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Protection zone in a diffusive predator-prey model with

Ivlev-type functional response

ZHANG Li-na XU Fei

Abstract. The effect of a protection zone on a diffusion predator-prey model with Ivlev-type

functional response is considered. We discuss the existence and non-existence of positive steady

state solutions by using the bifurcation theory. It is shown that the protection zone for prey

has beneficial effects on the coexistence of the two species when the growth rate of predator is

positive. Moreover, we examine the dependence of the coexistence region on the efficiency of

the predator capture of the prey and the protection zone.

§1 Introduction

Predator-prey interaction is one of the basic interspecies relations for ecological and social

models. When the spatial distribution of the populations is also considered, a prototypical

predator-prey system is of the form
ut = d1△u+ u (λ− u)− p(u)v, x ∈ Ω, t > 0,

vt = d2△v + v[µ− v + cp(u)], x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1)

where u(x, t) and v(x, t) are the population densities of the prey and the predator, respectively;

d1 and d2 are the diffusion rates; Ω is a bounded domain in Rn with smooth boundary ∂Ω, n is

the outward unit normal vector on ∂Ω; λ, µ denote the growth rates of the respective species;

c is the conversion rate from the prey loss to the predator gain. Here both the predator and

prey have a logistic growth rate. The function p(u) represents the functional response of the

predator. The classical Lotka-Volterra model assumes that p(u) = u. There is an important

prey-dependent functional response: p(u) = 1− e−ru, due originally to Ivlev (1961) [7], where

r means the efficiency of the predator capture of the prey. The parameters λ, r and c are all

positive constants, and µ is a constant.

As pointed out in [2], in most predator-prey interactions, the prey population would extin-

guish if the growth rate of the predator is too large, or the predation rate is too high. Thus,
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human interference is often needed to save the endangered species. A natural idea is to set

up a protection zone for the prey, where the prey species can enter and leave freely while the

predator is kept out. Recently, many mathematicians are interested in studying the effect-

s of protection zone on various predator-prey models, refer to the works for Holling II type

predator-prey system (Du and Shi 2006) [2], Leslie type predator-prey system (Du et al. 2009)

[3], Beddington-DeAngelis type predator-prey system (He and Zheng 2017) [6], as well as the

ratio-dependent predator-prey model (Zeng et al. 2018) [16]. Moreover, there are other types

of prey refuge created in [10,11].

When the protection zone is absent, many mathematicians have studied the Ivlev type

predator-prey model and obtained some interesting results [5,13,14]. These results indicated

that the Ivlev-type predator-prey model has wide applicabilities in ecology. But to our knowl-

edge, there are few works on such Ivlev-type predator-prey model with a protection zone for

prey. Following this line of thinking, in this paper we modify the Ivlev-type predator-prey

model (1) to include a protection zone for the prey, that is, we consider the following system
ut = d1△u+ u (λ− u)− b(x)v(1− e−ru), x ∈ Ω, t > 0,

vt = d2△v + v[µ− v + c(1− e−ru)], x ∈ Ω \ Ω̄0, t > 0,

∂nu = 0, x ∈ ∂Ω, t > 0, ∂nv = 0, x ∈ ∂Ω ∪ ∂Ω0, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω, v(x, 0) = v0(x) ≥ 0, x ∈ Ω \ Ω̄0,

(2)

where Ω0 is a subdomain of Ω satisfying Ω0 ⊂ Ω and the boundary ∂Ω0 is also smooth. The

function b(x) = 1 in Ω \ Ω0 and b(x) = 0 when x ∈ Ω0. The larger region Ω is the habitat

of the prey with Ω0 its protection zone; thus the predator species can only exist in Ω \ Ω0.

The boundary conditions mean that the predator and prey live in a closed ecosystem, and the

prey could cross the boundary freely of the protection zone but the predator is prohibited from

entering Ω0.

In the present paper, to simplify the notations and make our analysis more transparent, we

will assume that d1 = d2 = 1. We mainly study the associate stationary problem with (2):
△u+ u (λ− u)− b(x)v(1− e−ru) = 0, x ∈ Ω,

△v + v[µ− v + c(1− e−ru)] = 0, x ∈ Ω1,

∂nu = 0, x ∈ ∂Ω,

∂nv = 0, x ∈ ∂Ω1,

(3)

where Ω1 = Ω \ Ω̄0. Among other things, we are interesting in the positive solutions of (3).

From an ecological point of view, a positive solution implies a coexistence steady state. We aim

to obtain a sufficient condition of coefficients for the existence of positive solutions of (3). Our

approach to the proof is based on the local and global bifurcation arguments.

The rest of this paper is structured in the following way. In Section 2, we state the main

results of this paper. In Section 3, we present some basic results on the set of steady-state

solutions and get the nonexistence of coexistence states. In Section 4, we obtain positive

solutions from the viewpoint of the bifurcation theory. In Section 5, we examine the effects

of the predator capture of the prey r and the protection zone Ω0 on the coexistence region.

Finally, we give a conclusion in the last section.

The eigenvalues of the −∆ operator with various boundary conditions, domains and poten-

tial functions will play an important role in our analysis. In this paper, we denote by λD1 (ϕ,O)
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and λN1 (ϕ,O) the principle eigenvalue of −∆ + ϕ over the bounded domain O, with Dirichlet

and Neumann boundary conditions respectively. If the potential function ϕ = 0, we simply

denote them by λD1 (O) and λN1 (O).

§2 Main results

In this section, we give our main results of this paper. In order to better explain the meaning

of our main results, we introduce the following three sets in the (λ, µ) plane:

S1 :=
{
(λ, µ) : µ = −c(1− e−rλ)

}
,

S2 :=
{
(λ, µ) : λN1 (−λ+ b(x)rµ,Ω) = 0

}
,

S3 :=
{
(λ, µ) : λN1

(
−λ+ b(x)rµe−rλ,Ω

)
= 0
}
.

(4)

Let µ∗(λ) = −c(1− e−rλ). It is easy to see that µ = µ∗(λ) is monotone decreasing with respect

to λ ∈ (0,∞), µ∗(0) = 0, and limλ→∞ µ∗(λ) = −c.
The profiles of curves S2 and S3 will be useful in later discussions, we will discuss them

in Subsection 3.1. Precisely, the set S2 is an unbounded curve and can be expressed by S2 =

{(λ, µ) ∈ R2
+ : µ = µ∗(λ)}, where µ∗(λ) is a positive continuous and monotone increasing

function for λ ∈ (0, λD1 (Ω0)), which satisfies limλ→0+ µ
∗(λ) = 0 and limλ→[λD

1 (Ω0)]− µ
∗(λ) = ∞

(see Lemma 3.2); S3 can be expressed by S3 = {(λ, µ̄) ∈ R2
+ : µ̄ = µ̄(λ)}, where S3 has similar

properties with S2 and satisfies µ̄(λ) > µ∗(λ) (see Lemma 3.3).

Our first main result is to show that (3) has no positive solution if µ ≤ µ∗ or µ ≥ µ̄

holds (see Theorem 3.6). This result means that the lower or higher growth rate of the predator

wipes out any positive solution even if there exists a protection zone for the prey.

Our second main result is to obtain the coexistence region of positive solutions for (3):

(i) When λ ≥ λD1 (Ω0), (3) possesses at least one positive solution if µ > µ∗ (see Theorem 4.2);

(ii) When λ < λD1 (Ω0), (3) possess at least one positive solution for µ∗ < µ < µ∗ (see Theorem

4.4).

Combining Theorem 3.6, Theorem 4.2 and Theorem 4.4, we can draw the coexistence region

and non-existence regions of (3) in the λ − µ plane (see Fig. 1). If (λ, µ) lies in the region

surrounded by S1 and S2, (3) admits at least one positive solution.

Our third main result is to analyze the dependence of the coexistence region of (3) on

r and Ω0. We find that the coexistence region in the lower half plane spreads as r increases,

while the coexistence region in the upper half plane narrows as r increases (see Proposition

1). The limiting coexistence regions as r → ∞ is given in Fig. 2 (i). On the other hand,

the coexistence region becomes larger as Ω0 spreads to Ω (see Proposition 2), and the limiting

coexistence regions as Ω0 → Ω is given in Fig. 2 (ii).

§3 Preliminaries

3.1 Monotone behaviors of S2 and S3

Firstly, we discuss the profiles of curves S2 and S3. In order to do this, we need the following

Lemma 3.1. Its proof is essentially the same as that of Theorem 2.1 in [8], so we omit it here.
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Fig. 1: Coexistence regions of (3) with fixed r and Ω0.

Fig. 2: Limiting coexistence regions of (3). (i)r → ∞; (ii) Ω0 → Ω.
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Lemma 3.1. For any fixed Ω0 and r > 0. Let λN1 (b(x)rµ,Ω) be the principle eigenvalue of the

following eigenvalue problem

−△u+ b(x)rµu = ξu, x ∈ Ω; ∂nu = 0, x ∈ ∂Ω,

then λN1 (b(x)rµ,Ω) < λD1 (Ω0) and limµ→∞ λN1 (b(x)µr,Ω) = λD1 (Ω0).

The following Lemmas 3.2 and 3.3 yield the profiles of curves S2 and S3, respectively.

Lemma 3.2. The set S2 is an unbounded curve and can be expressed by S2 = {(λ, µ) ∈
R2

+ : µ = µ∗(λ)}, where µ∗(λ) is a positive continuous and monotone increasing function for

λ ∈ (0, λD1 (Ω0)), which satisfies limλ→0+ µ
∗(λ) = 0 and limλ→[λD

1 (Ω0)]− µ
∗(λ) = ∞.

Proof. Firstly, the set S2 can be expressed by the curve

λ∗(µ) = λN1 (b(x)rµ,Ω) .

By the continuity and monotone increasing property of λN1 (q) with respect to q ∈ L∞, we see

that λ∗(µ) is a continuous and strictly increasing function for µ ∈ (0,∞), and λ∗(0) = λN1 (Ω) =

0. It follows from Lemma 3.1 that

λ∗(µ) < λD1 (Ω0), lim
µ→+∞

λ∗(µ) = λD1 (Ω0).

Due to the monotonicity of λ∗(µ), for λ ∈ (0, λD1 (Ω0)), there exists a unique function µ∗(λ)

such that λN1 (−λ+ b(x)rµ,Ω) = 0, and the continuity and monotonicity of µ∗(λ) also follow.

Moreover, we easily see that µ∗(0) → 0 as λ decreases to 0, and µ∗(λ) → ∞ as λ increases to

λD1 (Ω0).

Lemma 3.3. The set S3 is an unbounded curve and can be expressed by S3 = {(λ, µ̄) ∈
R2

+ : µ̄ = µ̄(λ)}, where µ̄(λ) is a positive continuous and monotone increasing function for

λ ∈ (0, λD1 (Ω0)), which satisfies µ̄(λ) > µ∗(λ) for λ ∈ (0, λD1 (Ω0)), limλ→0+ µ̄ = 0, and

limλ→[λD
1 (Ω0)]− µ̄(λ) = ∞.

Proof. In view of (4), we put

S(λ, µ) = λN1 (−λ+ b(x)rµe−rλ,Ω).

Obviously, S(0, µ) = λN1 (b(x)rµ,Ω) > 0. On the other hand, we notice that

S(λ, µ) = −λ+ λN1 (b(x)rµe−rλ,Ω) < −λ+ λN1 (b(x)rµ,Ω).

Thus, S(λ, µ) < 0 for any λ ∈ (0, λN1 (b(x)rµ,Ω)). Notice that S(λ, µ) is continuous and strictly

decreasing with λ. Therefore, the intermediate value theorem ensures that, for any fixed positive

µ, there exists a unique λ ∈ (0, λN1 (b(x)rµ,Ω)) such that S(λ, µ) = 0. So, we obtain a function

λ = λ(µ) : (0,∞) 7→ (0, λN1 (b(x)rµ,Ω)). By implicit differentiation method, we easily get

dλ

dµ
= − S̄µ

S̄λ

> 0

since S is continuous and strictly increasing with respect µ and decreasing with λ.

Obviously, λ(0) = 0. We next prove that limµ→∞ λ̄(µ) = λD1 (Ω0). Choose a sequence µn

satisfying µn → ∞ as n→ ∞ and denote λn = λ(µn). By the monotone bounded theorem, we

can assume λn → λ∞ ∈ (0, λD1 (Ω0)] as n→ ∞. Let ϕn > 0 in Ω satisfy

−△ϕn +
(
−λ̄n + µnb(x)re

−rλn

)
ϕn = 0, in Ω, ∂nϕn = 0 on ∂Ω, (5)
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where ∥ϕn∥∞,Ω = 1. Then, by (5), we deduce that −△ϕn ≤ λD1 (Ω0)ϕn, and moreover,∫
Ω

|∇ϕn|2dx+

∫
Ω

ϕ2ndx ≤ (λD1 (Ω0) + 1)

∫
Ω

ϕ2ndx ≤ (λD1 (Ω0) + 1)|Ω|. (6)

This implies that ϕn is uniformly bounded inH1(Ω) independent of n, and hence we may assume

that ϕn → ϕ∞ weakly in H1(Ω) and strongly in L2(Ω). Due to ∥ϕn∥∞,Ω = 1, we further obtain

ϕn → ϕ∞ in Lp(Ω) for each p > 1. By Lemma 2.2 in [4], we see that ∥ϕ∞∥∞,Ω = 1. Multiplying

(5) by ϕn and integrating the obtained result over Ω1, we find that∫
Ω1

b(x)ϕ2ndx = −e
rλn

rµn

[∫
Ω

|∇ϕn|2dx− λ̄n

∫
Ω

ϕ2ndx

]
. (7)

Recall that b(x) = 1 in Ω1. By virtue of (6) and µn → ∞ as n→ ∞, we let n→ ∞ in (7) and

obtain ∫
Ω1

ϕ2∞dx = 0.

Then ϕ∞(x) = 0 almost everywhere in Ω1, which implies that ϕ∞|Ω0 ∈ H1
0 (Ω0) due to the

smoothness of ∂Ω0. Multiplying (5) by ϕn, integrating the obtained result over Ω0 and letting

n→ ∞, we derive ∫
Ω0

|∇ϕ∞|2dx− λ∞

∫
Ω0

ϕ2∞dx = 0.

Here we use the assumption that b(x) ≡ 0 in Ω0. Therefore, ϕ∞|Ω0 satisfies the following

equation (weakly)

−△ϕ = λ∞ϕ in Ω0, ϕ = 0 on ∂Ω0.

By the strong maximum principle, we have ϕ∞(x) ≡ 0 or ϕ∞(x) > 0 in Ω0. If the former

occurs, then it contradicts with ∥ϕ∞(x)∥∞,Ω = 1 due to ϕ∞(x) ≡ 0 in Ω0. Hence, ϕ∞(x) > 0

holds, which implies that λ∞ = λD1 (Ω0). Consequently, we prove limµ→∞ λ(µ) = λD1 (Ω0).

We denote the inverse function of λ = λ(µ) by µ = µ(λ), the continuity and monotonicity

of µ are as same as λ and we easily see that µ(λ) → 0 as µ decreases to 0, and µ(λ) → ∞ as λ

increases to λD1 (Ω0).

3.2 Stability of trivial and semi-trivial steady-state solutions

Obviously, the steady state problem (3) has the following three non-negative solutions: The

trivial solution (0, 0), two semi-trivial solutions (λ, 0) and (0, µ). The local stability of these

trivial and semi-trivial solutions can be determined through linear stability analysis as follows.

Theorem 3.4. (a) The trivial solution (0, 0) is unstable for all µ.

(b)The semi-trivial solution (λ, 0) is locally asymptotically stable when µ < µ∗ and it is

unstable if µ > µ∗.

(c) The semi-trivial solution (0, µ) is locally asymptotically stable if µ > µ∗ and it is unstable

if µ < µ∗.

Proof. The linearization operator of (3) at a constant solution e∗ = (u, v) can be expressed by

L =

(
△+A(u, v) B(u, v)

C(u, v) △+D(u, v)

)
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on domain X = {(ϕ, ψ) ∈ H2(Ω)×H2(Ω1) : ∂nϕ = 0, x ∈ ∂Ω, ∂nψ = 0, x ∈ ∂Ω1}, where
A(u, v) = λ− 2u− b(x)rve−ru, B(u, v) = −b(x)(1− e−ru),

C(u, v) = crve−ru, D(u, v) = µ− 2v + c(1− e−ru).

It is known that if all the eigenvalues of the operator L have negative real parts, then e∗ is locally

asymptotically stable. If there is an eigenvalue with positive real part, then e∗ is unstable.

(a) If e∗ = (0, 0), then(
A(u, v) B(u, v)

C(u, v) D(u, v)

)∣∣∣∣
(u,v)=(0,0)

=

(
λ 0

0 µ

)
.

Hence, λ is an eigenvalue of the linearization operator L at (0, 0). So, (0, 0) is unstable.

(b) The eigenvalue problem for the corresponding linearized system to (3) at (λ, 0) is
△h− λh− b(x)(1− e−rλ)k − ζh = 0, x ∈ Ω,

△k + µk + c(1− e−rλ)k − ζk = 0, x ∈ Ω1,

∂nh = 0, x ∈ ∂Ω, ∂nk = 0, x ∈ ∂Ω1,

which has a sequence of real eigenvalues ζ1 > ζ2 > ζ3 . . . > ζn > . . . → −∞. Since ζ1 is

determined by the equation of k only, the solution (λ, 0) is stable when ζ1 < 0, that is

−µ− c(1− e−rλ) = λN1
(
−µ− c(1− e−rλ),Ω1

)
> 0.

Then the semi-trivial solution (λ, 0) is locally asymptotically stable if µ < µ∗, and it is unstable

if µ > µ∗.

(c) The eigenvalue problem for the corresponding linearized system to (3) at (0, µ) is
△h+ (λ− b(x)rµ)h− ηh = 0, x ∈ Ω,

△k − µk + crµh− ηk = 0, x ∈ Ω1,

∂nh = 0, x ∈ ∂Ω, ∂nk = 0, x ∈ ∂Ω1,

which has a sequence of real eigenvalues η1 > η2 > η3 . . . > ηn > . . . → −∞. Obviously, η1 is

determined by the equation of h only, and the solution (0, µ) is stable if η1 < 0, that is

λN1 (−λ+ b(x)rµ,Ω) > 0.

By the continuity and monotone increasing property of λN1 (q) with respect to q ∈ L∞, we can

see that

λN1 (−λ+ b(x)rµ,Ω) > 0 ⇔ µ > µ∗.

Thus, the semi-trivial solution (0, µ) is locally asymptotically stable if µ > µ∗, and it is unstable

if µ < µ∗.

3.3 A prior estimates and nonexistence regions

In this subsection, we first derive a prior estimates of positive solutions of (3).

Lemma 3.5. Suppose that (u, v) is any positive solution of (3). Then

0 < u(x) ≤ λ in Ω, 0 < v(x) ≤ µ+ c(1− e−rλ) in Ω1.

Moreover, if µ ≥ 0, then v(x) > µ in Ω1.

Proof. Denote u(x0) = maxx∈Ω u(x). By the maximum principle, we have

0 ≤ −△u(x0) = u(x0) (λ− u(x0))− b(x0)v(x0)(1− e−ru(x0))
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and so u(x0) ≤ λ. This implies that 0 < u(x0) ≤ λ for any x ∈ Ω. Suppose that v(x1) =

maxx∈Ω1
v(x). It follows from the second equation of (3) that

0 ≤ −△v(x1) = v(x1)
[
µ− v(x1) + c(1− e−ru(x1))

]
.

Thus, we see that v(x1) ≤ µ + c(1 − e−ru(x1)). Therefore, for any x ∈ Ω1, we obtain v(x) ≤
µ+ c(1− e−rλ).

On the other hand, we notice that

−△v = v[µ− v + c(1− e−ru)] > v(µ− v) in Ω1, ∂nv = 0 on ∂Ω1.

By the well-known comparison result, we derive v(x) > µ in Ω1 if µ ≥ 0. Thus, the proof is

complete.

Next, we proof the nonexistence of coexistence states of (3).

Theorem 3.6. (a) If µ ≤ µ∗, then (3) has no positive solution.

(b) If µ ≥ µ̄, then (3) has no positive solution.

Proof. (a) Suppose for contradiction that (u, v) is a positive solution of (3) with µ ≤ µ∗. Then

v is a positive solution of

−△v +
[
v − µ− c(1− e−ru)

]
v = 0 in Ω1, ∂nv = 0 on ∂Ω1.

By Lemma 3.5, we know u ≤ λ in Ω. Hence, we obtain

0 = λN1
(
v − µ− c(1− e−ru),Ω1

)
> λN1

(
−µ− c(1− e−rλ),Ω1

)
= −µ− c(1− e−rλ)

and thus µ > µ∗, which contracts the assumption µ ≤ µ∗. This completes the proof of (a).

(b) Let (u, v) be a positive solution of (3) with µ ≥ µ̄. Then u is a positive solution of

−△u+ [−u(λ− u) + b(x)v(1− e−ru)] = 0 in Ω, ∂nu = 0 on ∂Ω.

We notice that

1− e−ru > re−rλu, for 0 < u ≤ λ. (8)

In fact, let Q(u) = 1−e−ru−re−rλu. Then Q
′
(u) = re−ru−re−rλ > 0 for all u ∈ (0, λ). Hence

Q(u) is increasing with u and Q(u) > Q(0) = 0 for all u ∈ (0, λ], that is, 1 − e−ru > re−rλu.

By Lemma 3.5, we know v > µ if µ ≥ 0. Hence, we find that

0 = λN1

(
−λ+ u+

1

u
b(x)v(1− e−ru),Ω

)
> λN1

(
−λ+ b(x)rµe−rλ,Ω

)
.

From Lemma 3.3, the above inequality yields µ < µ̄. This contracts the assumption µ ≥ µ̄.

Thus, (3) has no positive solution if µ ≥ µ̄.

§4 Existence of coexistence states

Since the curve S2 exists only when λ < λD1 (Ω0), we will divide our discussions below into

two cases: (a) λ ≥ λD1 (Ω0) and (b) 0 < λ < λD1 (Ω0). The value of λD1 (Ω0) will plays a crucial

role in determining the bifurcation structure of (3) in our analysis to come. A well-known

property of λD1 (O) is that λD1 (O1) ≥ λD1 (O2) if O1 ⊂ O2. So, from an ecological point of

view, the value of λD1 (Ω0) implies that, for any fixed prey growth rate λ, there exists a critical

path size of the protection zone determined by λ = λD1 (Ω0). Case (a) corresponds to the large

protection zone case and Case (b) corresponds to the small protection zone case.
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4.1 The large protection zone case: λ ≥ λD
1 (Ω0)

In this subsection, we consider the set of positive steady state solutions when the protection

zone Ω0 is large so that λ ≥ λD1 (Ω0). We start our analysis by a standard local bifurcation

argument by regarding µ as a bifurcation parameter. Obviously, (3) has two semi-trivial solution

curves in the space of (µ, u, v):

Γu = {(µ, u, v) : −∞ < µ <∞, (u, v) = (λ, 0)},
Γv = {(µ, u, v) : 0 < µ <∞, (u, v) = (0, µ)}.

For p > N , we define Banach spaces X1 and X2 as

X1 =W 2,p
n (Ω)×W 2,p

n (Ω1) and X2 = Lp
n(Ω)× Lp

n(Ω1)

where W 2,p
n (O) = {w ∈ W 2,p

n (O) : ∂nw = 0, x ∈ ∂O}. It follows from Sobolev embedding

theorem that

X1 ⊂ E = C1
n(Ω)× C1

n(Ω1).

We introduce a positive functions ϕ∗ by solving the problem

−△ϕ∗ = λϕ∗ − b(x)rµ∗ϕ∗ in Ω, ∂nϕ
∗ = 0 on ∂Ω. (9)

In addition, we define

ψ∗ = (−△+ µ)
−1
Ω1

(µ∗crϕ∗), (10)

ϕ∗ = −(−△+ λ)−1
Ω

(
b(x)(1− e−rλ)

)
< 0. (11)

The following properties hold true.

Theorem 4.1. If λ ≥ λD1 (Ω0), then

(a) (µ∗, λ, 0) is the only bifurcation point on the semi-trivial solution curve Γu, where µ∗ =

−c(1− e−rλ).

(b) The set of positive solutions near (µ∗, λ, 0) ∈ R×X1 can be expressed as

Γ∗ = {(µ, u, v) = (µ(s), λ+ s(ϕ∗ + û(s)), s(1 + v̂(s))) : s ∈ (0, δ)},
where δ > 0 is small. Here, (û(s), v̂(s)) is a smooth function with respect to s and satisfies

(µ(0), û(0), v̂(0)) = (µ∗, 0, 0) and
∫
Ω1
v̂(s)dx = 0.

(c) The bifurcation of Γ∗ at (µ∗, λ, 0) is supercritical due to µ′(0) > 0.

(d) (0, µ) is an unstable steady state of (3) for all µ, and there is no bifurcation of positive

solutions occurring along Γv.

Proof. We define a mapping F : R×X1 → X2 by

F (µ, u, v) =

(
△u+ u(λ− u)− b(x)v(1− e−ru)

△v + v [µ− v + c(1− e−ru])

)
. (12)

Since (u, v) = (λ, 0) is a semi-trivial solution of (3), F (µ, λ, 0) = 0 for µ ∈ R. The Fréchet

derivative of F at (µ, λ, 0) is given by

F(u,v)(µ, λ, 0)[ϕ, ψ] =

(
△ϕ− λϕ− (1− e−rλ)b(x)ψ

△ψ + [µ+ c(1− e−rλ)]ψ

)
.

By the Krein-Rutman theorem [15], we see that F(u,v)(µ, λ, 0)[ϕ, ψ] = (0, 0) has a solution with

ψ > 0 only for µ = µ∗ = −c(1− e−rλ). Hence, (µ∗, λ, 0) is the only bifurcation point and

KerF(u,v)(µ∗, λ, 0) = span{(ϕ∗, 1)}.
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Here, ϕ∗ is given by (11). If (ϕ̃, ψ̃) ∈ RangeF(u,v)(µ∗, λ, 0), then
△ϕ− λϕ− (1− e−rλ)b(x)ψ = ϕ̃ in Ω,

△ψ = ψ̃ in Ω1,

∂nϕ = 0, on ∂Ω, ∂nψ = 0, on ∂Ω1

for some (ϕ, ψ) ∈ X1. From the Fredholm alternative theorem [15], the second equation has a

solution ψ if and only if
∫
Ω1
ψ̃dx = 0. For such a solution ψ, the first equation has a unique

solution ϕ because −△+ λ is invertible. Then it follows that codim-RangeF(u,v)(µ∗, λ, 0) = 1.

Moreover, some elementary calculations enable us to obtain

Fµ(u,v)(µ∗, λ, 0)

(
ϕ∗
1

)
=

(
0

1

)
* RangeF(u,v)(µ∗, λ, 0).

Consequently, the assertion (a) and (b) can be obtained by applying the local bifurcation

theorem [1]. Furthermore, we use the result of Shi [12] to obtain

µ′(0) = −
⟨F(u,v)(u,v)(µ∗, λ, 0)[ϕ∗, 1]

2, l⟩
2⟨Fµ,(u,v)(µ∗, λ, 0)[ϕ∗, 1], l⟩

= 1− cre−rλ

|Ω|

∫
Ω1

ϕ∗dx > 0,

where l is a linear functional on X2 defined as ⟨[ϕ, ψ], l⟩ =
∫
Ω1
ψdx. Therefore the bifurcation

at (µ∗, λ, 0) is always supercritical.

In view of Lemma 3.1, for any µ, λN1 (b(x)rµ,Ω) < λD1 (Ω0). Therefore, when λ ≥ λD1 (Ω0),

λN1 (−λ + b(x)rµ,Ω) = −λ + λN1 (b(x)rµ,Ω) < 0. Thanks to Theorem 3.4 (c), we know that

(0, µ) is an unstable steady state of (3) for all µ, and there is no bifurcation of positive solutions

occurring along Γv.

Next, we extend the local bifurcation branch Γ∗ to global solution branch.

Theorem 4.2. When λ ≥ λD1 (Ω0), (3) possesses at least one positive solution if µ > µ∗.

Proof. We define a mapping F : R× E → E by

F (µ, u, v) =

(
u

v

)
−

(
(−△+ I)−1

Ω [u+ u(λ− u)− b(x)v(1− e−ru)]

(−△+ I)−1
Ω1

[v + v [µ− v + c(1− e−ru])]

)
,

where the second term of F (µ, u, v) is a compact operator. From the global bifurcation theorem,

it follows that the local bifurcation branch Γ∗ can be extended to the maximal connected set,

denoted by ΓM , and it satisfies

Γ∗ ⊂ ΓM ⊂ {(µ, u, v) ∈ (R× E) \ {(µ∗, λ, 0) : F (µ, u, v) = 0}. (13)

In order to complete the proof, we next prove

ΓM ⊂ R× PΩ × PΩ1 , (14)

where PO = {w ∈ C1
n(Ō) : w > 0 in O}. We argue it by contraction. Suppose that ΓM ̸⊆

R× PΩ × PΩ1 . Then there exists a sequence {(µi, ui, vi)}∞i=1 ⊂ ΓM ∩ (R× PΩ × PΩ1) such that

limi→∞(µi, ui, vi) = (µ∞, u∞, v∞) in R× E, where

(µ∞, u∞, v∞) ∈ ΓM ∩ (R× ∂(PΩ × PΩ1)). (15)

We note that (u∞, v∞) is a non-negative solution of (3). By the strong maximum principle, we

know that (u∞, v∞) must satisfy one of the following:

(i) u∞ ≡ 0 in Ω, v∞ ≡ 0 in Ω1;

(ii) u∞ > 0 in Ω, v∞ ≡ 0 in Ω1;
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(iii) u∞ ≡ 0 in Ω, v∞ > 0 in Ω1.

From the second equation of (3) with (µ, u, v) = (µi, ui, vi), we derive∫
Ω1

vi
[
µi − vi + c(1− e−rui)

]
dx = 0 for any i ∈ N. (16)

By Theorem 3.6 (a), we know that µi > µ∗. Thus µ∞ ≥ µ∗.

If µ∞ > 0. Suppose that (i) or (ii) occurs, then

µi − vi + c(1− e−rui) −→ µ∞ + c(1− e−ru∞) > 0 as i→ ∞.

Thus, for sufficiently large i ∈ N , the integration in (16) is positive, which contradicts with

(16). If case (iii) occurs, then v∞ satisfies

△v∞ + v∞(µ∞ − v∞) = 0 in Ω1, ∂nv∞ = 0 on ∂Ω1.

Thus, it is well know that v∞ ≡ µ∞ in Ω1. Therefore, we must obtain (µ∞, u∞, v∞) = (µ, 0, µ),

which contradicts with Theorem 4.1 (d).

If µ∞ = 0. Suppose that (ii) occurs, then

µi − vi + c(1− e−rui) −→ c(1− e−ru∞) > 0 as i→ ∞.

If (iii) occurs, then

µi − vi + c(1− e−rui) −→ −v∞ < 0 as i→ ∞.

Similar to the above, we can get some contradictions if (ii) or (iii) occurs. If case (i) occurs, we

can deduce (µ∞, u∞, v∞) = (µ∞, 0, 0), which contradicts with Theorem 3.4 (a).

If µ∞ ∈ [µ∗, 0). Suppose that (i) or (iii) occurs, then

µi − vi + c(1− e−rui) −→ µ∞ − v∞ < 0 as i→ ∞.

Thus, for sufficiently large i ∈ N , the integration in (16) is negative, which contradicts with

(16). On the other hand, if case (ii) occurs, then u∞ satisfies

△u∞ + u∞(λ− u∞) = 0 in Ω, ∂nu∞ = 0 on ∂Ω.

Thus, it is well know that u∞ ≡ λ in Ω. Therefore, by Theorem 4.1 (a), we must obtain

(µ∞, u∞, v∞) = (µ∗, λ, 0), which contradicts with (13) and (15). Consequently, we prove (14).

Define

Y =

{
(ϕ, ψ) ∈ E :

∫
Ω1

ψdx = 0

}
. (17)

Then Y is the supplement of span{(ϕ∗, 1)} in E. By Theorem 6.4.3 of [9], we see that one of

the following non-excluding situations occurs:

(1) ΓM is unbounded in R× E;

(2) ΓM contains a point (µ̃, λ, 0), where µ̃ ̸= µ∗.

(3) ΓM contains a point (µ̂, ϕ̂, ψ̂), where (µ̂, ϕ̂, ψ̂) ∈ R× (Y ± {λ, 0}).
Case (2) is impossible because of (14). In view of (14) and (17), we find that case (3) cannot

occur. Hence, case (1) must occur. By Theorem 4.1 (c), we know that the bifurcation of Γ∗

at (µ∗, λ, 0) is supercritical. Hence, the local bifurcation curve Γ∗ can be globally extended to

infinity along µ, that is, ProjµΓ∗ = (µ∗,+∞). Thus the proof of Theorem 4.2 is complete.

4.2 The small protection zone case: λ < λD
1 (Ω0)

In this subsection, we consider the set of positive steady state solutions when the protection

zone Ω0 satisfies λ < λD1 (Ω0). We will see that the bifurcation structure of (3) is different from
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that in the above subsection.

Theorem 4.3. If 0 < λ < λD1 (Ω0), then

(a) (µ∗, λ, 0) is the only bifurcation point on the semi-trivial solution curve Γu.

(b) The set of positive solutions near (µ∗, λ, 0) ∈ R×X1 can be expressed as

Γ∗ = {(µ, u, v) = (µ(s), λ+ s(ϕ∗ + û(s)), s(1 + v̂(s))) : s ∈ (0, δ)},
where δ > 0 is small. Here, (û(s), v̂(s)) is a smooth function with respect to s and satisfies

(µ(0), û(0), v̂(0)) = (µ∗, 0, 0) and
∫
Ω1
v̂(s)dx = 0.

(c) (µ∗, 0, µ∗) is only bifurcation point of positive solution of (3) along Γv.

(d) The set of positive solutions near (µ∗, 0, µ∗) ∈ R×X1 can be expressed as

Γ∗ = {(µ, u, v) = (µ(s), s(ϕ∗ + ũ(s)), µ+ s(ψ∗ + ṽ(s))) : |s| < δ̃}
such that (µ(0), ũ(0), ṽ(0)) = (µ∗, 0, 0) and

∫
Ω
ũ(s)ϕ∗dx = 0, where δ̃ > 0 is small.

(e) The bifurcation of Γ∗ at (µ∗, 0, µ∗) is supercritical if I > 0 and it is subcritical if I < 0,

where I is defined

I =

∫
Ω

(ϕ∗)2
[
(b(x)r2µ∗ − 2)ϕ∗ + 2rb(x)ψ∗] dx. (18)

Proof. The proofs of (a) and (b) are as same as that of Theorem 4.2. Now, We consider

bifurcation at Γv. It is clear that F (µ, 0, µ) = 0 for any µ > 0, where F (µ, u, v) is given by

(12). By a simple calculation, we obtain

F(u,v)(µ, 0, µ)[ϕ, ψ] =

(
△ϕ+ λϕ− b(x)rµϕ

△ψ − µψ + µcrϕ

)
.

Thus, we see that the equation F(u,v)(µ, 0, µ)[ϕ, ψ] = (0, 0) has a solution with ϕ > 0 if and

only if λN1 (−λ+ b(x)rµ,Ω) = 0. By some similar arguments as that in the proof of Theorem

4.1, we get

KerF(u,v)(µ
∗, 0, µ∗) = span{(ϕ∗, ψ∗)},

where, ϕ∗ and ψ∗ are given in (9) and (10). Moreover,

RangeF(u,v)(µ
∗, 0, µ∗) =

{
(ϕ, ψ) ∈ X2 :

∫
Ω1

ϕϕ∗dx = 0

}
.

The above equation yields

Fµ(u,v)(µ
∗, 0, µ)[ϕ∗, ψ∗] =

(
0

1

)
* RangeF(u,v)(µ

∗, 0, µ∗).

Thus, by the local bifurcation theorem, we obtain the corresponding results (c) and (d). Fur-

thermore, we use the result of Shi [12] to obtain

µ′(0) = −
⟨F(u,v)(u,v)(µ

∗, 0, µ∗)[ϕ∗, ψ∗]2, l⟩
2⟨Fµ,(u,v)(µ∗, 0, µ∗)[ϕ∗, ψ∗], l⟩

=

∫
Ω
(ϕ∗)2

[
(b(x)r2µ∗ − 2)ϕ∗ + 2rb(x)ψ∗] dx

2
∫
Ω
b(x)rϕ∗2dx

,

where l is a linear functional on X2 defined as ⟨[ϕ, ψ], l⟩ =
∫
Ω
ϕϕ∗dx. This completes the proof

of Theorem 4.3.

Next, we extend the local bifurcation branches Γ∗ (obtained in Theorem 4.3 (b)) and Γ∗

(obtained in Theorem 4.3 (d)) as global solution branches.

Theorem 4.4. When λ < λD1 (Ω0), (3) possess at least one positive solution for µ∗ < µ < µ∗.
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Proof. We consider the positive solutions of (3) emanating from (µ∗, 0, µ∗). From the global

bifurcation theorem, it follows that the local bifurcation branch Γ∗ can be extended to the

maximal connected set, denoted by ΓM , and it satisfies

Γ∗ ⊂ ΓM ⊂ {(µ, u, v) ∈ (R× E) \ {(µ∗, 0, µ) : F (µ, u, v) = 0}. (19)

Similar to the discussion of Theorem 4.2, we can get

ΓM ⊂ R× PΩ × PΩ1 . (20)

Define

Y =

{
(ϕ, ψ) ∈ E :

∫
Ω1

ϕϕ∗dx = 0

}
. (21)

We find that ΓM satisfies one of (1)-(3) as follows:

(1) ΓM is unbounded in R× E;

(2) ΓM contains a point (µ̃, 0, µ̃), where µ̃ ̸= µ∗.

(3) ΓM contains a point (µ̂, ϕ̂, ψ̂), where (µ̂, ϕ̂, ψ̂) ∈ R× (Y ± {0, µ̂}).
By Lemma 3.5 and Theorem 3.6, we known that µ∗ < µ < µ̄, where µ̄ satisfies (µ̄(λ), λ) on

the curve S3. Therefore, we known that the alternative (1) is impossible. In view of Theorem

4.3, we find that the alternative (2) does not occur. Thus, the alternative (3) must hold.

Furthermore, by Theorem 4.1, we obtain that ΓM ends at some point (µ∗, λ, 0) on Γu for some

µ∗. Thus, the proof of Theorem 4.4 is complete.

§5 Dependence of the coexistence region on r and Ω0

Combining Theorem 3.6, Theorem 4.2 and Theorem 4.4, we can draw the coexistence region

and non-existence regions of (3) in the λ − µ plane (see Fig. 1). If (λ, µ) lies in the region

surrounded by S1 and S2, (3) admits at least one positive solution.

From (4), we can see that both S1 and S2 depend on r. In order to study the dependence

of S1 on r, we denote the curve µ∗ = µ∗(λ) by µ∗ = µ∗(λ, r). Obviously, for any fixed λ > 0,

µ∗(λ, r) is strictly monotone decreasing with respect to r, and limr→∞ µ∗(λ, r) = −c.
The next result yields the monotone and limiting behavior of S2 with respect to r. Let

the inverse function of µ∗ = µ∗(λ) be λ∗ = λ∗(µ), and also denote the curve λ∗ = λ∗(µ) by

λ∗ = λ∗(µ, r).

Proposition 1. For any fixed µ ∈ (0,∞), λ∗ = λ∗(µ, r) is strictly monotone increasing with

respect to r, and limr→∞ λ∗(µ, r) = λD1 (Ω0).

The proof of Proposition 1 is essentially the same as that of Theorem 2.1 in [8], so we omit

it here.

Remark 1. The monotonicity of S1 depending on r implies that the coexistence region in the

lower half plane spreads as r increases. On the other hand, Proposition 1 implies that the

coexistence region in the upper half plane narrows as r increases, see Fig. 2 (i).

Next, we consider the dependence of the coexistence region of (3) on Ω0. A glance of

(4) shows that the set S1 is independent of Ω0, but the set S2 depends on Ω0. We write

λ∗ = λ∗(µ,Ω0) instead of λ∗ = λ∗(µ) to express the dependence on Ω0 explicitly. We can

obtain the following proposition.
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Proposition 2. Suppose that µ > 0. If Ω1
0 ⊂ Ω2

0 ⊂ Ω, then λ∗(µ,Ω1
0) > λ∗(µ,Ω2

0). Moreover,

λ∗(µ,Ω0) ≤
rµ|Ω \ Ω0|

|Ω|
.

Proof. Note that λ∗(µ,Ω0) = λN1 (b(x)rµ,Ω). From the monotone increasing property of

λN1 (q,Ω) with respect to q and the assumption for b(x), we can see that λ∗(µ,Ω1
0) > λ∗(µ,Ω2

0)

if Ω1
0 ⊂ Ω2

0 ⊂ Ω.

For any µ > 0, let ϕ be a unique positive solution of
−△ϕ+ [−λ∗(µ,Ω0) + b(x)rµ]ϕ = 0, x ∈ Ω,

∂νϕ = 0, x ∈ ∂Ω,∫
Ω

ϕ2dx = 1

(22)

For any ψ ∈ H1(Ω), we have∫
Ω

∇ϕ∇ψdx+ rµ

∫
Ω\Ω0

ϕψdx− λ∗(µ,Ω0)

∫
Ω

ϕψdx = 0.

Namely, ϕ is a weak solution of{
−△ϕ+ rµχΩ\Ω0

ϕ− λ∗(µ,Ω0)χΩϕ = 0, x ∈ Ω,

∂νϕ = 0, x ∈ ∂Ω.

Since ϕ ≥ 0 on Ω̄ and
∫
Ω
ϕ2dx = 1, we see ϕ > 0 on Ω̄ by the strong maximum principle. This

means that λ∗(µ,Ω0) is the first eigenvalue of{
−△ϕ+ rµχΩ\Ω0

ϕ = ηχΩϕ, x ∈ Ω,

∂νϕ = 0, x ∈ ∂Ω.

Therefore, by the variational characterization of the first eigenvalue, we have

λ∗(µ,Ω0) = inf
ϕ∈Θ′

∫
Ω
|∇ϕ|2dx+ rµ

∫
Ω\Ω0

ϕ2dx∫
Ω
ϕ2dx

. (23)

By setting ϕ ≡ 1 on Ω̄ in (23), we have λ∗(µ,Ω0) ≤
rµ|Ω \ Ω0|

|Ω|
.

Remark 2. Proposition 2 means that the coexistence region becomes larger as Ω0 spreads to Ω,

and λ∗(µ,Ω0) decreases to 0 as Ω0 is enlarged to the entire Ω, see Fig. 2 (ii). It is shown that

the protection zone for prey has beneficial effects on the coexistence of the two species when

the growth rate of predator is positive.

§6 Conclusions

This paper is devoted to study the effect of a protection zone on a diffusion predator-prey

model with Ivlev-type functional response. Applying the bifurcation theory, we obtain some

sufficient conditions of coefficients for the existence of positive steady state solutions and draw

the coexistence region and non-existence regions of (3) in the λ− µ plane. Through examining

the effects of the predator capture of the prey r and the protection zone Ω0 on the coexistence

region, we find that the coexistence region in the lower half plane spreads as r increases while

the coexistence region in the upper half plane narrows as r increases. Moreover, the coexistence
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region becomes larger as Ω0 spreads to Ω. Therefore, the protection zone for prey has beneficial

effects on the coexistence of the two species.
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