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Limit behaviors for dependent Bernoulli variables

MIAO Yu MA Huan-huan

Abstract. In this paper, we consider a class of dependent Bernoulli variables, which has the

following form: for k ≥ m,

P (Xk+1 = 1|Fk) =

m∑
i=1

θiXk+1−i + θ0p,

where m is a positive integer,
∑m

i=0 θi = 1, Fn = σ{X1, · · · , Xn}, 0 < p < 1. The convergence

rate of the strong law of large numbers and the moderate deviation principle for the model are

established. Furthermore, we study some properties of parameter estimation for the model.

§1 Introduction

Drezner and Farnum [4] first proposed a generalized binomial distribution, which allows

dependence between trials, nonconstant probabilities of success from trial to trial. The con-

ditional success probability is a linear combination of the empirical mean and the probability

of success. The resulting class of distributions includes the binomial, unimodal distributions,

and bimodal distributions. Heyde [5] studied its limit theorem by a martingale representation,

which was further generalized by James et al. [7], Wu et al. [9] and Miao et al. [8]. Zhang and

Zhang [10] generalized the model to a multi-dimensional case, extending some known results.

Based on the Drezner and Farnum’s model [4], Zhang and Zhang [11] considered a special

model where only the last few trials are involved, because in reality, the last several samples

usually have more impact on what will happen. Let {Xk, k ≥ 1} be a sequence of dependent

Bernoulli random variables, which is defined by the following way: the success probability of

the trial conditional on all the previous trials is a linear combination of the last few trials and

Received: 2018-02-21. Revised: 2019-09-30.
MR Subject Classification: 60F10, 60F15, 62F12.
Keywords: strong law of large numbers, moderate deviation, Bernoulli variables, martingale.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-020-3599-6.
Supported by NSFC (11971154).



400 Appl. Math. J. Chinese Univ. Vol. 35, No. 4

the original success probability p. In particular, for k ≥ m and some 0 < p < 1, we assume that

P (Xk+1 = 1|Fk) =

m∑
i=1

θiXk+1−i + θ0p (1.1)

where Xn denotes the nth trail, Sn =
∑n

i=1 Xi, θi, i = 0, 1, · · · ,m, are non-negative parameters

satisfying
m∑
i=0

θi = 1, Fn = σ{X1, · · · , Xn},

and m is a fixed integer. For simplicity, we assume that X1, · · · , Xm are i.i.d. Bernoulli random

variables with P (X1 = 1) = p. When θ0 = 1, {Xk, k ≥ 1} is a sequence of i.i.d. Bernoulli

random variables with parameter p. The presence of θ0, · · · , θm allows for overdispersion com-

pared with the traditional Bernoulli sequence and also makes the model more flexible. In the

present paper, we consider the case where the last two trials are involved, i.e., for k ≥ 2,

P (Xk+1 = 1|Fk) = θ1Xk + θ2Xk−1 + θ0p. (1.2)

In [11], the authors studied the model (1.2) and established some asymptotic results, which

included central limit theorems, law of large numbers and law of the iterated logarithm.

The aims of the paper are to establish the convergence rate and the moderate deviation

principle for this model. The rest of the paper is organized as follows. The next section is

devoted to the descriptions of our main results and their proofs will be given in Section 3. In

Section 4, we consider the problems of parameter estimation and the case where θ changes with

n.

§2 Main results

The first result is to consider the strong law of large numbers.

Theorem 2.1. For any r > 0, we have
Sn − np√

n(log n)(1+r)/2

a.s.−−→ 0.

Remark 2.1. In [11], the authors obtained the following strong law of large numbers: for any

β > 1/2,
Sn − np

nβ

a.s.−−→ 0.

So Theorem 2.1 improves the above result.

LetD[0,∞) be the function space on [0,∞) consisting of functions which are right continuous

and have left limits and ρ denote the uniform metric on D[0,∞) (see Billingsley [2]). In [11],

the authors show the following weak convergence:

S[nt] − [nt]p
√
n

D−→ σW (t)
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where {W (t), t ≥ 0} is a standard Brownian motion and

σ2 := θ−2
0

(
1− θ21 − θ22 −

2θ21θ2
1− θ2

)
p− θ−1

0

(
θ0 + 2θ1 + 2θ2 +

2θ1θ2
1− θ2

)
p2. (2.1)

In particular, it is easy to get the central limit theorem:
Sn − np√

n

D−→ N(0, σ2).

Our second result is to give the asymptotic behavior of the functional associated with the above

weak convergence:

Zn(t) :=
S[nt] − [nt]p

bn
, t ∈ [0, 1], (2.2)

in D[0, 1] equipped with the Skorohod topology and with the Borel σ-field B. Here, the sequence

{bn, n ≥ 1} is increasing such that

bn√
n
→ ∞,

bn
n

→ 0. (2.3)

Theorem 2.2. Zn(·) satisfies the moderate deviation principle in D[0, 1] (equipped with the

Skorohod topology), with speed b2n/n and the good rate function

I(ϕ) =

 1
2σ2

∫ 1

0
|ϕ′

(t)|dt, if ϕ ∈ AC0([0, 1])

+∞, otherwise,
(2.4)

where

AC0([0, 1]) = {ϕ : [0, 1] → R is absolutely continuous with ϕ(0) = 0}.
More precisely, for any Borel-measurable subset A ⊂ D[0, 1], we have that

− inf
ϕ∈Ao

I(ϕ) ≤ lim inf
n→∞

n

b2n
logP (Zn(·) ∈ A)

≤ lim sup
n→∞

n

b2n
logP (Zn(·) ∈ A) ≤ − inf

ϕ∈Ā
I(ϕ)

where Ao and Ā denote the interior and the closure of A, respectively.

From Theorem 2.2, we have the following moderate deviation principle for Sn.

Corollary 2.1. (Sn − np)/bn satisfies the moderate deviation principle with speed b2n/n and

the good rate function I(x) = x2/2σ2, namely, for any r > 0, we have

lim
n→∞

n

b2n
logP

(∣∣∣∣Sn − np

bn

∣∣∣∣ > r

)
= − r2

2σ2
.

The next corollary deals with the moderate deviation of a self-normalized result for our

model.

Corollary 2.2. For any r > 0, we have

lim
n→∞

n

b2n
logP

(√
n

bn

∣∣∣∣∣ Sn − np√∑n
k=1(Xi − p)2

∣∣∣∣∣ > r

)
= − r2

2σ2
1

,

where

σ2
1 =

σ2

p(1− p)
.
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§3 Proofs for main results

Using the decomposition in Zhang and Zhang [11], we define

D1 = X1 − p, D2 = X2 − p, Dn = Xn − θ1Xn−1 − θ2Xn−2 − θ0p

for n ≥ 3. Let F0 be the trivial σ-algebra, then it is easy to see that {Dk,Fk; k ≥ 1} is

a sequence of bounded martingale differences. If we define Mn =
∑n

k=1 Dk, we have the

relationship between Sn and Mn:

Mn =(1− θ1 − θ2)Sn − θ0np︸ ︷︷ ︸+(θ1 + θ2)Xn + θ2Xn−1 + θ1X1 − 2(1− θ0)p︸ ︷︷ ︸
=:θ0(Sn − np) +Nn

(3.1)

which implies

Sn − np = θ−1
0 (Mn −Nn). (3.2)

3.1 Proof of Theorem 2.1

Let cn =
√
n(log n)(1+r)/2, then by the relation (3.1) and the fact that Nn is a bounded

random variable, it is enough to prove that Mn/cn
a.s.−−→ 0. Since {Dk,Fk, k ≥ 1} is a sequence

of bounded martingale difference with

|Dk| ≤ 1, a.s. for all k ≥ 1,

by the Hoeffding’s inequality (see [1, 6]) of martingale, for any ε > 0, we have

P (|Mn| ≥ εcn) ≤ 2 exp

(
− 1

2n
ε2c2n

)
= 2 exp

(
−1

2
ε2(log n)1+r

)
which, by the Borel-Cantelli lemma, yields that

Mn/cn
a.s.−−→ 0.

3.2 Proof of Theorem 2.2

Let {Dk,Fk; k ≥ 1} be a sequence of martingale differences and M0 = 0,Mn =
∑n

k=1 Dk for

n ≥ 1. We denote by ⟨M⟩n the quadratic variation process of the martingale {Mn,Fn;n ≥ 1}
given by

⟨M⟩n =

n∑
k=1

E(D2
k|Fk−1).

Now we recall the result of Djellout [3, Theorem 1].

Proposition 3.1. [3, Theorem 1] Let {bn, n ≥ 1} be a sequence satisfying (2.3), such that

c(n) := n/bn is non-decreasing, and define the reciprocal function c−1(t) by

c−1(t) := inf{n : c(n) ≥ t}.

Assume that the following conditions hold:
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(H1) there exists a constant σ2 such that for any ε > 0,

lim sup
n→∞

n

b2n
logP

(∣∣∣∣ ⟨M⟩n
n

− σ2

∣∣∣∣ > ε

)
= −∞;

(H2)

lim sup
n→∞

n

b2n
log
[
n ess sup1≤k≤c−1(bn+1) P (|Dk| > bn|Fk−1)

]
= −∞;

(H3) for any a > 0 and ε > 0,

lim sup
n→∞

n

b2n
logP

(
1

n

n∑
k=1

E
(
|Dk|21{|Dk|≥a n

bn
}|Fk−1

)
≥ ε

)
= −∞,

then Zn(·) satisfies the moderate deviation principle in D[0, 1] (equipped with the Skorohod

topology), with speed b2n/n and the good rate function

I(ϕ) =

 1
2σ2

∫ 1

0
|ϕ′

(t)|dt, if ϕ ∈ AC0([0, 1]);

+∞, otherwise.
(3.3)

Next we shall use Proposition 3.1 to prove Theorem 2.2. By the relation (3.1), we have

Zn(t) = θ−1
0

(
M[nt] −N[nt]

)
/bn,

and from the fact that N[nt] is a bounded random variable, it is easy to see that N[nt]/bn can be

neglected in the sense of moderate deviation principle. So it is enough to show that θ−1
0 M[nt]/bn

satisfies the moderate deviation principle. Since Mn =
∑n

k=1 Dk is a martingale with bounded

martingale difference sequence,

|Dk| ≤ 1, a.s. for all k ≥ 1,

then it is easy to check that the conditions (H2) and (H3) in Proposition 3.1 hold.

Noting that for k ≥ 3

E(D2
k|Fk−1) =(1− θ1Xk−1 − θ2Xk−2 − θ0p)(θ1Xk−1 + θ2Xk−2 + θ0p)

=θ0p− θ20p
2 + (θ1 − θ21 − 2θ0θ1p)Xk−1 + (θ2 − θ22 − 2θ0θ2p)Xk−2

− 2θ1θ2Xk−1Xk−2,

then we have

⟨M⟩n
n

=
1

n

n∑
k=1

E(D2
k|Fk−1) = (θ0p− θ20p

2)− 2θ1θ2
n

n∑
k=1

XkXk+1

+
(θ1 − θ21 + θ2 − θ22 − 2θ0θ1p− 2θ0θ2p)

n
Sn +

1

n
Qn

(3.4)

where

Qn =2θ1θ2Xn(Xn−1 +Xn+1) + 2θ1θ2X2(X1 +X3)− (θ1 − θ21 − 2θ0θ1p)(X1 +Xn)

− (θ2 − θ22 − 2θ0θ2p)(Xn−1 +Xn) + 2p(1− p).

Because Qn is a bounded random variable, for any ε > 0, we can get

lim sup
n→∞

n

b2n
logP (|Qn| > εn) = −∞. (3.5)

Furthermore, by Hoeffding’s inequality (see the proof of Theorem 2.1), for any ε > 0, there
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exists a positive constant c, such that

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ > ε

)
= P

(∣∣∣∣θ−1
0 (Mn −Nn)

n

∣∣∣∣ > ε

)
≤ 2e−cn

which implies

lim sup
n→∞

n

b2n
logP

(∣∣∣∣Sn

n
− p

∣∣∣∣ > ε

)
= −∞. (3.6)

Now let us define

D̂1 = X1 − p, D̂2 = X1(X2 − p), D̂n = Xn−1(Xn − θ1Xn−1 − θ2Xn−2 − θ0p)

for n ≥ 3, then {D̂k,Fk; k ≥ 1} is a sequence of bounded martingale differences and it is not

difficult to show

M̂n :=

n∑
k=1

D̂k = (1− θ2)

n∑
k=1

XkXk+1 − (θ1 + θ0p)Sn + Q̂n

where

Q̂n = θ2XnXn−1 − (1− θ2)XnXn+1 + (θ1 + θ0p)(X1 +Xn) + (1− p)X1 − p.

Based on the above proofs, we know that for any ε > 0,

lim sup
n→∞

n

b2n
logP

(∣∣∣∣∣M̂n

n

∣∣∣∣∣ > ε

)
= −∞

and

lim sup
n→∞

n

b2n
logP

(∣∣∣∣∣ Q̂n

n

∣∣∣∣∣ > ε

)
= −∞,

which imply that (1− θ2)
∑n

k=1 XkXk+1 and (θ1 + θ0p)Sn are exponentially equivalent in the

sense of moderate deviation principle. And because of the limit (3.6), we get

lim sup
n→∞

n

b2n
logP

(∣∣∣∣∣ (1− θ2)

n

n∑
k=1

XkXk+1 − (θ1 + θ0p)p

∣∣∣∣∣ > ε

)
= −∞. (3.7)

So the result of Theorem 2.2 is obtained.

3.3 Proof of Corollary 2.2

From Corollary 2.1, it is enough to prove that for any r > 0

lim
n→∞

n

b2n
logP

(∣∣∣∣∑n
k=1(Xk − p)2

n
− p(1− p)

∣∣∣∣ > r

)
= −∞. (3.8)

Since
n∑

k=1

(Xk − p)2 = (1− 2p)

n∑
k=1

Xk + np2 = (1− 2p)Sn + np2,

from the decomposition (3.2), we have

(1− 2p)Sn + np2 = (1− 2p)θ−1
0 (Mn −Nn) + np(1− p).

By the Hoeffding inequality (see the proof of Theorem 2.1), for any r > 0, we have

P
(∣∣(1− 2p)θ−1

0 (Mn −Nn)
∣∣ ≥ nr

)
≤ ce−cnr2 ,

where c is a positive constant, which implies (3.8).
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§4 Further discussions

In order to reveal some properties for the model (1.1), we consider the case where only the

last trial is involved in the dependent structure, i.e., the model (1.1) is simplified with only one

parameter and we can write the model as

P (Xk+1 = 1|Fk) = θXk + (1− θ)p. (4.1)

with k ≥ 1 and θ ∈ [0, 1]. By letting θ2 = 0 in Section 2, we can obtain the following results.

Corollary 4.1. For model (4.1), we have for any r > 0,

Sn − np√
n(log n)(1+r)/2

a.s.−−→ 0

and

lim
n→∞

n

b2n
logP

(∣∣∣∣Sn − np

bn

∣∣∣∣ > r

)
= − r2(1− θ)

2p(1− p)(1 + θ)
where the sequence {bn, n ≥ 1} satisfies the conditions in (2.3).

4.1 Statistical estimate for the parameters

In this subsection we shall consider some statistical problems for the model (4.1). As in

[11], the authors stated that the estimator p̂ := Sn/p is unbiased, strongly consistent and

√
n(p̂− p)

d−→ N

(
0,

p(1− p)(1 + θ)

1− θ

)
.

Similarly, from Corollary 4.1, for any r > 0, we have√
n

(log n)(1+r)/2
(p̂− p)

a.s.−−→ 0

and

lim
n→∞

n

b2n
logP

(
n

bn
|p̂− p| > r

)
= − r2(1− θ)

2p(1− p)(1 + θ)
.

Naturally there is a problem to estimate θ. Let us define Yk = (Xk, Xk+1), k = 1, 2, · · · , n−1,

then Yk takes values in {(0, 1), (0, 0), (1, 1), (1, 0)}. Let m1 be the number for (0, 1) in Yk, i.e.,

m1 = cards{k : Yk = (0, 1)},m2 for (1, 1), n1 for the total number of (0, 1) and (0, 0), n2 for the

total number of (1, 1) and (1, 0).

As we can see, the appearance of θ increases (resp., decreases) the success probability for the

next trial if the last trial succeeds (resp. fails) and the difference between the two probabilities

is exactly θ. So a natural estimator arises as θ̂ = m2

n2
− m1

n1
. Zhang and Zhang [11] studied the

strong consistency of the estimator θ̂, namely, θ̂ → θ almost sure.

The following result is to obtain the convergence rate of θ̂ − θ, which improves the above

work.

Theorem 4.1. For the estimator θ̂ = m2

n2
− m1

n1
, we have

√
n

(log n)(1+r)/2
(θ̂ − θ)

a.s.−−→ 0 for any r > 0.
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Proof. Note that n1 = n − 1 − Sn−1, n2 = Sn−1, and m1 =
∑n−1

k=1(1 − Xk)Xk+1,m2 =∑n−1
k=1 XkXk+1. Now we partition θ̂ − θ into the following four terms:

√
n

(log n)(1+r)/2
(θ̂ − θ)

=

√
n

(log n)(1+r)/2

(
m2

n − p(θ + p(1− θ))
)

n2/n

+

√
n

(log n)(1+r)/2

(θ + p(1− θ))
(
p− n2

n

)
n2/n

+

√
n

(log n)(1+r)/2

m1

n − p(1− p)(1− θ)

n1/n

+

√
n

(log n)(1+r)/2

p(1− θ)(1− p− n1

n )

n1/n

=:An1 +An2 +An3 +An4.

From Theorem 2.1, we get√
n

(log n)(1+r)/2

(n1

n
− (1− p)

)
a.s.−−→ 0,

√
n

(log n)(1+r)/2

(n2

n
− p
)

a.s.−−→ 0 (4.2)

which implies An2
a.s.−−→ 0 and An4

a.s.−−→ 0. For the term An1, since n2/n
a.s.−−→ p and n1/n

a.s.−−→
1− p, it is enough to show

√
n

(log n)(1+r)/2

(
1

n

n−1∑
k=1

XkXk+1 − p(θ + p(1− θ))

)
a.s.−−→ 0

and √
n

(log n)(1+r)/2

(
1

n

n−1∑
k=1

(1−Xk)Xk+1 − p(1− p)(1− θ)

)
a.s.−−→ 0.

By the similar proof of Theorem 2.2, the two limits can be obtained easily.

4.2 The case when θ changes by n

In this subsection, we consider the case when θ changes by n, i.e.,

P (Xn+1 = 1|Fn) = θnXn + (1− θn)p (4.3)

where θn ∈ [0, 1] and the initial distribution is P (X1 = 1) = p. Zhang and Zhang [11] obtained

the strong law of large numbers for Sn,
Sn

n

a.s.−−→ p.

The following result gives the convergence rate of Sn/n− p.

Theorem 4.2. If there exists θ ∈ (0, 1) such that |θn − θ| = O(n−1/2), then for any r > 0, we

have
Sn − np√

n(log n)(1+r)/2

a.s.−−→ 0.
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Proof. First, we define

ξ1 = X1 − p, ξn = Xn − θn−1Xn−1 − (1− θn−1)p

for n ≥ 2. Then it is easy to see that {ξk,Fk; k ≥ 1} is a sequence of bounded martingale

differences and
n∑

k=1

ξk = (1− θ)(Sn − np) +

n∑
k=1

(θ − θk)(Xk − p) + θn(Xn − p)

which implies

Sn − np = (1− θ)−1

(
n∑

k=1

ξk −
n∑

k=1

(θ − θk)(Xk − p)− θn(Xn − p)

)
. (4.4)

From the similar proof of Theorem 2.1, we have

1√
n(log n)(1+r)/2

n∑
k=1

ξk
a.s.−−→ 0 and

θn(Xn − p)√
n(log n)(1+r)/2

a.s.−−→ 0.

Furthermore, since |θn − θ| = O(n−1/2), we have

1√
n(log n)(1+r)/2

n∑
k=1

(θ − θk)(Xk − p) ≤ C√
n(log n)(1+r)/2

n∑
k=1

k−1/2 → 0, (4.5)

where C is a positive constant. Thus from the above discussion, the desired result can be

obtained.

Remark 4.1. In [11], the authors assume that |θn − θ| = O(n−β) for some β > 1/2, then

Sn/n
a.s.−−→ p. So Theorem 4.2 improves their works.

Remark 4.2. From the inequality in (4.5), we can weaken the condition |θn − θ| = O(n−1/2)

to

|θn − θ| = o

(
(log n)(1+r)/2

n1/2

)
.

The following result is the moderate deviation principle for the case when θ changes by n.

Theorem 4.3. For model (4.3), if there exists θ ∈ (0, 1) such that θn → θ and
∑n

k=1 |θ−θk| =
o(bn), then for any r > 0,we have

lim
n→∞

n

b2n
logP

(∣∣∣∣Sn − np

bn

∣∣∣∣ > r

)
= − r2(1− θ)

2p(1− p)(1 + θ)

where the sequence {bn, n ≥ 1} satisfies the conditions in (2.3).

Proof. From the condition
∑n

k=1 |θ− θk| = o(bn), we know that there is a positive constant C,

such that
|
∑n

k=1(θ − θk)(Xk − p) + θn(Xn − p)|
bn(1− θ)

≤ C

bn

n∑
k=1

|θ − θk| → 0, (4.6)

thus from the equality (4.4), it is enough to show

n

b2n
logP

(
1

bn(1− θ)

∣∣∣∣∣
n∑

k=1

ξk

∣∣∣∣∣ > r

)
→ − r2(1− θ)

2p(1− p)(1 + θ)
.
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Note that {ξk,Fk; k ≥ 1} is a sequence of bounded martingale differences, then from the similar

proof of Theorem 2.2, the conditions (H2) and (H3) in Proposition 3.1 hold. It is enough to

show

lim sup
n→∞

n

b2n
logP

(∣∣∣∣∣ 1n
n∑

k=1

E(ξ2k|Fk−1)

(1− θ)2
− p(1− p)(1 + θ)

1− θ

∣∣∣∣∣ > r

)
= −∞. (4.7)

It is easy to see that

1

n

n∑
k=1

E(ξ2k|Fk−1)

=
p(1− p)

n
+

1

n

n∑
k=2

(θk−1Xk−1 + (1− θk−1)p) (1− θk−1Xk−1 − (1− θk−1)p)

=
1

n

n−1∑
k=1

θk(1− θk)(1− 2p)Xk +
1

n

n−1∑
k=1

p(1− θk)(1− p+ pθk) +
p(1− p)

n
.

(4.8)

Since θn → θ, then we have

1

n

n−1∑
k=1

p(1− θk)(1− p+ pθk) → p(1− θ)(1− p+ θp)

and
p(1− p)

n
→ 0.

Hence the claim (4.7) holds, if we show

lim sup
n→∞

n

b2n
logP

(∣∣∣∣∣ 1n
n−1∑
k=1

θk(1− θk)(1− 2p)Xk

(1− θ)2
− θp(1− 2p)

1− θ

∣∣∣∣∣ > r

)
= −∞. (4.9)

From the condition θn → θ, we can get

1

n

∣∣∣∣∣
n−1∑
k=1

(θk(1− θk)− θ(1− θ))Xk

∣∣∣∣∣ ≤ 1

n

n−1∑
k=1

|θk(1− θk)− θ(1− θ)| → 0.

So in order to obtain (4.9), it is enough to show

lim sup
n→∞

n

b2n
logP

(
θ(1− 2p)

(1− θ)

∣∣∣∣∣ 1n
n−1∑
k=1

Xk − p

∣∣∣∣∣ > r

)
= −∞. (4.10)

It’s worth noting that

1

n

n−1∑
k=1

θk(1− θk)(1− 2p)Xk

=
1− 2p

n

n−1∑
k=1

(θk(1− θk)− θ(1− θ))Xk +
(1− 2p)θ(1− θ)

n

n−1∑
k=1

Xk.

From the equality (4.4), the condition bn/n → 0 and (4.6), it is enough to show

lim sup
n→∞

n

b2n
logP

(∣∣∣∣∣ 1n
n−1∑
k=1

ξk

∣∣∣∣∣ > r

)
= −∞.

By using the similar proof to get the limit (3.6), the claim (4.10) holds.
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