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Robust analysis of discounted Markov decision processes

with uncertain transition probabilities

LOU Zhen-kai1 HOU Fu-jun1,∗ LOU Xu-ming2

Abstract. Optimal policies in Markov decision problems may be quite sensitive with regard to

transition probabilities. In practice, some transition probabilities may be uncertain. The goals

of the present study are to find the robust range for a certain optimal policy and to obtain value

intervals of exact transition probabilities. Our research yields powerful contributions for Markov

decision processes (MDPs) with uncertain transition probabilities. We first propose a method for

estimating unknown transition probabilities based on maximum likelihood. Since the estimation

may be far from accurate, and the highest expected total reward of the MDP may be sensitive

to these transition probabilities, we analyze the robustness of an optimal policy and propose

an approach for robust analysis. After giving the definition of a robust optimal policy with

uncertain transition probabilities represented as sets of numbers, we formulate a model to obtain

the optimal policy. Finally, we define the value intervals of the exact transition probabilities

and construct models to determine the lower and upper bounds. Numerical examples are given

to show the practicability of our methods.

§1 Introduction

Markov decision process models have gained recognition in such diverse fields as ecology,

economics, and communications engineering (Puterman, 2014). In most articles, transition

probabilities are regarded as known information. Yet in some cases, part of these are unknown

for decision makers, and an optimal policy may be sensitive to these transition probabilities.

More than forty years ago, Satia et al. (1973) discussed the MDPs with uncertain transition

probabilities and showed a model based on game-theoretic and the Bayesian formulation. After

that, numerical algorithms were proposed to obtain an optimal max-min strategy in this type

of MDPs (White et al., 1994). Later, Kalyanasundaram et al. (2002) explored these issues

Received: 2018-11-19. Revised: 2019-12-25.
MR Subject Classification: 60J10, 90C40, 90C05.
Keywords: Markov decision processes, uncertain transition probabilities, robustness and sensitivity, robust

optimal policy, value interval.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-020-3664-1.
Supported by the National Natural Science Foundation of China (71571019).
*Corresponding author.



418 Appl. Math. J. Chinese Univ. Vol. 35, No. 4

under a long-term average criterion and developed solution techniques to obtain a max-min

optimal policy. Since Garud (2005) proposed a robust formulation to deal with the Markov

decision problems with uncertain transition probabilities, this framework was adopted by many

other scholars. Nilim et al. (2005) studied the robust control problem of a MDP with uncertain

transition matrices, and provided a robust dynamic programming algorithm without adding

extra computing cost. Li et al. (2007) showed a robust policy iteration by taking all initial

states into account under a min-max criterion. Similarly, Delage et al. (2009) considered the

tradeoff between optimistic and pessimistic point of views, and then proposed a set of percentile

criterion to handle the MDPs with uncertain probabilities. Xu et al. (2012) proposed a decision

criterion based on distributional robustness and found the optimal strategy under the most

adversarial admissible probabilities distributions. In addition, Wiesemann et al. (2013) derived

a confidence region of uncertain probabilities by taking advantage of an observation history of

a discounted MDP, and obtained an optimal policy by the max-min criterion.

Despite the great progress of the MDPs with uncertain transition probabilities, there are

still some important problems unsolved. Does an optimal policy remain unchanged when the

uncertain transition probabilities change? What is the price to obtain the exact transition

probabilities? In this paper, we intend to carry out a thorough study to address these problems.

Similar to Wiesemann et al. (2013), we first establish a programming model to estimate the

unknown probabilities by using an observation history. Through analyzing the linear program-

ming method, we deeply discuss the robustness of an optimal policy and the sensitivity of the

highest expected total reward, and then develop solution techniques for them. Afterwards, we

give a definition for a robust optimal policy with uncertain transition probabilities represented

as sets of numbers, and formulate a model to obtain it. Furthermore, we prove that the high-

est expected total reward gained by a robust optimal policy cannot be greater than the one

under any exact transition probabilities. Next, we describe the value of the exact transition

probabilities. In order to obtain the value interval of the exact transition probabilities, we first

prove that the highest expected total reward U(i) is a continuous function of these transition

probabilities. After that we propose two models to obtain the value interval with consider-

ing the feature of this problem. Clearly, the value interval is significant for both optimistic

and pessimistic decision makers, namely, how much it is worth to obtain the exact transition

probabilities.

§2 Notations description

In this paper we focus on a time-homogeneous MDP with some uncertain transition prob-

abilities. The number of each state or action is finite. We assume that a partial observation

history of the MDP is available. Under an expected discounted reward criterion, we search an

optimal policy over an infinite horizon. For the sake of discussion, we make some descriptions

for the discounted MDP. For more information, see Puterman (2014).

(1) Let T denote the set of decision epochs. Thus, the decision epochs of an infinite horizon

MDP can be denoted by T = {0, 1, · · · }.
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(2) The set of all possible states is denoted by Ω = {1, 2, · · · , k}, where the number of state

is finite. Let Sn = ibe the state at period n, where i ∈ Ω.

(3) Let A (i) be the set of allowable actions in state i. We denote by π = (π0, π1, · · · , πt, · · · )
a sequence of decision rules of a MDP, and πt is the decision rule at periodt. Apparently, we

have ∑
a∈A(i)

πt(a|i) = 1.

We let Π be the set of stationary randomized policies and Πd be the set of stationary

deterministic policies. A deterministic policy is denoted by f

(4) At any decision point n, we denote by p(j| i, a) the probability of one-step transition

probability from statei to state j by taking action a.

(5) At any decision point n, system would gain a reward r(i, a) when it is in stateiand takes

action a.

To summarize, an infinite horizon MDP can be defined as a 5-tuple {T, Ω, A (i), p(j| i, a),
r(i, a)}. Sequential states and actions constitute a history. We denote by ht:=( S0, a0, S1, a1,

... , St−1, at−1, St) the track of a MDP from period 0 to period t.

We use the notation Uβ(i,π) to denote the expected total reward of a MDP, where β is a

discount factor. The expected total reward of a discounted MDP with initial state i can be

defined as follows

Uβ(i, π) ≡
∞∑
t=0

βtEi
π[r(Xt,∆t)], i ∈ Ω, 0 < β < 1,

where Xt is the random state and t the random action at period t Generally, they are both

probability distributions.

A policy π∗ is an optimal policy, if it satisfies

U∗
β(i) = Uβ(i, π

∗) ≡ sup
π∈

∏Uβ(i, π).

In Markov decision theory, the existence of optimal policies has been proved. Hence, we

confirm that there definitely exists a deterministic stationary policy f∗ that simultaneously is

an optimal policy. The optimal policies we will mention below refer to deterministic stationary

policies.

There are three standard methods to obtain the highest expected total reward: policy

iteration, value iteration and linear programming (Kalyanasundaram et al., 2002). Each of the

above algorithms has its feature, but the linear programming method seems better for dealing

with the sensitivity of the parameters.

Based on the property of condensing mappings, the linear programming model of obtaining

the highest expected total reward is given as follows:

min
∑
i∈Ω

1

k
u(i)

subjecttor(i, a) + β
∑
j∈Ω

p(j|i, a)u(j) ≤ u(i), a ∈ A(i),i ∈ Ω.
(1)

The value of each independent variable u(i) in the optimal solution of model (1) actually is

equal to the highest expected total reward U∗
β(i).
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§3 Estimation of the unknown transition probabilities

In most analyses of Markov decision problems, the transition probabilities are given. How-

ever, in many practical problems one may know only a partial set of the probabilities. There are

many ways to estimate the unknown transition probabilities. For example, Baik et al. (2006)

provided an ordered profit model.

In this section, we propose a method of estimating the unknown transition probabilities by

taking advantage of an observation history. We assume that the actions taken before are visible,

and at that least two states in the history are available. We disregard how the actions may be

generated and simply regard them as known information.

As a first example, we investigate the case with two states available. We denote by S0 = i0

the initial state, and by Sn = in the state at period n. Both states are visible. Given an action

sequence a0, · · · , an−1, we formulate a recursive expression to derive the probability of each

state at every period.

Given an initial condition p(S0 = i0)=1, thus p(S0 = i, i ̸= i0)=0. We obtain the recurrence

formula as follows:

p(Sq+1 = j) =
∑
i∈Ω

p(Sq = i)p(Sq+1 = j|i, aq), q = 0, · · · , n− 1 (2)

With formula (2) and the initial condition we can calculate the probability p(Sn = in).

Due to the partially unknown transition probabilities, the expression p(Sn = in) is actually a

function.

In order to be able to maximize p(Sn = in), we propose a mathematical model to determine

the unknown transition probabilities by the maximum likelihood method.

max p(Sn = in)

subject to
∑
j∈Ω

p(j|i, a) = 1, a ∈ A(i), i ∈ Ω

0 ≤ p(j|i, a) ≤ 1, a ∈ A(i), i ∈ Ω, j ∈ Ω

(3)

The objective function in model (3) is determined by the recurrence formula (2).

More generally, we indicate that the above model is appropriate for cases with more than

two states visible. Specifically, if k states are visible, we simply regard the first k-1 states as S0

and the last k-1 states as Sn. Thus, we can obtain the estimated values by means of a model

similar to (3). The following example describes the process of obtaining the values.

Given a state space Ω={1,2}, the available action set of each state is A(1)=A(2)={a1,a2}.
The transition probabilities while taking action a1 are known, and we assume that p(1|1,a1) =
0.7, p(2|1,a1) = 0.3, p(1|2,a1) = 0.1 and p(2|2,a1) = 0.9. The transition probabilities of taking

action a2 in state 1 are estimated values, and we denotep(1|1,a2) = p and p(2|1,a2) = 1-p. The

remaining transition probabilities are known with certainty, and we assume that p(1|2,a2) =

0.2 and p(2|2,a2) = 0.8.

We assume that states at stage 0, stage 2 and stage 4 are known, and S0=1, S2=1 and

S4=2. The corresponding actions taken at each stage are known, and we assume that a2, a1,a1

anda2 correspond to stage 0, stage 1, stage 2 and stage 3, respectively.
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We then estimate the unknown transition probabilities by utilizing the above information.

According to the recurrence formula (2), p(S2=1) = 0.6p + 0.1. We then consider S2=1 as

known information, and similarly obtain p(S4=2) = 0.94 - 0.7p. Thus, we formulate a nonlinear

programming model to perform the estimation based on model (3):

max{(0.6p+ 0.1)(0.94− 0.7p)}

subject to 0 ≤ p ≤ 1

The process of acquiring the objective function of the above model can be described by

figure 1.

Figure 1. The process of acquiring the objective function.

By solving the above quadratic function we obtain the optimal value, i.e., max{p(S2 =

1) · p(S4 = 2)} ≈ 0.24 when p ≈0.6.

Estimates of the transition probabilities may nevertheless be inaccurate. In the next section

we focus on whether or not an optimal policy remains unchanged when uncertain transition

probabilities change.

§4 Robust analysis of the discounted MDPs

The scope of application for the policy iteration and the linear programming are nearly

the same. Both require a finite action set and a finite state space. In contrast, the linear

programming method needs more calculations for dealing with the simplex tableau. Moreover,

an optimal policy cannot be obtained directly by linear programming.

However, the linear programming approach does has a unique advantage. Indeed, we can

obtain an optimal policy by searching the equalities in the constraints of model (1). For example,

assume that the highest expected total reward U(i) associated with initial state ihas been

acquired, i ∈ Ω, and we place this within the constraints of model (1). As a consequence, there

must exist k equalities that satisfy

r(i, a) + β
∑
j∈Ω

p(j|i, a)U(j) = U(i)

The equality above means that the optimal action is a when given an initial state i. Further-

more, we are able to analyze the sensitivity of the parameters by using the linear programming

algorithm.
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4.1 Robust analysis of an optimal policy

Based on the above analysis, we further analyze the robustness of an optimal policy. Ro-

bustness here refers to the stability of an optimal policy when one or more uncertain transition

probabilities change.

Theorem 4.1 The sufficient and necessary conditions for an optimal policy to be unchanged

are that each of the following equalities holds before and after transition probabilities p(j|i, a)
change:

r(i, a) + β
∑
j∈Ω

p(j|i, a)u(j) = u(i), a ∈ A(i), i ∈ Ω (4)

Proof First we focus on the sufficiency of the condition. Given an initial state i despite the

fact that the highest expected total reward may change with changes in the unknown transition

probabilities, the action a corresponding to state i in equality (4) has not changed. According

to the analysis above, we know that action ain equality (4) is the optimal action for initial

state i. For any state i ∈ Ω, we have an equality. This means that the optimal deterministic

stationary policy remains unchanged. From the previous discussion we know that the optimal

deterministic stationary policy of a discounted MDP is an optimal policy.

We propose a proof by contradiction to show the necessity condition. Suppose that an

optimal policy remains unchanged when some transition probabilities change. There exists an

initial state i for which we have the following equality before the transition probabilities change:

r(i, a) + β
∑
j∈Ω

p(j|i, a)U(j) = U(i)

Because of the reverse assumption, the above equality no longer makes sense after the

transition probabilities change, namely

r(i, a) + β
∑
j∈Ω

p(j|i, a)U ′(j) < U ′(i)

According to the theory of linear programming, we know that there must exist another

action b that makes the following equality true:

r(i, b) + β
∑
j∈Ω

p(j|i, b)U ′(j) = U ′(i)

The above equation means that the optimal policy changes, which contradicts the assump-

tion. Hence, we affirm that the assumption is false. The necessity of the condition has been

proved.

Definition 4.1 The robust range of a given optimal policy is described as follows: when

uncertain transition probabilities change in this region, the optimal policy remains unchanged.

Next, we develop a solution technique to obtain the robust range of a given optimal policy.

Step 1 Let unknown numbers p′(j|i, a) replace the estimated values of the transition

probabilitiesp(j|i, a). Obviously, p′(j|i, a) still satisfies
∑
j∈Ω

p′(j|i, a) = 1, a ∈ A(i), i ∈ Ω.

Step 2 Find the k equalities corresponding to an optimal policy f∗, and regard them as a

system of equations with k variablesu(1),· · · , u(k). Solve the system to obtain the expression

for each u(i). Generally u(i) is a function of p′(j|i, a).
Step 3 Substitute the expression of each u(i) into the surplus inequalities of the constraints
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in model (1). Thus we obtain the inequalities that only contain several p′(j|i, a). Taking into

account
∑
j∈Ω

p′(j|i, a) = 1, a ∈ A(i), i ∈ Ω, we obtain the value range of each variablep′(j|i, a).

It is clear that an optimal policy remains unchanged when all the uncertain transition

probabilities change within the value range obtained by the above method.

Theorem 4.2 The equation group in step 2 has a unique solution, namely, the expression of

each u(i) is unique.

Proof Without loss of generality, the system of equations mentioned above can be expressed

as follows:
r(1, a1) + βp(1|1, a1)u(1)+βp(2|1, a1)u(2) + · · ·+βp(k|1, a1)u(k)=u(1)

r(2, a2) + βp(1|2, a2)u(1)+βp(2|2, a2)u(2) + · · ·+βp(k|2, a2)u(k)=u(2)
...

r(k, ak) + βp(1|k, ak)u(1)+βp(2|k, ak)u(2) + · · ·+βp(k|k, ak)u(k)=u(k).

As u(i) is an independent variable here, we adjust the form of the system of equations as

follows: 
(βp(1|1, a1)− 1)u(1)+βp(2|1, a1)u(2) + · · ·+βp(k|1, a1)u(k)=− r(1, a1)

βp(1|2, a2)u(1)+(βp(1|2, a2)− 1)u(2) + · · ·+βp(k|2, a2)u(k)=− r(2, a2)
...

βp(1|k, ak)u(1)+βp(2|k, ak)u(2) + · · ·+(βp(k|k, ak)− 1)u(k)=− r(k, ak).

(5)

In model (5), the terms on the right of the equal signs are constants. We express the

coefficient matrix of model (5) as follows:
(βp(1|1, a1)− 1) βp(2|1, a1) · · · βp(k|1, a1)
βp(1|2, a2) (βp(1|2, a2)− 1) · · · βp(k|2, a2)
...

...
...

...

βp(1|k, ak) βp(2|k, ak) · · · (βp(k|k, ak)− 1)


As 0 < β < 1, we have β

∑
j∈Ω

p(j|i, ai) = β < 1. Considering the elements in each row of the

matrix above, we have the following result:

|
∑

j∈Ω,j ̸=i

βp(j|i, ai)| = |β − p(i|i, ai)| < |1− p(i|i, ai)|

Hence, the coefficient matrix of the linear equations is a strictly diagonally dominant ma-

trix. As a consequence, the value of the determinant of the coefficient matrix cannot be zero.

According to Cramer’s rule in linear algebra we know that the equation group mentioned above

has a unique solution.

In order to present the process of the robust analysis clearly, we provide an example.

We adopt the same conditions used in the above section. Given a state space Ω={1,2}, the
available action set of each state is A(1)=A(2)={a1a2}. The discount factor is assumed to be

β=0.9. The transition

probabilities while taking action a1 are accurate, and we assume that p(1|1,a1) = 0.7 p(2|1,a1)
= 0.3 p(1|2,a1) = 0.1 and p(2|2,a1) = 0.9 The transition probabilities of taking action a2 in state

1 are estimated values, and from the above section we know thatp(1|1,a2) = 0.6 and p(2|1,a2) =
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0.4. The remaining probabilities are accurate, and we assume that p(1|2,a2) = 0.2 and p(2|2,a2)
= 0.8 The corresponding rewards are assumed to be r(1,a1) = 6 r(1,a2) = 8 r(2a1) = 1 and

r(2a2) = 3

According to equation (1), we model the above example of a discounted MDP as follows:

min 1
2{u(1) + u(2)}

6 + 0.9(0.7u(1) + 0.3u(2)) ≤ u(1)(i)

8 + 0.9(0.61u(1) + 0.4u(2)) = u(1)(ii)

1 + 0.9(0.1u(1) + 0.9u(2)) ≤ u(2)(iii)

3 + 0.9(0.2u(1) + 0.8u(2)) = u(2)(iv)

It is easy to obtain the solution for the above model by using the simplex method. This

yields U(1)=u(1)=51.9, U(2)=u(2)=44.1. In the constraints, (ii) and (iv) hold equal signs.

Hence, the optimal policy in this example is f∗= (a2,a2). Namely, no matter whether the

current state is 1 or 2, the optimal action should be a2.

According to the steps of the robust analysis, we then set about dealing with the follows

inequalities: 

6 + 0.9(0.7u(1) + 0.3u(2)) ≤ u(1)(v)

8 + 0.9(λ1u(1) + λ2u(2)) = u(1)(vi)

1 + 0.9(0.1u(1) + 0.9u(2)) ≤ u(2)(vii)

3 + 0.9(0.2u(1) + 0.8u(2)) = u(2)(viii)

λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0.

We obtain the expressions for u(1) andu(2) by the equalities (vi) and (viii).
u(1) =

17.64− 9.64λ1

0.42− 0.32λ1

u(2) =
15.84− 9.63λ1

0.42− 0.32λ1
.

Substituting the expressions into inequalities (v) and (vii), we obtain the solutions 0.284 ≤
λ1 ≤ 1, 0 ≤ λ2 ≤0.716. Clearly, the estimated values λ1=0.6 and λ2=0.4 are located in these

intervals.

As the above intervals are wide, we can say that the optimal policy f∗=(a2, a2)
T in this

example is strongly robust.

4.2 Sensitivity analysis of the highest expected total reward

In practical problems, we are concerned with how the highest expected total reward changes

when the transition probabilities vary.

Sometimes we determine an optimal policy based on estimated transition probabilities.

However, the highest expected total reward U(i) may be sensitive when the exact transition

probabilities are larger or smaller than their estimates. In this subsection we assume that the

optimal policy remains unchanged.

Similar to the robust analysis of an optimal policy, we provide a method to handle the

sensitivity of the highest expected total reward.

Step 1 Let unknown numbers p′(j|i, a) replace the estimated values of the transition
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probabilitiesp(j|i, a). Clearly, p′(j|i, a) still satisfies
∑
j∈Ω

p′(j|i, a) = 1, a ∈ A(i), i ∈ Ω.

Step 2 Denote by U(i) the highest expected total reward given an initial state i, and assume

that the optimal action for state i isa. According to the optimal policy f∗ and the following

formula

U(i) = r(i, a) + β
∑
j∈Ω

p(j|i, a) = U(j)

we obtain k linear equations and
∑
i∈Ω

|A(i)| − k inequalities.

Step 3 Solve above system of linear equations to obtain the expression for each U(i). After

substituting the expressions into the inequalities, we solve the inequalities to obtain the value

range for each variablep′(j|i, a).
Step 4 Analyze the change in the highest expected total reward U(i) when the considered

uncertain transition probabilities vary within their value ranges.

In subsection 4.1 we obtained the unique optimal policy f∗= (a2,a2) with the estimated

transition probabilities p(j|i, a), and we also derived the highest expected total reward U(1) =

51.9, U(2) = 44.1. We denote by U ′(1) and U ′(2) the highest expected total rewards when the

estimated transition probabilities change. According to the above method, we have{
8 + 0.9(λ1U

′(1) + λ2U
′(2)) = U ′(1)

3 + 0.9(0.2U ′(1) + 0.8U ′(2)) = U ′(2).

From subsection 4.1 we know that the expressions for U ′(1) and U ′(2) are as follows:
U ′(1) =

17.64− 9.64λ1

0.42− 0.32λ1

U ′(1) =
17.64− 9.64λ1

0.42− 0.32λ1

and the intervals in which the optimal policy remains unchanged are 0.284≤λ1 ≤1, 0≤λ2 ≤0.716.

Take, for example, U ′(1). We analyze its sensitivity with respect to the inaccurate transition

probabilities. Let λ1be 0.5, and as a consequence U ′(1) is equal to 49.3, a value that has been

decreased by 5%. When λ1 is equal to 0.4, the corresponding U ′(1) is 47.2. Apparently, the

sensitivity of the highest expected total reward in this example is low. Of course, the result

may be related to other parameters, for example the reward value r(i, a).

In this subsection we have examined the sensitivity of the highest expected total reward

when transition probabilities vary. Next, we will demonstrate that the highest expected total

reward is a continuous function of p(j|i, a) whether or not the optimal policy changes.

§5 Values of the exact transition probabilities

In the previous section we dealt with the robustness of a given optimal policy and the

sensitivity of the highest expected total reward. In other words, when uncertain transition

probabilities vary in different regions, the corresponding optimal policy may be different. Next,

we disregard how to determine these regions. Following Reis et al. (2019), we simply provide

an interval for each p(j|i, a) directly.
In this section, we continue using linear programming to further explore the above consider-
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ations. Although other methods such as policy iteration are suited to robust analysis problems

(Kalyanasundaram et al. 2002, Wiesemann et al. 2013), from section 4 we know that in general

they are incapable of acquiring the robust range of an optimal policy. In addition, it seems that

the linear programming has unique advantages to analyze the mathematical properties of the

highest expected total reward.

5.1 Robust optimal policy

As some transition probabilities are uncertain, we need to analyze the effect caused by

the variation of the transition probabilities when choosing a policy. Actually, this is a robust

decision-making problem. The sup-inf model has been widely adopted to cope with this type

of issue since the work of Garud in 2005. In this subsection we also take advantage of this

principle to find a robust optimal policy.

Let Φij(a) be the interval of a certain transition probability p(j|i, a). We denote by Φ =

{Φij(a)|Φij(a) = [pmij(a), p
M
ij(a)], p

m
ij(a) ≤ p(j|i, a) ≤ pMij(a), i ∈ Ω, j ∈ Ω, a ∈ A(i)} the interval set

of all transition probabilities. Φij(a) becomes a single point when p(j|i, a) is an exact value,

i.e., pmij(a) = p(j|i, a) = pMij(a). Under the above conditions, the problem of finding a robust

optimal policy for an infinite horizon discounted MDP with initial state i can be modeled as

follows:
sup
f∈Πd

inf
p(j|i,a)∈Φij(a)

u(i)

subject to
∑
j∈Ω

p(j|i, a) = 1, a ∈ A(i), i ∈ Ω

0 ≤ p(j|i, a) ≤ 1, a ∈ A(i), i, j ∈ Ω

(6)

In model (6), u(i) is derived from the objective function of model (1). Let U∗(i) be the

optimal solution of model (6). Apparently, U∗(i) is the robust highest expected total reward.

We remark that the reason why we use supremum and infimum here is that some intervals may

be open.

Next we describe a method of solving model (6). Denote by Πd={f1, · · · , fm} the stationary

policy set, where m =
∑
i∈Ω

|A(i)|.

Step 1 Set j:=1.

Step 2 Take fj out of Π
d, and establish klinear equations similar to equations (5). According

to Cramer’s rule we obtain the expression of each u(i). By theorem 4.2 we know that the

expression is unique.

Step 3 The expression of each u(i) is a continuous function of some transition probabilities

p(j|i, a). We then find the minimum uj(i) when each p(j|i, a) changes on Φij(a) and record

(fjuj(i)).

Step 4 If j = m, the algorithm terminates. Otherwise, replace j by j+1 and return to Step

2.

We obtain U∗(i) = max
j∈1,··· ,m

uj(i) by examining the value of every uj(i) recorded in step 3,

and denote the corresponding robust optimal policy by f ∗, where f∗ = fg,

g ∈ arg max
j∈{1,··· ,m}

uj(i). Considering theorem 4.1, we draw the following conclusion.
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Proposition 5.1 For a certain policy fl, we get the expression of each u(i), and then substitute

the expressions into the m−kinequalities of the constraints in model (1) to obtain a value range

of each p(j|i, a), which we denote byϕij(a). If the intersectionϕij(a) ∩ Φij(a) is an empty set,

fl would have no chance to be an optimal policy.

Removing a group of transition probabilities p′(j|i, a) from Φ that satisfy the constraints

of model (6), we thus obtain the highest expected total reward U(i) under these transition

probabilities. We draw a conclusion about U(i) and U∗(i) as follows.

Theorem 5.1 �p(j|i, a) ∈ Φij(a), U(i) ≥ U∗(i).

Proof For any initial state i, we denote by f∗ a robust optimal policy. Based on the sup-inf

criterion we have the following relationship: inf
p(j|i,a)∈Φij(a)

Uf∗(i) ≤ U
p(j|i,a)
f∗ (i) ≤ U(i) where

U
p(j|i,a)
f∗ (i) represents the expected total reward gained by adopting policy f∗ under a given

group p(j|i, a). According to the definition of f∗ we know that U∗(i) = inf
p(j|i,a)∈Φij(a)

Uf∗(i) So

U∗(i) ≤ U(i) always holds.

Actually, if we denote by inf
p(j|i,a)∈Φij(a)

sup
f∈Πd

u(i) the highest expected total reward under the

worst case scenario, according to theorem 5.1 we have the following conclusion:

inf
p(j|i,a)∈Φij(a)

sup
f∈Πd

u(i) ≥ sup
f∈Πd

inf
p(j|i,a)∈Φij(a)

u(i)

Namely, no matter how unfavorable the condition is, it is better than knowing nothing.

There exists a similar theorem in game theory.

Definition 5.1 Let Vmin(i) = inf
p(j|i,a)∈Φij(a)

(U(i) − U∗(i)) be the lowest value of the exact

transition probabilities for a discounted MDP with an initial state i under some uncertain

transition probabilities, and Vmax(i) = inf
p(j|i,a)∈Φij(a)

(U(i) − U∗(i)) the highest value of the

exact transition probabilities.

In practice, it is always cost-effective to spend less than Vmin(i) to acquire the exact transi-

tion probabilities. Similarly, we have no need to obtain the exact transition probabilities when

the cost is higher than Vmax(i).

5.2 Value interval of exact transition probabilities

In this subsection we focus on developing a technique to obtain Vmin(i) andVmax(i). Actu-

ally, U∗(i) is a certain value, so we only need to obtain inf
p(j|i,a)∈Φij(a)

U(i) and sup
p(j|i,a)∈Φij(a)

U(i).

In order to prove that the highest expected total rewardU(i) is a continuous function of

p(j|i, a), we first assume that U(i) is bounded. Given a finite value M, for any initial state i

we have |U(i)| ≤ M. Apparently, the above assumption is reasonable. In fact, we can obtain

the infimum of M by the following model:

sup
f∈

∏d

sup
p(j|i,a)∈Φij(a)

u(i)

subject to
∑
j∈Ω

p(j|i, a) = 1, a ∈ A(i),i ∈ Ω

0 ≤ p(j|i, a) ≤ 1 ∈ A(i),ij ∈ Ω.
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For a given policy fl ∈ Πd={f1, · · · , fm}, we obtain a unique expression for each u(i)

according to Theorem 4.2. Taking u(1) for example, we derive the corresponding expression as

follows:

u(1) =

∣∣∣∣∣∣∣∣∣∣
−r(1, a1) βp(2|1, a1) · · · βp(k|1, a1)
−r(2, a2) (βp(2|2, a2)− 1) · · · βp(k|2, a2)
...

...
...

...

−r(k, ak) βp(2|k, ak) · · · (βp(k|k, ak)− 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(βp(1|1, a1)− 1) βp(2|1, a1) · · · βp(k|1, a1)
βp(1|2, a2) (βp(2|2, a2)− 1) · · · βp(k|2, a2)
...

...
...

...

βp(1|k, ak) βp(2|k, ak) · · · (βp(k|k, ak)− 1)

∣∣∣∣∣∣∣∣∣∣

(7)

As mentioned above, we substitute k expressions for all u(i) into the m−kinequalities. Thus

we obtain inequalities for p(j|i, a). As long as each p(j|i, a) changes in Φij(a) and guarantees

that the inequalities hold, fl is always an optimal policy.

Lemma 5.1 For an optimal policy f∗, if there exist a group of transition probabilities p′(j|i,
a) within the robust range that make at least one of the inequalities to be an equality, then

there exists another simultaneous optimal policy.

Proof Without loss of generality, we denote by f∗= (a1,a2, · · · ,ak) a current optimal policy.

For any i ∈ Ω we have

r(i, ai) + β
∑
j∈Ω

p(j|i, ai)u(j)=u(i), (8)

Through the k equations we obtain the expression of each up(i), where up(i) is a rational

function of p (j|i, a) as in expression (7).

According to the given condition, we know that there exists at least one equality in the

previous inequalities when each p′(j|i, a) is substituted into the inequalities. Without loss of

generality, we assume that the equality corresponds to state 1, i.e.,

r(1, a′
1
) + β

∑
j∈Ω

p(j|1, a′
1
)up(j)=up(1). (9)

There is a similar relationship when the equality corresponds to any other state.

In the equality constraints of f∗, the equality corresponding to state 1 is

r(1, a1) + β
∑
j∈Ω

p(j|1, a1)up(j)=up(1). (10)

Replacing equality (10) by equality (9), we obtain a new system of equalities. Apparently,

f ′=(a′1,a2, · · · , ak) is also an optimal policy at this moment.

Corollary 5.1 For a given group of transition probabilities p(j|i, a), if there exist two simul-

taneous optimal policies fh andfl, then, �i ∈ Ω Ufh(i) = Ufl(i).

Proof We solve the systems of linear equations corresponding to policy fh and policyfl.

For any i ∈ Ω, we obtain the unique expressions ufh(i) and ufl(i) based on theorem 4.2. As fh

and fl are both optimal policies, their inequalities hold when the expressions for p′(j|i, a) are
substituted into the relevant equations.

On the basis of MDP theory we know that the highest expected total reward is unique for
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a certain group of p′(j|i, a). Hence, we have Ufh(i)=ufh(i)=ufl(i) = Ufl(i).

Lemma 5.2 The optimal policy would shift at most once when each uncertain transition

probability changes within a small enough interval.

Proof First we obtain the expressions for each up(i) and then substitute these into the m− k

inequalities corresponding to a given optimal policy f∗. Next, we demonstrate the correctness

of this lemma according to the results obtained when substituting a given group of p(j|i, a)
into the inequalities.

(i). If each inequality satisfies the following relationship:

r(1, a1) + β
∑
j∈Ω

p(j|1, a)up(j)=up(1).

then we turn our attention to the sufficient condition for which each inequality still holds when

one or more transition probabilities change:

|β
∑

j ∈ Ωp′u′
p(j)−u′

p(i)−β
∑

j ∈ Ωpup(j)+up(i)| < up(i)−r(i, a)−β
∑

j ∈ Ωpup(j) (11)

In the above inequality, the expressions forup(i) and u′
p(i) are the same. Apparently, up(i)

is an elementary function of p (j|i, a), so it is continuous in Φij(a). We rewrite p(j|i, a) as pfor
convenience. From the properties of continuous functions we know that there exists dpi, and

inequality (11) holds when dp ≤ dpi, �i, j ∈ Ω, a ∈Ai.

Letdp∗ = min{dpi, i = 1, · · · ,m − k}; thus, the m − k inequalities similar to (11) will hold

when |dp| ≤ |dp∗|. Consequently, the optimal policy remains unchanged when each dp

varies within the interval [-|dp∗|, |dp∗|].
(ii). If at least one inequality turns into an equality after substituting a given group of p(j|i,

a) into the inequalities corresponding to the optimal policy f∗, through lemma 5.1 we know

that there is at least one other optimal policy for which the inequalities hold as well. We now

consider all of the inequalities corresponding to these optimal policies. Using a similar process

as with (i), we aim to find such intervals of the transition probabilities for which optimal policy

will shift no more than once.

a. We first consider the inequalities with less-than signs. Similar to (i), we can find the dps

that guarantees that the inequalities with less-than signs hold when |dp| ≤ |dps|.
b. Afterwards, we consider the equalities in the previous inequalities after substituting a given

set of p(j|i, a). Without loss of generality, we rewrite each of these in following form:

f(p) = r(i, a) + β
∑
j∈Ω

p(j|i, a)up(j)− up(i), (12)

where f(p) is a function of several variables of p(j|i, a). In function (12), all up(i) are rational

functions whose denominators are the same and not zero. For function (12), we reduce the

fractions to a common denominator and denote by g(p) the numerator of the rewritten f(p).

Apparently, g(p) is a polynomial function of p(j|i, a). Hence, f(p) is not equal to zero if and

only if g(p) is not equal to zero. We then take the partial derivative of g(p).

If there exists a function g(p) whose partial derivatives are all zero after substituting into a

given group of p(j|i, a), we can find a dp˚ such that at least one of the partial derivatives is

not zero when |dp| ∈(0, |dp˚|]. Apparently, such a dp˚ exists as long as g(p) is not identically

equal to a constant. In that case, for any |dp| ∈(0, |dp˚|], g(p) cannot be zero. Otherwise, there
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would be an extreme point for g(p) within the deleted neighborhood, and all partial derivatives

of g(p) at this point would be zero.

For other g(p), there always exists at least one partial derivative that is not zero. Similarly,

we can find a dpt such that all partial derivatives of each g(p) preserve their signs when |dp| ∈(0,
|dpt|]. Clearly, such a dpt is attainable.

Given the above, we denote by |dp∗|=min{|dps|, |dp˚|, |dpt|} the range of variation of each

p(j|i, a). When each p(j|i, a) changes in the deleted neighborhood [p−|dp∗|,p+ |dp∗|], function
(12) cannot be zero. Hence, the optimal policy would not shift when |dp| ∈(0, |dp∗|]. In

conclusion, the optimal policy will shift no more than once when |dp| ∈[0, |dp∗|].
Actually, lemma 5.2 is an extension of subsection 4.1, and [p−|dp∗|,p+ |dp∗|] can be viewed

as a robust range.

Theorem 5.2 U(i) is a continuous function of p(j|i, a).
Proof Through lemma 5.1 and corollary 5.1 we have demonstrated the correctness of the above

theorem from the perspective of algebra. Now we give a rigorous proof based on mathematical

analysis. We concentrate our attention on whether a given optimal policy will shift when each

uncertain transition probability changes on a small enough interval.

(i). If the optimal policy remains unchanged when each uncertain transition probability

changes on a small enough interval, through theorem 4.1 we know that the equalities in model

(1) would hold. Namely, for any one of these equalities we have

U(i) = r(i, a) + β
∑
j∈Ω

(p(j|i, a)U(j) (13)

Give each p(j|i, a) a change of no more than |dp∗|. Equality (13) becomes

U ′(i) = r(i, a) + β
∑
j∈Ω

(p(j|i, a) + dp(j|i, a))U ′(j), (14)

where U(i) and U ′(i) represent the respective highest expected total reward before and after

each change in p(j|i, a). Subtracting equality (13) from both sides of equality (14) we have

dU(i) = β
∑
j∈Ω

(pdU(j) + U(j)dp+ dU(j)dp),

where pis a logogram of p(j|i, a). Let dp→0, and notice that

lim
dp→0

|
∑
j∈Ω

dU(j)dp| = lim
dp→0

|
∑
j∈Ω

(U ′(j)− U(j))dp| ≤ lim
dp→0

∑
j∈Ω

|U ′(j)|+ |U(j)|)dp ≤ 2M lim
dp→0

∑
j∈Ω

dp,

we obtain the following inequality

lim
dp→0

|
∑
j∈Ω

(U(j)dp+ dU(j)dp)| ≤ 3M lim
dp→0

∑
j∈Ω

dp = 0.

Therefore, we have

lim
dp→0

|dU(i)| = lim
dp→0

β|
∑
j∈Ω

(pdU(j))| ≤ lim
dp→0

βdUmax,

where dUmax=max{|dU(1)|, · · · , |dU(k)|}. We assume that U(m) has a biggest change among

all U(i), then owing to the arbitrariness of U(i) we have

lim
dp→0

dUmax = lim
dp→0

|dU(m)|= lim
dp→0

β|
∑
j∈Ω

(pdU(j))| ≤ lim
dp→0

βdUmax,
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According to the previous assumption we know that 0 < β < 1. Hence, we obtain

lim
dp→0

dUmax = 0. We thus conclude that �i ∈ Ω, lim
dp→0

dU(i) = 0.

(ii). If the optimal policy shifts when each p(j|i, a) changes on a small enough interval, one

or more of the equalities (14) will no longer hold. We focus on the equality corresponding to

dUmax.

a. If the equality corresponding to dUmax holds when each p(j|i, a) changes on a certain small

enough interval, then through (i) we know that lim
dp→0

dU(i) = 0 for any i ∈ Ω.

b. If the equality corresponding to dUmax no longer holds when p(j|i, a) changes on a small

enough interval, then we have the following set of equalities and inequalities:
(a).U(m) = r(m, ax) + β

∑
j∈Ω

p(j|m, ax)U(j)

(b).U(m) ≥ r(m, ay) + β
∑
j∈Ω

p(j|m, ay)U(j)
,


(c).U ′(m) ≥ r(m, ax) + β

∑
j∈Ω

p(j|m, ax)U(j)

(d).U ′(m) = r(m, ay) + β
∑
j∈Ω

p(j|m, ay)U(j)
,

If dU(m) ≤0, we take (c) minus (a) and let dp→0; we then have

− lim
dp→0

dUmax = lim
dp→0

|dU(m)≥ lim
dp→0

β
∑
j∈Ω

(p(j|i, ax)dU(j)) ≥ − lim
dp→0

βdUmax,

By examining the absolute values of both sides in inequality (15) we have lim
dp→0

dUmax ≤
lim
dp→0

βdUmax.

IfdU(m) ≥0, we take (d) minus (b) and let dp→0, then we have

lim
dp→0

dUmax = lim
dp→0

dU(m) ≤ lim
dp→0

β
∑
j∈Ω

(p(j|i, ay)dU(j)) ≤ βdUmax.

Hence, we have the result that lim
dp→0

dU(i) = 0 as well.

Apparently, the above proof makes sense for any p(j|i, a) ∈ Φij(a). Through (i) and (ii) we

conclude that U(i) is a continuous function of p(j|i, a).
Afterwards, we develop solution techniques for searching for the upper and lower bounds

of the highest expected total rewardU(i). The mathematical programming model used to

determine the lower bound of U(i) is given as follows:

inf
p(j|i,a)∈Φij(a)

sup
f∈

∏d

u(i)

subject to
∑
j∈Ω

p(j|i, a) = 1, a ∈ A(i),i ∈ Ω

0 ≤ p(j|i, a) ≤ 1, a ∈ A(i),i, j ∈ Ω.

(15)

The model used to find the upper bound of U(i) is given as follows

sup
p(j|i,a)∈Φij(a)

sup
f∈

∏d

u(i)

subject to
∑
j∈Ω

p(j|i, a) = 1, a ∈ A(i),i ∈ Ω

0 ≤ p(j|i, a) ≤ 1, a ∈ A(i),i, j ∈ Ω.

(16)



432 Appl. Math. J. Chinese Univ. Vol. 35, No. 4

u(i) in model (16) and model (17) is derived from the objective function of model (1).

We then propose a method to solve model (16). Through corollary 5.1 we know that

the highest expected total reward is unique when several policies are simultaneously optimal.

Hence, we only need to find the solution by considering every policy. As U(i) is a continuous

function of p(j|i, a), we transform all possible open intervals into closed intervals and propose

programming models to address this problem.

For each fl ∈ Πd={f1, · · · , fm}, we obtain k equalities and m − k inequalities. Regard k

equalities as a linear system of equations and solve the system to obtain the unique expression

for each u(i). Substituting all the derived expressions into the m−k inequalities, we obtain the

value range of p(j|i, a), which we denote byϕl
ij(a). Let ϕ

l
ij(a) ∩Φl

ij(a) be the new interval of

p(j|i, a). We denote by Uh(i) the highest expected total reward when fm is an optimal policy.

We then search for the minimum in ϕh
ij(a) ∩Φh

ij(a):

minUh(i)

subject to
∑
j∈Ω

p(j|i, a) = 1, a ∈ A(i),i ∈ Ω

p(j|i, a) ∈ Φij(a) ∩ ϕh
ij(a), a ∈ A(i), i ∈ Ω

0 ≤ p(j|i, a) ≤ 1, a ∈ A(i),i, j ∈ Ω.

(17)

Let hbe 1,· · · , m in sequence; we then obtain the m solutions using model (18). Apparently,

the minimum of the m values is the solution of model (16).

The method for solving model (17) is similar. We need to solve mmodels as follows:

maxUh(i)

subject to
∑
j∈Ω

p(j|i, a) = 1, a ∈ A(i),i ∈ Ω

p(j|i, a) ∈ Φij(a) ∩ ϕh
ij(a), a ∈ A(i), i ∈ Ω

0 ≤ p(j|i, a) ≤ 1, a ∈ A(i),i, j ∈ Ω.

(18)

Similarly, the maximum of the m values is the solution of model (17).

Given the above, the solution of model (16) is inf
p′(j|i,a)∈Φij(a)

U(i) and the solution of model

(17) is sup
p′(j|i,a)∈Φij(a)

U(i).

5.3 A numerical example

In this subsection we provide a numerical example to verify the feasibility of the models and

methods proposed above. We follow the conditions used in the above section. Given a state

space Ω={1,2}, the available action set of each state is assumed to be A(1)=A(2)={a1a2}.
The discount factor β is assumed to be 0.9. The values of the transition probabilities when

we take action a1 are accurate, and we assume that p(1|1,a1) = 0.7, p(2|1,a1) = 0.3, p(1|2,a1)
= 0.1 and p(2|2,a1) = 0.9. The values of the transition probabilities when we take action a2

are uncertain, and we denote by p(1|1,a2) = p1, p(2|1,a2) =1-p1, p(1|2,a2) = p2 and p(2|2,a2)
=1-p2. We assume that p1 ∈[0,0.6] and p2 ∈[0.2,0.8]. The corresponding rewards are assumed

to be r(1,a1) = 6 r(1,a2) = 8 r(2a1) = 1 and r(2a2) = 3
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We consider initial state to be 1 in the following analysis. According to model (6) and

the method given in subsection 5.1, we intend to find a robust optimal policy. Through the

assumptions we know that Πd={f1, f2, f3, f4}, where f1= (a1, a1)
T ,f2= (a1, a2)

T ,f3= (a2,

a1)
T , and f4= (a2, a2)

T .

If we choosef1= (a1, a1)
T , the corresponding equations are as follows:{

6+0.9(0.7U(1) + 0.3U(2)) = U(1)

1 + 0.9(0.1U(1) + 0.9U(2)) = U(2).

Solving the system, we obtain U(1)=30.65. In this case, U(1) has nothing to do with

uncertain transition probabilities, thus inf U(1) = U(1) = 30.65.

If we adopt f2= (a1, a2)
T , the corresponding equations are
6+0.9(0.7U(1) + 0.3U(2)) = U(1)

3 + 0.9(p2U(1) + (1− p2)U(2)) = U(2)

0.2 ≤ p2 ≤ 0.8.

By solving the equations, we obtain U(1) = 5.4p2+1.41
0.09p2+0.037 . As U

′

p2
(1) > 0, we obtain the

infimum of U(1) when p2=0.2. Thus, we have inf U(1) = 45.27.

If we choose f3= (a2, a1)
T , the corresponding equations are
8+0.9(p1U(1) + (1− p1)U(2)) = U(1)

1 + 0.9(0.1U(1) + 0.9U(2)) = U(2)

0 ≤ p1 ≤ 0.6.

Solve the equations, we obtain U(1) = 2.42−0.9p1

0.109−0.09p1
. Because U

′

p1
(1) > 0, we obtain the

infimum of U(1) when p1=0. We have inf U(1) = 22.20 under f3.

If we adopt f4= (a2, a2)
T , the corresponding equations are
8+0.9(p1U(1) + (1− p1)U(2)) = U(1)

3 + 0.9(p2U(1) + (1− p2)U(2)) = U(2)

0 ≤ p1 ≤ 0.6, 0.2 ≤ p2 ≤ 0.8.

By solving the above equations we obtain U(1) = −2.7p1+7.2p2+3.5
−0.09p1+0.09p2+0.1 . On the given intervals

p1 ∈[0,0.6] andp2 ∈[0.2,0.8] we have U
′

p1
(1) > 0 and U

′

p2
(1) > 0. Hence, we obtain the infimum

of U(1) when p1=0 and p2=0.2. Thus, we have inf U(1) = 41.86 under f4.

Given the above, sup
fl∈

∏d

inf
p(j|i,a)∈Φij(a)

U(1) = 45.27, and the unique robust optimal policy is

f2.

We next concentrate on determining the value interval of exact transition probabilities.

Let f1= (a1, a1)
T be an optimal policy, then we have the following constraints:

6+0.9(0.7u(1) + 0.3u(2)) = u(1)

1 + 0.9(0.1u(1) + 0.9u(2)) = u(2)

8+0.9(p1u(1) + (1− p1)u(2)) ≤ u(1)

3 + 0.9(p2u(1) + (1− p2)u(2)) ≤ u(2)

0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1.

By solving the equations we obtain u(1) =30.65, u(2) = 19.78. After substituting these

values into the inequalities, we discover that there is no solution, i.e., ϕ2,1(a2) = ∅ Through
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proposition 5.1 we know that f1 cannot be an optimal policy.

Let f2= (a1, a2)
T be an optimal policy. We then have the following constraints:

6+0.9(0.7u(1) + 0.3u(2)) = u(1)

3 + 0.9(p2u(1) + (1− p2)u(2)) = u(2)

8+0.9(p1u(1) + (1− p1)u(2)) ≤ u(1)

1 + 0.9(0.1u(1) + 0.9u(2)) ≤ u(2)

0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1.

Similarly, we first obtain the expressions for u(1) and u(2) as in expression (7) and then

substitute these into the inequalities. Solve the two inequalities, we have 0.27p1+0.18p2 ≤0.115

and p2 ≥0.636. Clearly, f2 may be an optimal policy. For U(1) = 5.4p2+1.41
0.09p2+0.037 and U

′

p2
(1) > 0,

we obtain the minimum of U(1) whenp2=0.636, i.e., minU(1)=51.40. Similarly, we obtain the

maximum of U(1) whenp2=0.639, and maxU(1)=51.43.

Likewise, let f3 = (a2, a1)
T be an optimal policy. We obtain p1 ≥0.496 and 0.18p1-0.63p2 ≥

0.155. We find that there is no solution for p1, i.e., ϕ1,1(a2) ∩ Φ1,1 (a2) = ∅ Therefore, f3

has no chance to be an optimal policy.

Let f4 = (a2, a2)
T be an optimal policy. We obtain 0.27p1+0.18p2 ≥0.115, 0.18p1-0.63p2 ≤

0.155. There exist a feasible region for f4 to be an optimal policy. For the highest expected

total reward U(1) = −2.7p1+7.2p2+3.5
−0.09p1+0.09p2+0.1 , we take its partial derivatives and obtain U

′

p1
(1) > 0

and U
′

p2
(1) > 0 when p1 ∈[0,0.6] andp2 ∈[0.2,0.8]. Hence, the minimum of U(1) would only be

obtained on the line 0.27p1+0.18p2=0.115. Eliminate p1 and we have

U(1) =
27p2 + 7.05

0.45p2 + 0.185
, U ′(1) =

1.8225

(0.45p2 + 0.185)2
> 0.

Apparently, we obtain the minimum of U(1) whenp2=0.2, and minU(1)=45.27. We obtain

the maximum of U(1) when p1=1 andp2=1, and maxU(1)=80.

Given the above, we obtain inf
p′(j|i,a)∈Φij(a)

U(i) = 45.27 and sup
p′(j|i,a)∈Φij(a)

U(i) = 80. Further,

we have Vmin(i)=0, Vmax(i)=34.73, and the value interval [0, 34.73].

Actually, when 0.27p1+0.18p2=0.115 and p2 ∈[143/225, 23/36], f2= (a1, a2)
T and f4= (a2,

a2)
T are both optimal policies, and the highest expected total rewards under the two policies

are equal:

Uf2(1) =
5.4p2 + 1.41

0.09p2 + 0.037
=

27p2 + 7.05

0.45p2 + 0.185
= Uf4(1),

which coincides with the conclusions of lemma 5.1 and corollary 5.1.

The above result in this example illustrates that obtaining exact transition probabilities

may not improve the highest expected total reward under the most unfavorable situation. It is

important to provide the value intervals for both pessimistic and optimistic decision makers.

§6 Conclusion

In this paper we addressed the problem of discounted MDPs with uncertain transition

probabilities. Our research has made several significant contributions to MDP theory. We

summarize these as follows:
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(1) A method for estimating uncertain transition probabilities was proposed. By using an

observation history, we derived a programming model to estimate the uncertain probabilities

and provided a numerical example.

(2) The robustness of discounted MDPs was studied. We considered the robustness of an

optimal policy and the sensitivity of the highest expected total reward and provided methods

of analysis.

(3) The value intervals of exact transition probabilities were given. We first proved that the

highest expected total reward obtained by a robust optimal policy cannot be greater than the

reward obtained under accurate transition probabilities. Afterwards, we proposed a method to

find a robust optimal policy. Finally, we presented several models for determining the value

intervals of the exact transition probabilities.

(4) During the process of determining the value intervals, we considered the shift of optimal

policies and the continuity of the highest expected total reward, and we drew several significant

conclusions.

Apparently, the methods proposed in this paper are appropriate for other Markov decision

models with finite actions and states. Nevertheless, the proposed solution techniques will require

large computations when the number of states or actions increases. We also did not consider

the situations in which the number of states or actions is infinite.

In practice, the distributionally robust framework is also adopted to deal with Markov

decision issues with uncertain parameters when the uncertain parameters are random variables

following an unknown distribution (Yu et al. 2016). Besides, the change of parameter plays

a critical rule for the robustness of stochastic systems (see, e.g., Zhu (2018) and Zhu (2019)).

When involving continuous-time problems, semi-Markov models are always applied (Wang et

al. 2018). In the future work, we are about to consider the continuous-time Markov models

with uncertain parameters.
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