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A different approach for conformable fractional

biochemical reaction–diffusion models

Anas Arafa

Abstract. This paper attempts to shed light on three biochemical reaction-diffusion models:

conformable fractional Brusselator, conformable fractional Schnakenberg, and conformable frac-

tional Gray-Scott. This is done using conformable residual power series (hence-form, CRPS)

technique which has indeed, proved to be a useful tool for generating the solution. Interestingly,

CRPS is an effective method of solving nonlinear fractional differential equations with greater

accuracy and ease.

§1 Introduction

Brusselator model [1-5], Schnakenberg model [6-7], Gray-Scott model [8-10], were produced

in biochemistry through various mathematical models, especially reaction-diffusion systems. In

recent years, reaction-diffusion systems in biological and biochemical phenomena were formu-

lated by fractional calculus [11-24]. The memory effect of the fractional operator gives the

differential equations an increased expressive power [25-30]. Khalil et al. [31] introduce a new

non-integer derivative called conformable fractional derivative which depends on the history of

the previous time. The conformable fractional differential equation has successfully been fitted

to various nonlinear fractional problems [32-34]. The exact and approximate solutions of con-

formable fractional derivatives can be given easily to understand physical phenomena arising in

many scientific fields [35-37]. Conformable fractional derivative is a local fractional derivative

which satisfies most of the properties of integer derivative and has clear physical interpretation.

Residual power series (RPS) technique is a useful tool for generating the solution of fractional

differential equations FDEs [38-39]. In this paper, we introduce new conformable fractional

reaction-diffusion models arising in biochemical phenomena which can be expressed as follows:
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• The conformable fractional Brusselator modelT γ
t u = D1∇2u− (A+ 1)u+ u2v +B,

T γ
t v = D2∇2v +Au− u2v.

(1)

where u and v remain the concentrations of two reactants, and D2 are positive diffusion

coefficients, ∇2u and ∇2v are the diffusive terms, A and B are constants concentrations

and T γ
t is conformable fractional derivative.

• The conformable fractional Schnakenberg modelT γ
t u = D1∇2u− δ(u− u2v −A),

T γ
t v = D2∇2v − δ(u2v −B).

(2)

where u and v remain the chemical species,

D1

and D2 are positive diffusion coefficients, ∇2u and ∇2v are the diffusive terms, δ is

treated as dimensionless constant, A and B are positive parameters, and T γ
t is conformable

fractional derivative.

• The conformable fractional Gray-Scott modelT γ
t u = D1∇2u−A(1− u)− uv2,

T γ
t v = D2∇2v + (A+B)v + uv2.

(3)

where u and v remain the concentration of activator and inhibitor, D1 andD2 are diffusion

coefficients, ∇2u and ∇2v are the diffusive terms, A and B remain the dimensionless feed

rate and dimensionless rate constant of the activator, and T γ
t is conformable fractional

derivative. The outline of this paper has the following sections: In section 2, a brief his-

tory of the fractional derivatives and conformable fractional derivative. In section 3, the

key ideas of the conformable residual power series (CRPS) technique. In section 4, a new

approximate results for the conformable fractional Brusselator model, conformable frac-

tional Schnakenberg model, and conformable fractional Gray-Scott model are presented.

Finally, a brief conclusion.

§2 Preliminaries

The most widely fractional derivatives used are the Riemann-Liouville and Caputo [40-41].

Recently, a new non integer operator conformable fractional operator to the nonlinear fractional

problems are presented [32-34].

Definition 2.1

The conformable fractional operator T γ
t of a function is denoted as:

T γ
t u(x, y, t) = lim

ε→0

u(x, y, εt1−γ)− u(x, y, t)

ε
, 0 < γ ≤ 1, t > 0. (4)
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Theorem 2.1

Let u(x, y, t),and v(x, y, t) be γ-differentiable function at (x, y, t) ∈ R× (0,∞),then

1. T γ
t (t

m) = mtm−γ ,m ∈ R

2. T γ
t (au+ bv) = aT γ

t u+ bT γ
t v

3. T γ
t (k) = 0, k is a constant

4. T γ
t (u � v) = uT γ

t v + vT γ
t u

5. T γ
t (

u
v ) =

vTγ
t u−uTγ

t v
v2

6. If u is differentiable with respect to t, then T γ
t u = t1−γ ∂u

∂t .

Definition 2.2

The k-truncated series uk(x, y, t) of the CRPS method [35-36] take the following form:

uk(x, y, t) = f(x, y) +
∑k

n=1
fn(x, y)

tnγ

γnn!
, 0 < γ ≤ 1, t > 0. (5)

§3 Analysis of the CRPS technique

We outline the CRPS [38] technique to get approximate solutions of conformable fractional

partial differential equations. Consider the fractional problem:

T γ
t u(x, y, t) = ∇2u(x, y, t) +N(u), 0 < γ≤1, t > 0,

with initial condition

u(x, y, 0) = f(x, y). (6)

The k-truncated series take the following form:

uk(x, y, t) = f(x, y) +
∑k

n=1
fn(x, y)

tnγ

γnn!
. (7)

The approximate solutions u0(x, y, t) of CRPS method is

u0(x, y, t) = f(x, y). (8)

The k-residual function Resuk(x, y, t) is define as

Resuk(x, y, t) = T γ
t uk(x, y, t)−∇2uk(x, y, t−N(uk(x, y, t). (9)

To obtain the coefficients fn(x, y), n = 1, 2, 3, ..., k, solve the following equation

T
(k−1)γ
t Resuk(x, y, 0) = 0. (10)

To determinef1(x, y), put (k =1) into Eq. (9) leading to:

Resu1(x, y, t) = T γ
t u1(x, y, t)−∇2u1(x, y, t−N(u1(x, y, t), (11)

where u1(x, y, t) is the 1st CRPS approximate solutions which take the form:

u1(x, y, t) = f(x, y) + f1(x, y)
tγ

γ
. (12)
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Substitute Eq. (12) into Eq. (11), and using Eq. (10), we obtain the required coefficient

f1(x, y).

To determine f2(x, y), put (k =2) into Eq. (9) leading to:

Resu2(x, y, t) = T γ
t u2(x, y, t)−∇2u2(x, y, t)−N(u2(x, y, t), (13)

where u2(x, y, t) is the 2nd CRPS approximate solutions which take the form:

u2(x, y, t) = f(x, y) + f1(x, y)
tγ

γ
+ f2(x, y)

t2γ

2γ2
.

Substitute Eq. (12) into Eq. (11), and using Eq. (10), we obtain the required coefficientsf2(x, y).

And so on.

§4 Applications

Here, we will use CRPS method to obtain new approximate solutions for three model under

investigation (conformable fractional Brusselator model, conformable fractional Schnakenberg

model, and conformable fractional Gray-Scott model)

Problem 4.1

Let us consider the new conformable fractional Brusselator model:T γ
t u = D1(uxx + uyy)− (A+ 1)u+ u2v +B,

T γ
t v = D2(vxx + vyy) +Au− u2v, 0 < γ≤1, t > 0

(14)

with the initial data [18] u(x, y, 0) = e−x−y,

v(x, y, 0) = ex+y.
(15)

The exact solution of the classical problem (4.1) when γ → 1, take the formu(x, y, t) = e−x−y−0.5t,

v(x, y, t) = ex+y+0.5t.
(16)

The k-truncated series uk(x, y, t) and vk(x, y, t) take the following form:uk(x, y, t) = f(x, y) +
∑k

n=1fn(x, y)
tnγ

γnn! ,

vk(x, y, t) = g(x, y) +
∑k

n=1gn(x, y)
tnγ

γnn! .

The approximate solutions u0(x, y, t) and v0(x, y, t) of CRPS method areu(x, y, 0) f(x, y),

v(x, y, 0) g(x, y).
(17)

The k-residual functions Resuk(x, y, t) and Resvk(x, y, t) are defined asResuk(x, y, t) = T γ
t uk −D1((uk)xx + (uk)yy) + (A+ 1)uk − u2

kvk −B,

Resvk(x, y, t) = T γ
t vk −D2((vk)xx + (vk)yy)−Avk + u2

kvk.
(18)
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To obtain the coefficients fn(x, y), and gn(x, y), n = 1, 2, 3, ..., k, solve the following equations:T
(k−1)γ
t Resuk(x, y, 0) = 0,

T
(k−1)γ
t Resvk(x, y, 0) = 0.

(19)

To determinef1(x, y), and g1(x, y), put k =1 into Eq. (19) leading to:Resu1(x, y, t) = T γ
t u1 −D1((u1)xx + (u1)yy) + (A+ 1)u1 − u2

1v1 −B,

Resv1(x, y, t) = T γ
t v1 −D2((v1)xx + (v1)yy)−Av1 + u2

1v1,
(20)

where u1(x, y, t) = f(x, y) + f1(x, y)
tγ

γ ,

v1(x, y, t) = g(x, y) + g1(x, y)
tγ

γ .
(21)

Substituting Eq. (22) into Eq. (21), and using Eq. (20), we obtain the required coefficients

f1(x, y), g1(x, y) as: f1(x, y, t) = D1(fxx + fyy)− (A+ 1)f + f2g +B,

g1(x, y, t) = D2(gxx + gyy) +Ag − f2g.
(22)

The 1st CRPS approximate solutions take the form:u1(x, y, t) = f(x, y) +
(
D1(fxx + fyy)− (A+ 1)f + f2g +B

)
tγ

γ ,

v1(x, y, t) = g(x, y) +
(
D2(gxx + gyy) +Ag − f2g

)
tγ

γ .
(23)

To determine f2(x, y), put (k =2) into Eq. (19) leading to:Resu2(x, y, t) = T γ
t u2 −D1((u2)xx + (u2)yy) + (A+ 1)u2 − u2

2v2 −B,

Resv2(x, y, t) = T γ
t v2 −D2((v2)xx + (v2)yy)−Av1 + u2

2v2,
(24)

where u2(x, y, t) = f(x, y) + f1(x, y)
tγ

γ + f2(x, y)
t2γ

γ2 ,

v2(x, y, t) = g(x, y) + g1(x, y)
tγ

γ + g2(x, y)
t2γ

γ2 .
(25)

Substituting Eq. (26) into Eq. (25), and using Eq. (20), we obtain the required coefficients

f2(x, y), g2(x, y) as:f2(x, y, t) = D1(f1xx + f1yy )− (A+ 1)f1 + f2g1 + 2ff1g +B,

g2(x, y, t) = D2(g1xx + g1yy ) +Af1 − f2g1 − 2ff1g.
(26)

The 2nd CRPS approximate solutions take the form:
u2(x, y, t) = f(x, y) +

(
D1(fxx + fyy)− (A+ 1)f + f2g +B

)
tγ

γ +

(D1(f1xx
+ f1yy

)− (A+ 1)f1 + f2g1 + 2ff1g +B) t
2γ

γ2 ,

v2(x, y, t) = g(x, y) +
(
D2(gxx + gyy) +Ag − f2g

)
tγ

γ +

(D2(g1xx + g1yy ) +Af1 − f2g1 − 2ff1g)
t2γ

γ2 .

(27)

And so on. See Tables (1-2), and Figs. (1-4).
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Table 1: Comparison between CRPS solution u2(x, y, t) (problem 4.1) with exact solution for
D1 = D2 = 0.25, A = 1, B = 0, γ = 1.
(x,y) (0.2,0.2) (0.5,0.5)
t Exact CRPS |CRPS − Exact| Exact CRPS |CRPS − Exact|
0.1 0.637628 0.637641 1.3792E-05 0.349937 0.349937 7.5693E-06
0.2 0.606530 0.606639 1.0898E-04 0.332871 0.332930 5.9810E-05
0.3 0.576949 0.577313 3.6332E-04 0.316636 0.316836 1.9939E-04
0.4 0.548811 0.549662 8.5080E-04 0.301194 0.301661 4.6692E-04
0.5 0.522045 0.523687 1.6417E-03 0.286504 0.287405 9.0101E-04
0.6 0.496585 0.499388 2.8031E-03 0.272531 0.274070 1.5383E-03
0.7 0.472366 0.476765 4.3985E-03 0.259240 0.261654 2.4139E-03
0.8 0.449329 0.455817 6.4886E-03 0.25015 0.25015 3.5610E-03
0.9 0.427414 0.436545 9.1309E-03 0.234570 0.239581 5.0111E-03

Table 2: Comparison between CRPS solution v2(x, y, t) (problem 4.1) with exact solution for
D1 = D2 = 0.25, A = 1, B = 0, γ = 1.
(x,y) (0.2,0.2) (0.5,0.5)
t Exact CRPS |CRPS − Exact| Exact CRPS |CRPS − Exact|
0.1 1.568312 1.568281 3.1472E-05 2.857651 2.857594 5.7345E-05
0.2 1.648721 1.648466 2.5497E-04 3.004166 3.003701 4.6460E-04
0.3 1.733253 1.732381 8.7158E-04 3.158193 3.156605 1.5881E-03
0.4 1.822119 1.820026 2.0926E-03 3.320117 3.316304 3.8130E-03
0.5 1.915541 1.911400 4.1404E-03 3.490343 3.482799 7.5443E-03
0.6 2.013753 2.006504 7.2484E-03 3.669297 3.656089 1.3207E-02
0.7 2.117000 2.105338 1.1662E-02 3.857426 3.836175 2.1250E-02
0.8 2.225541 2.207901 1.7640E-02 4.0552 4.023057 3.2142E-02
0.9 2.339647 2.314193 2.5453E-02 4.263115 4.216735 4.6379E-02

Table 3: The CRPS solution (problem 4.1) for D1 = D2 = 0.25, A = 1, B = 0, x = y = 0.5 at
different values of fractional power γ.

t
γ = 0.9 γ = 0.7 γ = 0.5

u v u v u v
0.1 0.3430496 2.915048 0.3191858 3.133294 0.2699397 3.713792
0.2 0.3229995 3.096205 0.2925668 3.420478 0.2401467 4.205763
0.3 0.305222 3.277327 0.272147 3.682698 0.2215655 4.614888
0.4 0.2891941 3.460926 0.2555364 3.932914 0.2087879 4.981131
0.5 0.2746596 3.648021 0.2416862 4.17626 0.1997193 5.319968
0.6 0.2614623 3.839124 0.2300077 4.415368 0.1932851 5.639338
0.7 0.2494953 4.034524 0.2201244 4.651788 0.1888472 5.943958
0.8 0.23868 4.234394 0.2117749 4.886509 0.1859898 6.2369
0.9 0.2289557 4.43884 0.2047675 5.120205 0.1844241 6.520297
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Figure 1: (a) Exact solution (classical case) (b) CRPS solution u2(x, y, t) (problem 4.1) for
D1 = D2 = 0.25, A = 1, B = 0, t = 1, γ = 1.

Figure 2: The CRPS solution u2(x, y, t) for problem 4.1 (a) γ = 0.9 (b) γ = 0.7.

Figure 3: (a) Exact solution (classical case) (b) CRPS solution v2(x, y, t) (problem 4.1) for
D1 = D2 = 0.25, A = 1, B = 0, t = 1, γ = 1.



Anas Arafa. A different approach for conformable fractional biochemical... 459

Figure 4: The CRPS solution v2(x, y, t) for problem 4.1 (a) γ = 0.9 (b) γ = 0.7.

Figure 5: The CRPS solutionu2(x, y, t), v2(x, y, t) (problem 4.1) for x = y = 1 at different
values of fractional power γ.

The comparisons between the CRPS solution with exact solution are shown in Figs. 1-4

and Tables 1-2, which proved the reliability of the method. The geometric behavior solutions of

conformable fractional Brusselator model using CRPS method are shown in Fig. 5 and Table

3. The order of fractional derivative γ is an index of memory. Besides, the concentrations of

two reactants u(x, y, t) and v(x, y, t) continuously depended on fractional power γ.

Problem 4.2

Let us consider the new conformable fractional Schnakenberg model:T γ
t u = D1(uxx + uyy)− δ(u− u2v −A)

T γ
t v = D2(vxx + vyy)− δ(u2v −B),

(28)

with the initial data [23] u(x, y, 0) = 1− e−10(x−0.5)2+(y−0.5)2 ,

v(x, y, 0) = e−10(x−0.5)2+2(y−0.5)2 .
(29)
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By repeating the above CRPS steps, we obtained the following results:f1(x, y, t) = D1(fxx + fyy) + δ(A− f + f2g),

g1(x, y, t) = D2(gxx + gyy) + δ(B − f2g).
(30)

u1(x, y, t) = f(x, y) +
(
D1(fxx + fyy) + δ(A− f + f2g)

)
tγ

γ

v1(x, y, t) = g(x, y) +
(
D2(gxx + gyy) + δ(B − f2g)

)
tγ

γ .
(31)f2(x, y, t) = D1(f1xx + f1yy ) + δ(A− f1 + f2g1 + 2ff1g),

g2(x, y, t) = D2(g1xx + g1yy ) + δ(B − f2g1 − 2ff1g).
(32)

u2(x, y, t) = f(x, y) +
(
D1(fxx + fyy) + δ(A− f + f2g)

)
tγ

γ +

(D1(f1xx + f1yy ) + δ(A− f1 + f2g1 + 2ff1g))
t2γ

γ2 ,

v2(x, y, t) = g(x, y) +
(
D2(gxx + gyy) + δ(B − f2g)

)
tγ

γ +

(D2(g1xx + g1yy ) + δ(B − f2g1 − 2ff1g))
t2γ

γ2 .

(33)

And so on. See Figs. (6-8).

The geometric behavior solutions of conformable fractional Schnakenberg model using CRPS

method are shown in Figs. 6-8. The order of fractional derivative γ is an index of memory.

Besides, the concentration of activator and inhibitor u(x,y,t) and v(x,y,t) continuously depended

on fractional power γ.

Figure 6: The CRPS solution u2(x, y, t) for problem 4.2 at D1 = 1, D2 = 12, A = 0.1, B =
0.9, δ = 3, t = 100 (a) γ = 1 (b) γ = 0.9(c) γ = 0.7 (d) γ = 0.5.
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Figure 7: The CRPS solution v2(x, y, t) for problem 4.2 at D1 = 1, D2 = 12, A = 0.1, B =
0.9, δ = 3, t = 100 (a) γ = 1 (b) γ = 0.9 (c) γ = 0.7 (d) γ = 0.5.

Figure 8: The CRPS solution u2(x, y, t), v2(x, y, t) (problem 4.2) for x = y = 1 at different
values of fractional power γ.

Problem 4.3

Let us consider the new conformable fractional Gray-Scott model:T γ
t u = D1(uxx + uyy) +A(1− u)− uv2,

T γ
t v = D2(vxx + vyy)− (A+B)v + uv2,

(34)
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with the initial data [23] u(x, y, 0) = 1− 0.5e−0.05(x2+y2),

v(x, y, 0) = 0.25e−0.05(x2+y2).
(35)

By repeating the CRPS steps, we obtained the following results:f1(x, y, t) = D1(fxx + fyy) +A(1− f)− fg2,

g1(x, y, t) = D2(gxx + gyy)− (A+B)g + fg2.
(36)

u1(x, y, t) = f(x, y) +
(
D1(fxx + fyy) +A(1− f)− fg2

)
tγ

γ ,

v1(x, y, t) = g(x, y) +
(
D2(gxx + gyy)− (A+B)g + fg2

)
tγ

γ .
(37)f2(x, y, t) = D1(f1xx + f1yy ) +A(1− f1)− f1g

2 − 2fgg1,

g2(x, y, t) = D2(g1xx + g1yy )− (A+B)g1 + f1g
2 + 2fgg1.

(38)
u2(x, y, t) = f(x, y) +

(
D1(fxx + fyy) +A(1− f)− fg2

)
tγ

γ +

(D1(f1xx + f1yy ) +A(1− f1)− f1g
2 − 2fgg1)

t2γ

γ2 ,

v2(x, y, t) = g(x, y) +
(
D2(gxx + gyy)− (A+B)g + fg2

)
tγ

γ +

(D2(g1xx + g1yy )− (A+B)g1 + f1g
2 + 2fgg1)

t2γ

γ2 .

(39)

And so on. See Figs. 9-11.

Figure 9: The CRPS solution u2(x, y, t) (problem 4.3) at D1 = 2(10)−5, D2 = 2D1, A =
0.351, B = 0.33, t = 100 (a) γ = 1 (b) γ = 0.9 (c) γ = 0.7 (d) γ = 0.5.
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Figure 10: The CRPS solution v2(x, y, t) (problem 4.3) at D1 = 2(10)−5, D2 = 2D1, A =
0.351, B = 0.33, t = 100 (a) γ = 1 (b) γ = 0.9 (c) γ = 0.7 (d) γ = 0.5.

Figure 11: The CRPS solution u2(x, y, t), v2(x, y, t) (problem 4.3) for x = y = 1 at different
values of fractional power γ.

The geometric behavior solutions of conformable fractional Gray-Scott model using CRPS

method are shown in Figs. 9-11. The order of fractional derivative γ is an index of memo-

ry. Besides, the concentration of activator and inhibitor u(x, y, t) and v(x, y, t) continuously

depended on fractional power γ.
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§5 Conclusions

The CRPS method has successfully been used to give new approximate solutions for Brusse-

lator model, conformable fractional Schnakenberg model, and conformable fractional Gray-Scott

model. It has more than adequately proved so effective and reliable a method for the purpose.

The behavior of the solution seems to be extremely interesting in that it has proved a number

of useful applications. The natural frequency of the solutions varies with the change of frac-

tional power. It is noted that CRPS method is a very simple effective technique for solving

time-fractional problems. Further, studies on the topic may still lead to greater conclusion and

more interesting results.
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