval problems and a class of semidefinite programs. Clearly, any phase retrieval algorithm,
no matter how complicated or intractable, would need at least 2n quadratic measurements to
recover a complex-valued object x0 ∈ Cn.

In the real world, measurements are often contaminated by noise. Using the frame-works
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developed in [14,31], we can extend Theorem 2.1 to accommodate noisy measurements. Since
in many applications of interest in optics and other areas of physics, we often observe

yk = |⟨ak,x0⟩|2 + εk, 1 ≤ k ≤ m, (12)

which leads to the noisy measurements y = A(X0) + ε with ∥ε∥ℓ2 ≤ η and ε = [ε1, · · · , εm]⊤

where η > 0 is an absolute constant. So by the convex program (6), robust recovery was
established:

Theorem 2.2. ( [17]) Fix x0 ∈ Rn or Cn and assume the a′
ks are uniformly sampled on the

sphere of radius
√
n. Under the hypotheses of Theorem 2.1, the solution to (6) obeys

∥X̂ − x0x
∗
0∥2 ≤ C0η, (13)

for some positive numerical constant C0. We also get

∥x̂− ei·ϕx0∥ℓ2 ≤ C0 ·min{∥x0∥ℓ2 ,
η

∥x0∥ℓ2
}. (14)

for some ϕ ∈ [0, 2π]. Both these estimates hold with nearly the same probability as that in
the noiseless case. Here x̂ is derived from extracting the largest rank-one component of X̂ as
introduced in Section 1.

The strategy to prove Theorem 2.1 and Theorem 2.2 hinges on the fact that a strengthening
of the injectivity property allows the authors in [17] to relax the properties of the dual certificate,
as that in the approach pioneered in [28] for matrix completion. For example, when the original
signal x0 ∈ Rn, the crucial lemma is required as below. As for the complex case, one only
requires a slight adjustment in the numerical constants, see Lemma 5.4 in [17]. We omit it for
simplicity.

Lemma 2.3. ( [17]) Suppose that the mapping A obeys the following two properties: for all
positive semidefinite matrices X

m−1∥A(X)∥ℓ1 < (1 +
1

9
)∥X∥1 (15)

and for all matrices X ∈ T where T is defined as (8)

m−1∥A(X)∥ℓ1 > 0.94(1− 1

9
)∥X∥. (16)

Suppose further that there exists an approximate dual certificate Y in the range of A∗ obeying

∥YT − e1e
∗
1∥2 ≤ 1

3
, ∥YT⊥∥ ≤ 1

2
. (17)

Then e1e
∗
1 is the unique minimizer to (5).

The first property (15) is reminiscent of the (one-sided) restricted isometry property (RIP)
in the area of compressed sensing [15]. The difference is that it is expressed in the 1-norm
rather than the 2-norm. Having said this, it’s noted that RIP-1 properties have also been used
in the compressed sensing literature; see [7] for example. The authors in [17] use this property
instead of a property about ∥A(X)∥ℓ2 , because a RIP property in the 2-norm does not hold
here (essentially because ∥A(X)∥ℓ2 involves fourth moments of Gaussian variables), as they
demonstrated in the Appendix. The second property (16) is a form of local RIP-1 since it holds
only for matrices in T which is the tangent space of the manifold of all rank one symmetric
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matrices at the point X. Then they emphasized that the bound for the dual certificate in
(17) was loose in the sense that YT and e1e

∗
1 may not be that close, a fact that would play

a crucial role in their proof. Finally, they sufficiently utilized the some statistics arguments
about random Gaussian distribution or uniform distribution to ensure A and the constructed
dual certificate Y obeying the properties stated in Lemma 2.3.

Later, the authors in [11] showed that the convex relaxation (5) with a number of equations
on the order of the number of unknowns succeeded to recovering the original signal x0 with
much higher probability. Moreover, they provided a universal result stating that once the
vectors ak have been selected, all input signals x0 can be recovered simultaneously.

Theorem 2.4. ( [11]) Suppose the a′
ks are generated independently and identically according

the normal distribution or the uniform distribution. Assume that m ≥ c0 · n where c0 is a
sufficiently large constant. Then the following holds with probability at least 1−O(e−γ·m): for
all x0 ∈ Rn or Cn, the PhaseLift feasibility problem

{X : A(X) = y, X ≽ 0} (18)

has a unique point, namely, x0x
∗
0. Thus, exact recovery holds simultaneously over all input

signals.

In words, the solution to most systems of quadratic equations can be obtained by solving a
semidefinite programming feasibility problem; this is true as long as the number of equations
is at least a constant times the number of unknowns. Further, the probability of failure is ex-
ponentially small in the number of measurements, a significant sharpening of Theorem 2.1. A
second departure from Theorem 2.1 is that we only need to solve a feasibility problem. Indeed,
trace minimization is unnecessary since the feasible set reduces to a single element, an obser-
vation independently presented in [17] when the number of measurements obeys m = c0 log n.
The third departure is that exact recovery holds universally as explained above. To be sure,
Theorem 2.1 states that with high probability, the null space of A is tangent to the positive
semidefinite (PSD) cone {X : X ≽ 0} at a fixed rank-one matrix X0 = x0x

∗
0 whereas Theorem

2.4 asserts that this null-space is tangent to the PSD cone at all rank-one elements. Mathe-
matically, what makes this possible is the sharpening of the probability bounds; that is to say,
the fact that for a fixed x0, recovery holds with probability at least 1−O(e−γ·m). Importantly,
these improvements are derived from adaptable truncations in the statistics arguments for es-
tablishing similar properties as that stated in Lemma 2.3, see Lemma 2.1 and Lemma 2.2 in
[11].

Further, in the noise case, the authors in [11] suggested recovering the signal by
min
X

∥y −A(X)∥ℓ1

s. t. X ≽ 0.
(19)

The proposal cannot be simpler: find the positive semidefinite matrix X that best fits the
observed data in an ℓ1 sense. One can then extract the best-rank one approximation to recover
the signal x0.

Theorem 2.5. ( [11]) Suppose the a′
ks are generated independently and identically according
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the normal distribution or the uniform distribution. Assume that m ≥ c0 · n where c0 is a
sufficiently large constant. Then for all x0 ∈ Rn or Cn, the solution to (19) obeys

∥X̂ − x0x
∗
0∥2 ≤ C0

∥ε∥ℓ1
m

(20)

for some numerical constant C0. For the Gaussian models, this holds with the same probability
as in the noiseless case whereas the probability of failure is exponentially small in n in the
uniform model. By finding the largest eigenvector with largest eigenvalue of X̂, one can also
construct an estimate obeying

∥x̂− eiϕx0∥ℓ2 ≤ C0 min{∥x0∥ℓ2 ,
∥ε∥ℓ1

m∥x0∥ℓ2
} (21)

for some ϕ ∈ [0, 2π].

The authors in [11] stressed that the bounds (20) and (21) considerably strengthened the
Theorem 2.2. To be sure, if we assume that the noise ε is known to be bounded, ∥ε∥ℓ2 ≤ η,
then (6) yields an estimate X̂ obeying

∥X̂ − x0x
∗
0∥22 ≤ C2

0η
2. (22)

In contrast, since ∥ε∥ℓ1 ≤
√
m∥ε∥ℓ2 ≤

√
mη, the Theorem 2.5 gives

∥X̂ − x0x
∗
0∥22 ≤ C2

0

η2

m
, (23)

this represents a substantial improvement. Importantly, these results stated in Theorem 2.5

are optimal and cannot possibly be improved. To see why the stability result is optimal, sup-
pose without loss of generality that ∥x0∥ℓ2 = 1. Further, imagine that we are informed that
∥ε∥ℓ1 ≤ C0η for some known C0. Since ∥A(x0x0)∥ℓ1 ≈ m, it would not be possible to distin-
guish between solutions of the form (1 + λ)x0x0 for max{0, 1− C0} . 1 + λ . 1 + C0. Hence,
the error in the Frobenius norm may be as large as C0∥x0x

∗
0∥1 = C0, which is what the theorem

gives.
PhaseLift algorithm is optimal in the sense that the number of amplitude measurements

required for phase reconstruction scales linearly with the dimension of the signal. However,
it specifically demands random Gaussian measurement vectors-a limitation that restricts prac-
tical utility and obscures the specific properties of measurement ensembles that enable phase
retrieval. So the authors in [29] presented a partial de-randomization of PhaseLift that only
required sampling from certain polynomial size vector configurations, called t-designs. Such
configurations have been studied in algebraic combinatorics, coding theory, and quantum infor-
mation. They proved reconstruction guarantees for a number of measurements that depended
on the degree t of the design. If the degree is allowed to grow logarithmically with the dimen-
sion, the bounds become tight up to polylog-factors. Beyond the specific case of PhaseLift,
this work highlighted the utility of spherical designs for the de-randomization of data recovery
schemes. Based on the PhaseLift algorithm (5) in the noiseless case and assume that the in-
tensity y

′
= ∥x0∥2ℓ2 is known, they suggested to recover x0 by solving the following feasibility
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problem
Find X

s. t. y = A(X),

tr(X) = y
′
,

X = X∗, X ≽ 0.

(24)

To begin with, let V1, · · · ,Vk be (finite dimensional, complex) vector spaces, and let V∗
1, · · · ,V∗

k

be their dual spaces. A function

f : V1 × · · · × Vk −→ C

is multilinear, if it is linear in each Vi, i = 1, · · · , k. We denote the space of such functions by
V∗

1 ⊗ · · · ⊗ V∗
k and call it the tensor product of V1, · · · ,Vk. Consequently, the tensor product

(Vn)⊗k is the space of all multilinear functions

f : (Vn)∗ × · · · × (Vn)∗ −→ C

and we call the elementary elements z1⊗· · ·⊗zk the tensor product of the vectors z1, · · · , zk ∈
Vn. We define the (symmetrizer) map PSymk : (Vn)⊗k → (Vn)⊗k via their action on elementary
elements:

PSymk(z1 ⊗ · · · ⊗ zk) :=
1

k!

∑
π∈Sk

zπ(1) ⊗ · · · ⊗ zπ(k) (25)

where Sk denotes the group of permutations of k elements and {π(1), · · · , π(k)} denotes these
permutations. This map projects (Vn)⊗k onto the totally symmetric subspace Symk of (Vn)⊗k

whose dimension [44] is

dim(Symk) =

(
n+ k − 1

k

)
. (26)

Roughly speaking, a complex projective t-design is a finite subset of the complex unit sphere
in the complex vector space Cn with the property that the discrete average of any polynomial
of degree t or less equals its uniform average. Many equivalent definitions-see e.g. [34, 41,58]-
capture this essence. Here, there is a more explicit definition of a t-design that is much more
suitable for our purpose:

Definition 2.6. ( [29]) A finite set {w1, · · · ,wN} ⊂ Cn of normalized vectors is called a t-
design of dimension n if and only if

1

N

N∑
i=1

(wiw
∗
i )

⊗t = dim(Symt)−1 · PSymt , (27)

where PSymt denotes the projector onto the totally symmetric subspace (25) of (Cn)⊗t and
consequently

dimSymt =

(
n+ t− 1

t

)
.

Theorem 2.7. ( [29]) Let x0 ∈ Cn be the unknown signal. Suppose that ∥x0∥ℓ2 is known
and that m measurement vectors a1, · · · ,am have been sampled independently and uniformly
at random from a t-design Dt ⊂ Cn(t ≥ 3). Then, with probability at least 1− e−ω, PhaseLift
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(24) recovers x0 up to a global phase, provided that the sampling rate exceeds

m ≥ c0ω · tn1+ 2
t log2 n.

Here ω ≥ 1 is an arbitrary parameter and c0 is a universal constant.

As the discussion of the previous subsection suggests, the bounds on the sampling rate
decrease as the order of the design increases. For fixed t, and up to poly-log factors, it is
proportional to O(n1+ 2

t ). This is sub-quadratic for the regime t ≥ 3 where their arguments
apply. If the degree is allowed to grow logarithmialy with the dimension (as t = 2 log n), they
recovered an optimal, linear scaling up to a poly-log overhead, m = O(n log3 n).

In light of the highly structured, analytical and exact designs known for degree 2 and 3,
it is of great interest to ask whether a linear scaling can already be achieved for some small,
fixed t. As shown by the following theorem, however, for t = 2 not even a sub-quadratic scaling
is possible if no additional assumptions are made, irrespective of the reconstruction algorithm
used.

Theorem 2.8. ( [29]) Let n be a prime power larger than 2.Then there exists a 2-design D2 ⊂
Cn and orthogonal, normalized vectors x0, z which have the following property: Suppose that
m measurement vectors a1, · · · ,am are sampled independently and uniformly at random from
D2. Then, for any ω ≥ 0, the number of measurements must obey

m ≥ ω · n(n+ 1)

4
,

or the event
|⟨ak,x0⟩|2 = |⟨ak, z⟩|2, ∀ k ∈ {1, · · · ,m}

will occur with probability at least e−ω.

To prove the Theorem 2.7, the authors [29] first followed [17, 28] to establish a certain injec-
tivity property of the measurement operator A. Compared to [17], their injectivity properties
are somewhat weaker. The proof in [17] used the independence of the components of the
Gaussian measurement operator, which is not available in this setting in [29], where individual
vector components might be strongly correlated. Then they constructed an “approximate dual
certificate” that proved that the sought-for signal indeed minimized the nuclear norm. Owing
to the weaker bounds found here, the construction was more complicated than that in [17]. In
the language of [28], they attempted to carry out the full “golfing scheme”, as opposed to the
“single leg” that proved sufficient in [17]. In addition, the defining properties of a maximal set
of MUBs [39,41,66,81] allow them to derive the converse bound, namely, Theorem 2.8.

2.2 Uniform Guarantees for PhaseLift algorithm

Signal reconstruction from random measurements is a central preoccupation in contempo-
rary signal processing. In this problem, we often acquire linear measurements of an unknown,
structured signal through a random sampling process. Recently, Tropp [72] has described a
simple approach that addresses a wide class of convex signal reconstruction problems involving
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random sampling and allows us to analyze general measurements in a unified way. To under-
stand these questions, the core challenge is to produce a lower bound on a nonnegative empirical
process. This approach is referred as “the bowling scheme” relying on a powerful framework,
called the Small Ball Method, that was developed by Mendelson and coauthors in a sequence of
papers, including [40,45,52–54]. Although an important feature of the phase retrieval problem is
that the signal x0 enters the measurement process (1) quadratically, which leads to a non-linear
and non-convex inverse problem. Fortunately, this apparent obstacle of having nonlinear mea-
surements can be overcome by noting that the measurement process -while quadratic in x0-is
linear in the outer product x0x

∗
0 as described as (3). This connects the phase retrieval problem

to the already extensive field of low-rank matrix recovery. Indeed, it is just a special case of
low rank matrix recovery, where both the signal X = x0x0 and the measurement matrices
Ak = aka

∗
k are constrained to be proportional to rank-one projectors. Further, we generally

concentrate on Hermitian matrices X ∈ Cn×n and consider such rank-one measurements with
noise vector ε ∈ Rm and ∥ε∥ℓ2 ≤ η. Then we can recovery X via nuclear norm minimization
corresponds to

min
Z∈Hn×n

∥Z∥1 s. t. ∥y −A(Z)∥ℓ2 ≤ η. (28)

Then such special low-rank matrix recovery problem can be uniformly solved by the Tropp’s
bowling scheme in [72] or a uniform variant of Tropp’s bowling scheme which was further
provided in [43]. The crucial ingredient of the bowling scheme is a new technique due to
Mendelson [53] and Koltchiskii, Mendelson [40] to obtain lower bounds for quantities of the

form infu∈E

m∑
k=1

|⟨ϕk,x⟩|2 where the ϕk are independent random vectors in Rd and E is a

subset of u ∈ E in Rd. We start by recalling from [72] the notions and results underlying this
technique.

Suppose we measure x0 ∈ Rd via measurements y = Φx0 + ε ∈ Rm, where Φ is an m × d

measurement matrix and ε ∈ Rm a vector of unknown errors with ∥ε∥ℓ2 ≤ η where η ≥ 0. Let
f : Rd → R ∪ {∞} be a proper convex function, they aimed at recovering x0 by solving the
convex program

min f(x) s. t. ∥Φx0 − y∥ℓ2 ≤ η. (29)
Let K ⊂ Rd be a cone. Then we define the minimum singular value of Φ with respect to K as

λmin(Φ;E) = inf{∥Φu∥ℓ2 ,u ∈ K ∩ Sd−1}. (30)

where Sd−1 is the unit sphere in Rd. For x ∈ Rd, we consider the (convex) descent cone

D(f,x) =
∪
τ>0

{y ∈ Rd : f(x+ τy) ≤ f(x)}. (31)

With these notions, the success of the convex program (29) can be estimated as follows.

Lemma 2.9. ( [72]) Let x0 ∈ Rd, Φ ∈ Rm×d and y = Φx0+ε ∈ Rm with ∥ε∥ℓ2 ≤ η where η ≥ 0.
Let f : Rd → R ∪ {∞} be a proper convex function and x̂ be a solution of the corresponding
convex program (29). Then

∥x̂− x0∥ℓ2 ≤ 2η

λmin(Φ;D(f,x0))
. (32)
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Then a crucial point is that in the situation that Φ is a random matrix with i.i.d. rows, the
following result can be applied to estimate λmin(Φ;D(f,x0))(see also [40,72]).

Lemma 2.10. (Koltchinskii, Mendelson; Tropp’s version) Fix E ⊂ Rd and let ϕ1, · · · ,ϕm be
independent copies of a random vector ϕ ∈ Rd. For ξ > 0, let

Qξ(E;ϕ) = inf
u∈E

P{|⟨ϕ,u⟩| ≥ ξ},

Wm(E;ϕ) = E sup
u∈E

⟨h,u⟩, where h =
1√
m

m∑
k=1

ϵkϕk.
(33)

with (ϵk) being a Rademacher sequence. Then for any ξ > 0 and any t ≥ 0, with probability at
least 1− e−2t2 ,

inf
u∈E

(
m∑

k=1

|⟨ϕk,x⟩|2)
1
2 ≥ ξ

√
mQ2ξ(E;ϕ)− 2Wm(E;ϕ)− ξ · t. (34)

Finally, they applied the notions in these results in the context of Theorems 2.11 and 2.13

as follows:
i) identify Hn×n with Rd = Rn2

.
ii) Φ is the matrix of A in the standard basis, i.e., Φ(X)k = tr(aka

∗
kX).

iii) f : Hn×n → R ∪ {∞} is the nuclear norm, i.e., f(X) = ∥X∥1.

The first main result gives a uniform and stable guarantee for recovering rank-r matrices
with O(rn) rank one measurements that are proportional to projectors onto standard Gaussian
random vectors.

Theorem 2.11. ( [43]) Consider the measurement process y = A(X)+ε with ∥ε∥ℓ2 ≤ η, η ≥ 0,
and measurement matrices Ak = aka

∗
k, where a1, · · · ,am ∈ Cn are independent standard

Gaussian distributed random vectors. Furthermore assume that the number of measurements
m ≥ C · nr for 1 ≤ r ≤ n arbitrary. Then with probability at least 1− e−C′m, it holds that for
any positive semidefinite matrix X ∈ Hn×n with rank at most r, any solution X̂ to the convex
optimization problem (28) obeys

∥X̂ −X∥2 ≤ C1η√
m
. (35)

Here, C,C ′ and C1 denote universal positive constants. (In particular, for η = 0, one has exact
reconstruction.)

For the rank one case r = 1, Theorem 2.11 essentially reproduced the main result in [11]

which used completely different proof techniques. (More precisely, in [11] instead of the program
(28), one minimized ∥A(Z)−y∥ℓ1 where Z is positive semidefinite. Then with high probability
for positive semidefinite X of rank-one and any minimizer X̂, the error estimate is ∥X̂−X∥1 ≤
C1∥ε∥ℓ1√

m
. Here, the error estimate C1∥ε∥ℓ2√

m
is slightly weaker.) A variant of the above statement

was shown in [72] to hold (in the real case) for a fixed matrix X of rank one. (More precisely, in
[72] it was assumed that X was positive semidefinite and the optimization was performed wrt.
the function f .) In fact, the proof reorganized and extended the arguments of [ [72], Section 8] in
such a way, that Theorem 8.1 of [72] was shown to hold even uniformly (that is simultaneously
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for all X) and for arbitrary rank. In contrast to [11], they didn’t need ϵ-nets to show uniformity.
As we will see, similar result can also be obtained from more general measurements drawn

independently from a weighted complex projective 4-design in the sense of Definition 2.12.

Definition 2.12. ( [43]) For t ∈ N, a finite set {w1, · · · ,wN} ⊂ Cn of normalized vectors with

corresponding weights {p1, · · · , pN} such that pi ≥ 0 and
N∑
i=1

pi = 1 is called a weighted complex

projective t-design of dimension n if and only if

1

N

N∑
i=1

pi(wiw
∗
i )

⊗t =

ˆ

CPn−1

(wiw
∗
i )

⊗tdw, (36)

where the integral on the right hand side is taken with respect to the unique unitarily-invariant
probability measure on the complex projective space CPn−1.

In [29] exact complex projective t-designs have been applied to the problem of phase retrieval.
The main result (Theorem 2.7) in [29] is a non-uniform exact recovery guarantee for phase
retrieval via PhaseLift algorithm that requires m = O(t · n1+2/t log2 n) measurement vectors
that are drawn uniformly from a proper t-design (t ≥ 3). The bowling scheme which was
employed in [43], allowed for considerably generalizing and improving this statement.

Theorem 2.13. ( [43]) Let {pi, wi}Ni=1 be a weighted 4-design and consider the measurement
matrices Ak =

√
n · (n+ 1)aka

∗
k, where a1, · · · ,am ∈ Cn are drawn independently from {pi, wi}Ni=1.

Furthermore assume that the number of measurements m obeys m ≥ C · nr logn for 1 ≤ r ≤ n

arbitrary. Then with probability at least 1 − e−C′m, it holds that for any positive semidefinite
matrix X ∈ Hn×n with rank at most r, any solution X̂ to the convex optimization problem (28)

with noisy measurements y = A(X) + ε where ∥ε∥ℓ2 ≤ η, η ≥ 0, obeys

∥X̂ −X∥2 ≤ C1η√
m
. (37)

Here, C,C ′ and C1 denote universal positive constants. (In particular, for η = 0, one has exact
reconstruction.)

The normalization factor
√

n · (n+ 1) leads to approximately the same normalization of the
Ak (wrt. the Frobenius norm) as in expectation in the Gauss case. This theorem is a stable,
uniform guarantee for recovering arbitrary Hermitian matrices of rank at most r with high
probability using the convex optimization problem (28) and m = O(nr logn) measurements
drawn independently (according to the design’s weights) from a weighted 4-design. It obviously
covers sampling from 4-designs as a special case.

Also, Theorem 2.13 is close to optimal in terms of the design order t required. In the context
of the phase retrieval problem, it was shown from Theorem 2.8, that choosing measurements
uniformly from a proper 2-design does not allow for a sub-quadratic sampling rate m without
additional structural assumptions on the measurement ensemble. It is presently open whether
Theorem 2.13 also holds for 3-designs.

In a word, the so-called bowling scheme was developed in [43,72] as a useful method that
guaranteed successful uniform recovery of Hermitian rank r matrices, either for the vectors
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ak, k = 1, · · · ,m, being chosen independently at random according to a standard Gaussian
distribution, or ak being sampled independently from an complex projective t-design with
t = 4. Particularly, when the matrix X = xx∗ to be recovered is of rank one, then such
low rank matrix recovery problem actually reduces to the problem of phaseless estimation via
the PhaseLift algorithm. Accordingly, the Theorem 2.11 and 2.13 remain valid. In addition,
many researchers have also been working on the general phase retrieval problem via PhaseLift
algorithm or the extended low rank matrix recovery from more general rank-one measurements,
for instance, sub-gaussian measurements, Bernoulli measurements with erasures, and so forth,
see [42, 51].

§3 PhaseLift under Additional Structured Measurements

In this section, we are going to study the phase retrieval problem from additional structured
measurements. As we can see from Section 2, a line of works establish that if the sampling
vectors ak are sufficiently randomized, then the original signal x0 can be uniquely or stably
recovered from on the order of n equations only or up to log-factors via the PhaseLift algorithm.
While this is all reassuring, the problem is that the Gaussian model, in which each measurement

gives us the magnitude of the dot product
n∑

i=1

x[i]ak[i] between the signal and (complex-valued)

Gaussian white noise, is very far from the kind of data one can collect in an X-ray imaging and
many related experiments. The purpose of this section is to show that the PhaseLift relaxation
is still exact in a physically inspired setup where one can modulate the signal of interest and
then let diffraction occur.

In practical applications, common approaches include the use of modulated light beams and
masks right after the sample, see [35, 84]. Hence, a structured measurements setup closely related
to applications was originally proposed in [21]. Mathematically, such structured measurements
we consider here can be expressed as follows:

yk,l =

∣∣∣∣∣∣
n∑

j=1

xj ϵ̄l,je
− i2πkj

n

∣∣∣∣∣∣
2

, 1 ≤ k ≤ n, 1 ≤ l ≤ L. (38)

Here ϵl,j is the code for modulating the signal. Namely, we collect the magnitudes of the
discrete Fourier transform of L modulations of the signal x0 = [x0[1], . . . , x0[n]]

⊤. Denote the

k-th discrete Fourier vector by fk =
n∑

j=1

ωjkej with ω := e
2πi
n a n-th root of unity and set

Dl =
n∑

i=1

ϵl,ieie
∗
i . Then the measurements (38) can be realized by the composition of diagonal

matrices and Fourier transforms, namely,

yk,l = |f∗
kD

∗
l x0|2, 1 ≤ k ≤ n, 1 ≤ l ≤ L. (39)

These diagonal matrices are often called as masks. Then combined with the "lifting" technique
[3, 10], we can translate the measurements (38) into the matrix form

yk,l = tr(Fk,lX0), 1 ≤ k ≤ n, 1 ≤ l ≤ L, (40)
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where Fk,l = Dlfkf
∗
kD

∗
l . Finally, y = A(X) gives the noiseless structured measurements (38)

with the linear operator A related to the measure vector Dlfk.
Correspondingly, there has been a lot of interest in PhaseLift algorithm to solve the phase

retrieval problem under Fourier measurements with masks. In what follows, two kinds of
random masks have been studied. First, Candès et al. [12] worked with diagonal matrices
Dl, 1 ≤ l ≤ L, which are i.i.d. copies of a matrix D, whose entries ϵl,j (1 ≤ j ≤ n, 1 ≤ l ≤ L)

are i.i.d. copies of a complex random variable ϵ which obeys
E[ϵ] = E[ϵ2] = 0,

|ϵ| ≤ M almost surely for some M > 0,

E[|ϵ|4] = 2E[|ϵ|2]2.

(41)

Thus they demonstrated that with high probability, O(log4 n) random complex masks are
enough to exactly reconstruct complex signals.

Theorem 3.1. ( [12]) Let x0 ∈ Cn be an unknown signal and suppose that the number L masks
(41) obeys L ≥ cγ log4 n. Then with probability at least 1 − 1

nγ , the PhaseLift (5) reduces to
a unique point x0x

∗
0, and thus recovers x0 up to a global phase. Here γ ≥ 1 and c > 0 are

absolute constants.

Remarkably, the phase recovery problem is different than that in which the sampling vectors
are Gaussian as in [11, 17]. The reason is that the measurements in Theorem 3.1 are far more
structured and far “less random”. Loosely speaking, the random modulation model in [12] used
on the order of m := nL random bits whereas the Gaussian model with the same number
of quadratic equations would use on the order of m · n random bits. A consequence of this
difference is that the proof of the theorem requires new techniques and ideas. Having said
this, an open and interesting research direction is to close the gap-remove the log factors-and
show whether or not perfect recovery can be achieved from a number of masks independent of
dimension.

In order to reduce the number of masks required to estimate the true signal via PhaseLift
algorithm, Gross et al. [30] designed different masks Dl, 1 ≤ l ≤ L, which are i.i.d. copies of a
matrix D, whose entries ϵl,j (1 ≤ j ≤ n, 1 ≤ l ≤ L) are i.i.d. copies of a real random variable
ϵ which obeys

E[ϵ] = E[ϵ3] = 0,

|ϵ| ≤ M almost surely for some M > 0,

E[ϵ4] = 2E[ϵ2]2, and ν := E[ϵ2].

(42)

Combined with this type of random masks, they showed that recovery of x0 would be guaranteed
for L ≥ c log2 n, provided that the signal’s intensity y′ = ∥x0∥2ℓ2 is known.

Theorem 3.2. ( [30]) Let x0 ∈ Rn be an unknown signal with y′ = 1 and let n > 3 be an
odd number. Suppose that L real masks are used with entries being independent copies of a
random variable obeying (42). Then with probability at least 1 − e−ω, the feasibility problem
(24) exactly recovers x0 up to a global phase, provided that L ≥ cω log2 n. Here ω ≥ 1 is an
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arbitrary parameter and c is a constant which is independent of the signal’s dimension.

It’s noteworthy that the Theorem 3.2 implies that O(log2 n) real masks with entires obey-
ing (42) are sufficient to recover complex signals of odd dimensions. Meanwhile, they thought
that this result remained valid for complex signals of even dimensions. Consequently, we have
recently worked on the problem about reducing sampling complexity of masked Fourier mea-
surements. We found that similar result as stated as Theorem 3.2 holds true for real signals of
even dimensions, but doesn’t hold for complex and even dimensional signals, see [47]. Mean-
while, since in the real world, measurements are often contaminated by noise. We studied the
stability and robustness of the PhaseLift algorithm under the masked Fourier measurements
with random masks. Then we demonstrated that the PhaseLift algorithm can stably estimate
the true signal from a number of random masks, which is poly-logarithmic in the number of
unknowns, see [47].

In addition, the authors in [37] considered specific masks instead of random masks. They
showed that two specific simple masks (each mask provides 2n measurements) or five specific
simple masks (each mask provides n measurements) are sufficient to provably and stably recover
almost all signals. For the first setting, namely, assume that the 2n-DFT was applied in the
measurement process with specific masks Di, i = 1, 2 with entries defined as follows,

ϵ1,i = 1, 1 ≤ i ≤ n, ϵ2,i :=

0 if i = 1,

1 if 2 ≤ i ≤ n,
(43)

then the related result is

Theorem 3.3. ( [37]) Consider any arbitrary signal x0 ∈ Cn such that x0[1] ̸= 0. Suppose
measurements are taken with the masks defined by D1 and D2, the convex program (5) has a
unique feasible point, namely, x0x

∗
0, and hence x0 can be uniquely recovered (up to a global

phase).

For the second setting, namely, assume that the n-DFT was applied in the measurement
process with specific masks Di, i = 3, · · · , 7 with entries defined as follows:

ϵ3,i :=

1 if 1 ≤ i ≤ n
2 ,

0 if n
2 ≤ i ≤ n,

ϵ4,i :=


0, i = 1

1 if 2 ≤ i ≤ n
2 ,

0 if n
2 ≤ i ≤ n,

(44)

ϵ5,i :=

0 if 1 ≤ i ≤ n
2 + 1,

1 if n
2 + 2 ≤ i ≤ n,

ϵ6,i :=

0 if 1 ≤ i ≤ n
2 ,

1 if n
2 ≤ i ≤ n,

(45)

and

ϵ7,i :=


0, 1 ≤ i ≤ n

4

1 if n
4 + 1 ≤ i ≤ 3n

4 ,

0 if 3n
4 + 1 ≤ i ≤ n.

(46)

Theorem 3.4. ( [37]) Consider any arbitrary signal x0 ∈ Cn such that x0[1], x[
n
2 ], x[

n
2 +1] ̸= 0.

Suppose measurements are taken with the masks defined by Di, i = 3, · · · , 7, the convex program
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(5) has a unique feasible point, namely, x0x
∗
0, and hence x0 can be uniquely recovered (up to a

global phase).

In the noisy case, suppose the noise corresponding to each measurement is bounded by η.
Then they considered the solution to

min
X

Tr(X)

s. t. ∥y −A(X)∥∞ ≤ η,

X ≽ 0.

(47)

to estimate x0.

Theorem 3.5. ( [37]) Consider any arbitrary signal x0 ∈ Cn such that ∥x0∥ℓ1 ≤ β and |x0[1]| ≥
γ > 0 for some β, γ. Suppose measurements are taken with the masks defined by Di, i = 1, 2,
the solution to the convex program (47) X̂ obeys

∥x0x
∗
0 − X̂∥2 ≤ C(β, γ) · η,

for some numerical constant C(β, γ).

§4 PhaseLift for Sparse Signal

In this section, we want to investigate the sparse phase retrieval problem

yk = |⟨ak,x0⟩|2, 1 ≤ k ≤ m, (48)

for a s-sparse signal x0 ∈ Cn. As stated in [46], if the unknown vector x0 is assumed to be s-
sparse, then under some mild conditions on the number of measurements, system (48) becomes
well-posed.

Theorem 4.1. ( [46]) Let x0 ∈ Rn be a s-sparse signal, ak ∈ Rn, k = 1, · · · ,m1 be generic
measurement vectors and let z0 ∈ Cn be a s-sparse complex signal and bk ∈ Cn, k = 1, · · · ,m2

be generic measurement vectors. Then m1 ≥ 4s − 1, m2 ≥ 8s − 2 quadratic measurements
{|⟨ak,x0⟩|2}m1

k=1, {|⟨bk, z0⟩|2}
m2

k=1 are sufficient to recover x0 and z0 up to a global phase.

Here, by generic they mean an open dense subset of the set of all m-element frames in Rn

or Cn.
Later, the authors in [78] studied the problem of minimal number of samples (measurements)

required for s-sparse phase retrieval. To begin with, they say that a set of vectors Am has the
phase retrieval property, or is phase retrievable, if MAm is injective on H̃ := Rn/ ∼ (or Cn/ ∼)

where the operator MAm is defined as following:

MAm : H̃ −→ Rm

x0 −→ MAm(x0) = [|⟨a1,x0⟩|2, · · · , |⟨am,x0⟩|2]⊤,
and the equivalence relation ∼ on Rn(or Cn): x ∼ z if and only if there is a constant c ∈ R(or C)
with |c| = 1 such that x = c·z. When H̃ := Rn/ ∼, they have completely settled the minimality
question for s-sparse phase retrieval in the real case.
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Theorem 4.2. ( [78]) Let Am = {a1, · · · ,am} be a set of vectors in Rn. Assume that Am

is s-sparse phase retrievable on Rn. Then m ≥ min{2s, 2n − 1}. Furthermore, a set Am of
m ≥ min{2s, 2n− 1} generically chosen vectors in Rnis s-sparse phase retrievable.

When H̃ := Cn/ ∼, they showed that

Theorem 4.3. ( [78]) A set Am of m ≥ 4s − 2 generically chosen vectors in Cn is s-sparse
phase retrievable.

Although the above theorem showed that in the complex case any m ≥ 4s − 2 generically
chosen vectors are s-sparse phase retrievable, it is unknown whether 4s−2 is in fact the minimal
number required. It is still an open question to be solved.

Meanwhile, it is well known that there have been many kinds of convex methods [1, 36,46,60]

and a group of non-convex methods to tackle with the sparse phase retrieval problem, see
[8, 56,57,63,68,69,79]. One of convex optimization methods in [46] has recently been proven to be
very successful in solving the sparse phase retrieval problem from random Gaussian measure-
ments. Inspired by the success of convex relaxations in compressed sensing and the PhaseLift
algorithm for phase retrieval, it is natural to leverage the sparsity assumption to try to effi-
ciently recover signals from fewer than n intensity measurements. A convex formulation in this
direction, which, to the best of our knowledge, was first proposed in [60] to solve (48), is the
following program:

min
X

Tr(X) + λ · ∥X∥1,1

s. t. A(X) = y,

X ≽ 0.

(49)

Then the following theorem provided in [46] showed that if {ak}mk=1 are i.i.d standard normal
random vectors, the solution to (49) for an appropriate choice of λ, is exactly x0x

⊤
0 , provided

that s ≤ O(
√

m
logn ).

Theorem 4.4. ( [46]) Fix a signal x0 ∈ Rn with ∥x0∥ℓ2 = 1 and ∥x0∥0 = s. Let ak ∈ Rn

be i.i.d standard normal random vectors. Then the solution to the convex program (49) is
exact with probability at least 1 − (2 log n + 3)(4e−γ· m

2 log n+3 + 1
n3 ) − (5 + 2n2)e−γ·m, provided

λ >
√
s∥x0∥ℓ1 + 1, λ < n2

4 and m ≥ Cλ2 log n. Here C and γ are numerical constants.

Remark 4.5. By choosing λ =
√

m
4C logn , we have exact recovery with probability at least

1 − (2 log n + 3)(4e−γ· m
2 log n+3 + 1

n3 ) − (5 + 2n2)e−γ·m if the number of measurements obeys
m ≥ O(∥x0∥2ℓ1 · s logn). Moreover, by choosing x0 to be a s-sparse vector with components
xk = ± 1√

s
, k = 1, · · · , n, this reads m ≥ O(s2 log n).

This following theorem obtained sharp theoretical results on the performance of (49) in the
Gaussian quadratic measurement setting, which may be surprising since it implies that there
is a substantial gap between the sufficient number of measurements for injectivity and the
necessary number of measurements for recovery via a class of natural convex relaxations.
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Theorem 4.6. ( [46]) Under the setting of Theorem 4.2, assuming 4 ≤ s ≤ m ≤ n
40 log n , then

there is an event E with probability at least 1 − m
n5 − m · e−0.09n+0.09s+0.79m, such that the

following property holds: If there exists a lambda ∈ R such that x0x
⊤
0 is a minimizer of (49),

then we have

m ≥ min{(s
4
− 1)2,

max{∥x0∥2ℓ1 −
s
2 , 0}

2

500 log2 n
}. (50)

Remark 4.7. Taking x0 to be a s-sparse vector with components xk = ± 1√
s
, k = 1, · · · , n,

this reads m ≥ O( s2

log2 n
).

However, such methods are either lack of analyses of optimal sample complexity or recovery
guarantees for this problem under masked Fourier measurements. Recently, the authors in
[1, 36] independently proposed a two-stage algorithm which consisted of a low-rank recovery
stage and a sparse recovery stage to recover a sparse and rank-one matrix. They show that
the s-sparse x0 ∈ Rn can be estimated robust to noise from O(s log(ns )) composite random
Gaussian measurements. So in [47], we were inspired to apply this two-stage algorithm and
more structured measurements to recover the s-sparse signal x0. The structured measurements
we used there, namely, ai (i = 1, . . . ,m), were composed of masked Fourier measurement and
random matrices (for instance, Bernoulli random matrix or partial Fourier matrix). Based on
the stable guarantees established for general signals, we proved that the s-sparse signal x0 can
be stably estimated from O(s log( ens ) log4(s log( ens ))) corrupted composite measurements.
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