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An efficient cubic trigonometric B-spline collocation

scheme for the time-fractional telegraph equation

Muhammad Yaseen Muhammad Abbas∗

Abstract. In this paper, a proficient numerical technique for the time-fractional telegraph

equation (TFTE) is proposed. The chief aim of this paper is to utilize a relatively new type

of B-spline called the cubic trigonometric B-spline for the proposed scheme. This technique

is based on finite difference formulation for the Caputo time-fractional derivative and cubic

trigonometric B-splines based technique for the derivatives in space. A stability analysis of

the scheme is presented to confirm that the errors do not amplify. A convergence analysis is

also presented. Computational experiments are carried out in addition to verify the theoretical

analysis. Numerical results are contrasted with a few present techniques and it is concluded

that the presented scheme is progressively right and more compelling.

§1 Introduction

In recent years, the tools of fractional calculus have been effectively used to portray numerous

physical phenomena in science and engineering [12,17,23]. Recently, there have been reporting

of many applications typically expressed by fractional partial differential equations (FPDEs).

The importance of FPDEs lies in the way that the solutions offered by FPDEs have descriptions

that well approximate the chemical, physical and biological phenomena than their integer order

counterparts. Accordingly, FPDEs have accomplished special status among researchers and

engineers.

A number of phenomenon such as propagation of electric signals [14], transport of neutron

in a nuclear reactor [28] and random walks [5] are described by a class of hyperbolic partial

differential equations called the fractional telegraph equations [8]. The general form of the

TFTE is given by

∂γu(x, t)

∂tγ
+ γ1

∂γ−1u(x, t)

∂tγ−1
+ γ2u(x, t) = γ3

∂2u(x, t)

∂x2
+ f(x, t), (1)
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with initial conditions

u(x, 0) = ϕ1(x), ut(x, 0) = ϕ2(x), a ≤ x ≤ b, (2)

and the boundary conditions

u(a, t) = ψ1(t), u(b, t) = ψ2(t), 0 ≤ t ≤ T, (3)

where 1 < γ < 2, a, b, ϕ1(x), ϕ2(x), ψ1(t) and ψ2(t) are given and ∂γ

∂tγ u(x, t) represents the

Caputo fractional derivative of order γ given by [2, 4, 12,15–17,23,31]

∂γ

∂tγ
u(x, t) =


1

Γ(n−γ)

t∫
0

∂nu(x,s)
∂sn (t− s)n−γ−1ds, n− 1 < γ < n

∂nu(x,s)
∂sn , γ = n.

(4)

Moreover, γ1, γ2, γ3 are given positive constants. Note that in case of γ = 2, equation (1)

corresponds to the classical second-order telegraph equation.

Various numerical and analytical methods are accessible in literature for the TFTE. Tas-

bozan and Esen [27] utilized a B-spline Galerkin method for the numerical solutions fractional

telegraph equation. Hosseini et al. [10] made use of radial basis functions to obtain the numerical

solution of TFTE. Akram et al. [2] solved the TFTE using extended cubic B-spline collocation

method. Sweilam et al. [25] used Sinc-Legendre collocation procedure to find the approximate

solution of time-fractional-order telegraph equation. A classic work of Orsinger and Zhao [22]

regarding the space-fractional telegraph equation and the related fractional telegraph process

appeared in 2003. S. Momani [20] obtained analytic and approximate solutions of the space and

TFTE. Chen et al. [7] utilized the method of separating variables to obtain analytical solutions

for the TFTE. Wei et al. [29] presented a fully discrete local discontinuous Galerkin method for

solving the fractional telegraph equation. Wang et al. [30] used a reproducing kernel for solving

a class of TFTE with initial value conditions. Hashemi and Baleanu [9] ]utilized a geometric

approach and the method of lines to obtain a numerical approximation of higher-order TFTE.

Jiang and Lin [13] obtained the exact solution of the TFTE in the reproducing kernel space.

In [18], Kumar presented new analytical modeling for fractional-telegraph equation via Laplace

transform. Mollahasani et al. [21] developed a new technique based on hybrid functions for the

numerical treatment of telegraph equations of fractional order. Hariharan et al. [11] utilized a

wavelet method for a class of space and TFTE. Analytical solutions of space and TFTE were

obtained by Yildirim [34] by using He’s homotopy perturbation method.

The important motivation behind this paper is to present a numerical scheme for the TFTE

that is computationally proficient and provides better results than some current numerical

procedures [10, 25, 27]. To authors learning this paper is first endeavor towards finding the

numerical solution of TFTE using cubic trigonometric B-splines. A detailed stability analysis

of the scheme is presented to attest that errors do not amplify. A convergence analysis is

also presented. Numerical experiments are performed to additionally set the precision and

legitimacy of the procedure.

The remainder of the paper is composed as follows. In section 2, the numerical scheme

primarily based on cubic trigonometric B-splines is derived in detail. Section 3 discusses the

stability analysis. Section 4 talks about the convergence analysis. Section 5 demonstrates
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a comparison of our numerical results with those of [10, 25, 27]. Section 6 summarizes the

conclusions of this study.

§2 The Derivation of the Scheme

For given positive integers M and N , let τ = T
N be the temporal and h = b−a

M the spatial

step sizes respectively. Following the usual notations, set tn = nτ (0 ≤ n ≤ N), xj = jh, (0 ≤
j ≤M). Let unj be approximation to exact solution at the point (xj , tn). The solution domain

a ≤ x ≤ b is uniformly partitioned by knots xi into M subintervals [xj , xj+1] of equal length h,

j = 0, 1, 2, ...,M − 1, where a = x0 < x1 < ... < xn−1 < xM = b. Our scheme for solving (1)

requires approximate solution U(x, t) to the exact solution u(x, t) in the following form [6,24]

U(x, t) =

N−1∑
j=−1

cj(t)TB
4
j (x), (5)

where cj(t) are unknowns to be determined and TB4
j (x) [1] are twice differentiable cubic trigono-

metric basis functions given by

TB4
j (x) =

1

w


p3(xj) x ∈ [xj , xj+1]

p(xj)(p(xj)q(xj+2) + q(xj+3)p(xj+1)) + q(xj+4)p
2(xj+1), x ∈ [xj+1, xj+2]

q(xj+4)(p(xj+1)q(xj+3) + q(xj+4)p(xj+2)) + p(xj)q
2(xj+3), x ∈ [xj+2, xj+3]

q3(xj+4), x ∈ [xj+3, xj+4]

(6)

where,p(xj) = sin(
x−xj

2 ), q(xj) = sin(
xj−x

2 ), w = sin(h2 ) sin(h) sin(
3h
2 ). Due to local sup-

port property of the cubic trigonometric B-splines only TB4
j−1(x), TB

4
j (x) and TB4

j+1(x) are

survived so that the approximation unj at the grid point (xj , tn) at nth time level is given

as [3, 19,31,33]:

u(xj , tn) = unj =
i+1∑

j=i−1

cnj (t)TB
4
j (x). (7)

The time dependent unknowns cnj (t) are to be determined by making use of the initial and

boundary conditions, and the collocation conditions on TB4
j (x). As a result the approximations

unj and its necessary derivatives are given as:

unj = a1c
n
j−1 + a2c

n
j + a1c

n
j+1, (u

n
j )x = −a3cnj−1 + a3c

n
j+1, (u

n
j )xx = a4c

n
j−1 + a5c

n
j + a4c

n
j+1,

(8)

where,

a1 = csc(h) csc( 3h2 ) sin2(h2 ), a2 = 2
1+2 cos(h) ,a3 = 3

4 csc(
3h
2 ),

a4 = 3+9 cos(h)

4 cos(h
2 )−4 cos( 5h

2 )
,a5 = − 3 cot2(h

2 )

2+4 cos(h) .

Following [10], the fractional derivatives ∂γ

∂tγ u(x, t) and
∂γ−1

∂tγ−1u(x, t) are discrtetized as:

∂γ

∂tγ
u(x, tn+1) = α0

n∑
l=0

bl(u(x, tn+1−l)− 2u(x, tn−l) + u(x, tn−1−l)) + rn+1
1
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= α0

n∑
l=0

bl(u
n+1−l − 2un−l + un−1−l) + rn+1

1 , 1 < γ < 2 (9)

and

∂γ−1

∂tγ−1
u(x, tn+1) = α0τ

n∑
l=0

bl(u(x, tn+1−l)− u(x, tn−l)) + rn+1
2

= α0τ

n∑
l=0

bl(u
n+1−l − un−l) + rn+1

2 , 0 < γ − 1 < 1, (10)

where α0 = 1
τγΓ[3−γ] , bl = (l+ 1)2−γ − l2−γ , rn+1

1 and rn+1
2 are truncation errors. It is straight

forward to confirm that

• bl > 0, l = 0, 1, · · · , n.

• 1 = b0 > b1 > b2 > · · · > bn and bn → 0 as n→ ∞.

•
n−1∑
l=0

(bl − bl+1) + bn = 1.

It is shown in [10] that rn+1
1 ≤ Λτ and rn+1

2 ≤ Λτ3−γ , where Λ is constant dependent on u, γ

and T . To obtain temporal discretization, we substitute (9) and (10) into (1) to get

α0

n∑
l=0

bl(u
n+1−l − 2un−l + un−1−l) + γ1τα0

n∑
l=0

bl(u
n+1−l − un−l) + γ2u

n+1 − γ3
∂2un+1

∂x2

= fn+1. (11)

It is observed that the term u−1 will appear when n = 0 or l = n. Using the central forward

difference formula, we utilize the given initial condition to obtain

u0t =
u1 − u−1

2τ
. (12)

From (12), we observe that u−1 = u1 − 2τϕ2(x).

The summation terms on right hand side of (11) can be expressed as

α0

n∑
l=0

bl(u
n+1−l − 2un−l + un−1−l) + γ1τα0

n∑
l=0

bl(u
n+1−l − un−l) =

α0(1 + γ1τ)

[
un+1 +

n−1∑
l=0

(bl+1 − bl)u
n−l − bnu

0

]
+ (13)

α0

[
un +

n−1∑
l=0

(bl+1 − bl)u
n−1−l − bnu

1 + 2bnτϕ1(x)

]
. (14)

The equation (11) can be written as

(α0(1 + γ1τ) + γ2)u
n+1 = α0(1 + γ1τ)

(n−1∑
l=0

(bl − bl+1)u
n−l + bnu

0
)
−α0u

n+

α0

(n−1∑
l=0

(bl − bl+1)u
n−1−l + bnu

1 − 2bnτϕ1(x)
)
+ γ3(u

n+1)xx + fn+1. (15)



Muhammad Yaseen, Muhammad Abbas. An efficient cubic Trigonometric B-spline... 363

Substitute the approximations (8) into (11) for full discretization,

((α0 + γ1τα0 + γ2)a1 − γ3a4)c
n+1
i−1 + ((α0 + γ1τα0 + γ2)a2 − γ3a5)c

n+1
i +

((α0 + γ1τα0 + γ2)a1 − γ3a4)c
n+1
i =

(2α0 + γ1τα0)(a1c
n
i−1 + a2c

n
i + a1c

n
i+1)− α0(a1c

n−1
i−1 + a2c

n−1
i + a1c

n−1
i+1 )

− γ1α0τ
n∑

l=1

bl
(
(a1c

n+1−l
i−1 + a2c

n+1−l
i + a1c

n+1−l
i+1 )− (a1c

n−l
i−1 + a2c

n−l
i + a1c

n−l
i+1 )

)
− α0

n∑
l=1

bl

(
(a1c

n+1−l
i−1 + a2c

n+1−l
i + a1c

n+1−l
i+1 )− 2(a1c

n−l
i−1 + a2c

n−l
i + a1c

n−l
i+1 )+

(a1c
n−1−l
i−1 + a2c

n−1−l
i + a1c

n−1−l
i+1 )

)
+ a1(c

n+1−l
i+1 − 2cn−l

i+1 + cn−1−l
i+1 )) + fn+1

i . (16)

The equation (16) consists of (M +1) linear equations in M +3 unknowns. To obtain a unique

solution to the system, we need two additional equations which can be obtained by utilizing the

given boundary conditions (3). These two additional equations are given by a1c
n
0+a2c

n
1+a1c

n
2 =

ψ1(t) and a1c
n
M−1 + a2c

n
M + a1c

n
M+1 = ψ2(t). As a result a diagonal matrix of dimension

(M + 3) × (M + 3) is obtained which can be solved using any Gaussian elimination based

numerical algorithm.

§3 Stability Analysis

This section deals with the stability analysis of the fully discrete scheme (16). By Duhamels’

principle [26] it tends to be presumed that the stability analysis for an inhomogeneous problem

is an immediate result of the stability analysis for the corresponding homogeneous case. So it

is adequate to present the stability analysis for the force free case f = 0 only. In this study, we

assume the growth factor of a Fourier mode to be ωn
i and let ω̃n

i be its approximation. Define

Ωn
i = ωn

i − ω̃n
i so that from (16), we obtain the following round off error equation

((α0 + γ1τα0 + γ2)a1 − γ3a4)Ω
n+1
i−1 + ((α0 + γ1τα0 + γ2)a2 − γ3a5)Ω

n+1
i +

((α0 + γ1τα0 + γ2)a1 − γ3a4)Ω
n+1
i+1 =

(2α0 + γ1τα0)(a1Ω
n
i−1 + a2Ω

n
i + a1Ω

n
i+1)− α0(a1Ω

n−1
i−1 + a2Ω

n−1
i + a1Ω

n−1
i+1 )

− γ1α0τ

n∑
l=1

bl

(
(a1Ω

n+1−l
i−1 + a2Ω

n+1−l
i + a1Ω

n+1−l
i+1 )− (a1Ω

n−l
i−1 + a2Ω

n−l
i

+ a1Ω
n−l
i+1 )

)
− α0

n∑
l=1

bl

(
(a1Ω

n+1−l
i−1 + a2Ω

n+1−l
i + a1Ω

n+1−l
i+1 )− 2(a1Ω

n−l
i−1

+ a2Ω
n−l
i + a1Ω

n−l
i+1 ) + (a1Ω

n−1−l
i−1 + a2Ω

n−1−l
i + a1Ω

n−1−l
i+1 )

)
. (17)

The error equation satisfies the boundary conditions

Ωn
0 = ψ1(tn), Ωn

M = ψ2(tn), n = 0, 1, · · · , N, (18)

and the initial conditions

Ω0
i = ϕ1(xi), (Ωt)

0
i = ϕ2(xi), i = 1, 2, · · · ,M − 1. (19)



364 Appl. Math. J. Chinese Univ. Vol. 35, No. 3

Define the grid function,

Ωn(x) =

Ωn
i , xi − h

2 < x ≤ xi +
h
2 i = 1, · · · ,M − 1

0, a < x ≤ h
2 or (b− a)− h

2 < x ≤ (b− a).

Note that the Fourier expansion of Ωn(x) is

Ωn(x) =

∞∑
m=−∞

ηn(m)e
i2πmx
(b−a) , n = 0, 1, · · · , N,

where ηn(m) = 1
(b−a)

b∫
a

Ωn(x)e
−i2πmx
(b−a) dx. Let

Ωn = [Ωn
1 ,Ω

n
2 , · · · ,Ωn

M−1]
T

and introduce the norm

∥Ωn∥2 =

(
M−1∑
i=1

h|Ωn
i |2
) 1

2

=

 b∫
a

|Ωn(x)|2dx


1
2

.

By Parseval equality, it is observed that
b∫

a

|Ωn(x)|2dx =

∞∑
m=−∞

|ηn(m)|2,

so that the following relation is obtained

∥Ωn∥22 =
∞∑

m=−∞
|ηn(m)|2. (20)

Suppose that equations (17)-(19) have solution of the form Ωn
i = ηne

Iθis, where I =
√
−1

and θ is real. Substituting this expression into (17), dividing by eIθis, using the relation

e−Iθs + eIθs = 2cos(θs) and collecting the like terms, we obtain(
(α0 + γ1τα0 + γ2)a1 − γ3a4)2 cos(θs) + ((α0 + γ1τα0 + γ2)a2 − γ3a5)

)
ηn+1 =(

(2α0 + γ1τα0)a12 cos(θs) + (2α0 + γ1τα0)a2

)
ηn − (α0a12 cos(θs) + α0a2)ηn−1

− γ1α0τ

n∑
l=1

bl

(
(2a1 cos(θs) + a2)ηn+1−l − (2a1 cos(θs) + a2)ηn−l

)
− α0

n∑
l=1

bl

(
(2a1 cos(θs) + a2)ηn+1−l − 2(2a1 cos(θs) + a2)ηn−l

+ (2a1 cos(θs) + a2)ηn−1−l)
)
.

(21)

Without loss of generality, we can assume that θ = 0, so that (21) reduces to(
(α0 + γ1τα0 + γ2)(2a1 + a2)− γ3(2a4 + a5)

)
ηn+1 =(

(2α0 + γ1τα0)(2a1 + a2)
)
ηn − α0(2a1 + a2)ηn−1 − γ1α0τ

n∑
l=1

bl
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(
(2a1 + a2)(ηn+1−l − ηn−l

)
− α0(2a1 + a2)

n∑
l=1

bl

(
ηn+1−l − 2ηn−l + ηn−1−l)

)
.

(22)

Hence,

ηn+1 =
A1

ζ
ηn − A2

ζ
ηn−1 −

A3

ζ

n∑
l=1

bl(ηn+1−l − ηn−l)−
A2

ζ

n∑
l=1

bl

(
ηn+1−l − 2ηn−l + ηn−1−l

)
,

(23)

where,

ζ =
(
1− γ3

α0(1+γ1τ)+γ2
( 2a4+a5

2a1+a2
)
)
, A1 = 2α0+γ1τα0

α0+γ1τα0+γ2
, A2 = α0

α0+γ1τα0+γ2
, A3 = γ1τα0

α0+γ1τα0+γ2
.

It is easy to check that 2a4+a5

2a1+a2
= −3

4 tan(
h
4 )

2 ≤ 0 so that ζ ≥ 1.

Proposition 1. If ηn (n = 0, 1, · · ·N) is the solution of equation (23), then |ηn| ≤ C|η0|,
where C is the constant given by C = |A1|(|A1|+ |A2|).

Proof. Mathematical induction is used to prove the result. For n = 0, we have from equation

(23) that η1 = A1

ζ η0 and since ζ ≥ 1, therefore,

|η1| = |A1

ζ
||η0| ≤ |A1||η0| ≤ |A1|(|A1|+ |A2|)|η0| = C|η0|.

Now suppose that |ηi| ≤ |A1||η0| ≤ C|η0|, i = 1, · · · , n so that from (23), we obtain

|ηn+1| ≤
|A1|
ζ

|ηn|+
|A2|
ζ

|ηn−1|+
|A3|
ζ

n∑
l=1

bl

(
|(|ηn+1−l| − |ηn−l|)|

)
+

|A2|
ζ

n∑
l=1

bl

(
|(|ηn+1−l| − 2|ηn−l|+ |ηn−1−l|)|

)
≤ |A1||ηn|+ |A2||ηn−1|+ |A3|

n∑
l=1

bl

(
|(|ηn+1−l| − |ηn−l|)|

)
+

|A2|
n∑

l=1

bl

(
|(|ηn+1−l| − 2|ηn−l|+ |ηn−1−l|)|

)
≤ |A1|2|η0|+ |A1||A2||η0|+ |A3||A1|

n∑
l=1

bl

(
|(|η0| − |η0|)|

)
+

|A2||A1|
n∑

l=1

bl

(
|(|η0| − 2|η0|+ |η0|)|

)
= |A1|(|A1|+ |A2|)|η0| = C|η0|,

where, we have used ||a| − |b|| ≤ |a− b|. This completes the proof.

Theorem 1. The collocation scheme (21) is unconditionally stable.

Proof. Using formula (20) and Proposition 1, we obtain

∥Ωn∥22 ≤ C∥Ω0∥2, n = 0, 1, · · ·N
which establishes unconditional stability.
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§4 Convergence Analysis

In this section, we obtain the following convergence estimates for the time discretized scheme

(15).

Theorem 2. Let {u(x, tn)}N−1
n=0 be the exact solution of (1) with given initial and boundary

conditions and let {un}N−1
n=0 be the time discrete solution of (15), then we have the following

error estimates

∥en+1∥ ≤ E + Λ(τ + τ3−γ),

where en+1 = u(x, tn+1)− un+1 and E is a constant.

Proof. It is sufficient to prove the result for f = 0. Note that the exact solution u also satisfies

the time discretized scheme (15) so that we have

(α0(1 + γ1τ) + γ2)u(x, t
n+1) =

α0(1 + γ1τ)
(n−1∑

l=0

(bl − bl+1)u(x, t
n−l) + bnu(x, t

0)
)
−α0u(x, t

n)

+ α0

(n−1∑
l=0

(bl − bl+1)u(x, t
n−1−l) + bnu(x, t

1)− 2bnτϕ1(x)
)
+ γ3(u(x, t

n+1))xx

+ rn+1
1 + rn+1

2 . (24)

Subtracting (15) from (23), we obtain

(α0(1 + γ1τ) + γ2)e
n+1 =

α0(1 + γ1τ)
(n−1∑

l=0

(bl − bl+1)e
n−l + bne

0
)
−α0e

n + α0

(n−1∑
l=0

(bl − bl+1)e
n−1−l + bne

1
)

+ γ3(e
n+1)xx + rn+1

1 + rn+1
2 . (25)

Using e0 = 0 and taking inner product with en+1 on both sides of (25), we obtain

(α0(1 + γ1τ) + γ2)∥en+1∥2 = α0(1 + γ1τ)
(n−1∑

l=0

(bl − bl+1) < en−l, en+1 >
)
−α0 < en, en+1 > +

α0

(n−1∑
l=0

(bl − bl+1) < en−1−l, en+1 > +bn < e1, en+1 >
)
+ γ3 < (en+1)xx, e

n+1 > +

< rn+1
1 , en+1 > + < rn+1

2 , en+1 >

≤ α0(1 + γ1τ)
(n−1∑

l=0

(bl − bl+1)∥en−l∥∥en+1∥
)
−α0∥en∥∥en+1∥+

α0

(n−1∑
l=0

(bl − bl+1)∥en−1−l∥∥en+1∥+ bn∥e1∥∥en+1∥
)
− γ3∥(en+1)x∥2

+ ∥rn+1
1 ∥∥en+1∥+ ∥rn+1

2 ∥∥en+1∥

≤ α0(1 + γ1τ)
(n−1∑

l=0

(bl − bl+1)∥en−l∥∥en+1∥
)
−α0∥en∥∥en+1∥+
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α0

(n−1∑
l=0

(bl − bl+1)∥en−1−l∥∥en+1∥+ bn∥e1∥∥en+1∥
)
+ ∥rn+1

1 ∥∥en+1∥+ ∥rn+1
2 ∥∥en+1∥,

(26)

where, we have used the relations < x, x >= ∥x∥2, < uxx, u >= − < ux, ux >= −∥ux∥2, <

x, y >≤ ∥x∥∥y∥ and the fact that γ3∥(en+1)x∥2 ≥ 0. Now dividing (26) through out by ∥en+1∥,
we obtain

(α0(1 + γ1τ) + γ2)∥en+1∥

≤ α0(1 + γ1τ)
(n−1∑

l=0

(bl − bl+1)∥en−l∥
)
−α0∥en∥+ α0

(n−1∑
l=0

(bl − bl+1)∥en−1−l∥+ bn∥e1∥
)
+

∥rn+1
1 ∥+ ∥rn+1

2 ∥

≤ α0(1 + γ1τ)
(n−1∑

l=0

(bl − bl+1)∥en−l∥
)
+α0

(n−1∑
l=0

(bl − bl+1)∥en−1−l∥+ bn∥e1∥
)
+ ∥rn+1

1 ∥+

∥rn+1
2 ∥,

(27)

where, we have used the fact that α0∥en∥ ≥ 0. Now let Cn = max
0≤l≤n−1

∥en−l∥ and Dn =

max
0≤l≤n−1

∥en−1−l∥ so that we obtain from the last inequality

(α0(1 + γ1τ) + γ2)∥en+1∥

≤ α0(1 + γ1τ)Cn

n−1∑
l=0

(bl − bl+1) + α0Dn

n−1∑
l=0

(bl − bl+1) + α0bn∥e1∥+ ∥rn+1
1 ∥+ ∥rn+1

2 ∥

≤ α0(1 + γ1τ)Cn(1− bn) + α0Dn(1− bn) + α0bn∥e1∥+ ∥rn+1
1 ∥+ ∥rn+1

2 ∥

≤ α0(1 + γ1τ)Cn + α0Dn + α0∥e1∥+ ∥rn+1
1 ∥+ ∥rn+1

2 ∥,

(28)

where, we have used 0 < bn < 1. Let C = max
0≤n≤N−1

Cn and D = max
0≤n≤N−1

Dn so that we obtain

from above inequality

∥en+1∥ ≤ α0(1 + γ1τ)C + α0D + α0∥e1∥
(α0(1 + γ1τ) + γ2)

+
∥rn+1

1 ∥+ ∥rn+1
2 ∥

(α0(1 + γ1τ) + γ2)
,

≤ α0(1 + γ1τ)C + α0D + α0∥e1∥
(α0(1 + γ1τ) + γ2)

+ Λ(τ + τ3−γ) = E + Λ(τ + τ3−γ), (29)

where E = α0(1+γ1τ)C+α0D+α0∥e1∥
(α0(1+γ1τ)+γ2)

. This completes the proof.

§5 Numerical experiments and discussion

In this section some numerical experiments are performed to obtain approximate solution

of the TFTE(1) with initial (2) and boundary conditions (3). The accuracy of the method is

measured through the error norms L2 and L∞ and the root means square error (RMSE) given

by
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L2 = ∥U exact−UN∥2 ≃

√
h

M+1∑
i=1

|U exact
i − (UN )i|, L∞ = ∥U exact−UN∥∞ ≃ max

i
|U exact

i −(UN )i|

and RMSE =

√
M∑
i=1

(Uexact
i −(UN )i)2

M respectively, where U exact
i is the exact and (UN )i is the

approximate solution in the spatial domain. The order of converge is calculated by using the

formula, Order =
log(

Error(xi)

Error(xi+1)
)

log(
xi

xi+1
)

. Numerical results are compared with those of some existing

numerical techniques.

Example 1. Consider the TFTE (1) in [0, 1] with γ1 = 1, γ2 = 1 and γ3 = π with initial

conditions u(x, 0) = 0, ut(x, 0) = 0, and the boundary conditions u(0, t) = 0, u(1, t) = t3 sin2(1).

The exact solution of the problem is u(x, t) = t3 sin2(x) [10, 25, 27] . The correspond-

ing source term f(x, t) is given by f(x, t) = 6t3−γ

Γ(4−γ) sin
2(x) + 6t4−γ

Γ(5−γ) sin
2(x) + t3 sin2(x) −

2πt3(cos2(x) − sin2(x)). In Table 1, the error norms are compared with those of [27] for

γ = 1.50, τ = 0.001 at t = 1 for different values of M . Table 2 compares error norms

with those obtained in [27] for γ = 1.50,M = 30 at t = 1 for different values of τ . In Table

3, we compute RMSE and compare the results with those of [25]. In Table 4, the approximate

solutions for various values of γ are tabulated when h = 1
40 , τ = 0.01, t = 1. Note that for

large values of parameters, the methods of [25,27] give better accuracy than ours but for small

values of parameter our methods performs better. Figure 1 displays the comparison between

the exact and approximate solutions at different time levels. The graph shows a tremendous

similarity between the solutions. Figure 2 shows 2D and 3D error plots at t = 0.5. In Figure 3,

a 3D comparison between the exact and approximate solutions is displayed at t = 1.

Table 1: Error norms for Example 1 when γ = 1.5, τ = 0.001, t = 1 for different values of M .

M L2 × 103 L∞ × 103

Present method Galerkin [27] Order Present method Galerkin [27] Order

5 0.328095 3.798931 1. 691 0.523870 4.929548 1. 791
10 0.101615 0.822230 1. 366 0.151427 1.096321 1. 475
15 0.058402 0.304328 1. 039 0.083268 0.408051 0.815
20 0.043312 0.130208 0.778 0.065857 0.171718 1. 178
25 0.036408 0.053079 0.587 0.050630 0.070520 0.592
30 0.032708 0.020029 - 0.045452 0.033970 -
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Table 2: Error norms for Example 1 when γ = 1.5, M = 30, t = 1 for different values of τ .

τ L2 × 103 L∞ × 103

Present method Galerkin [27] Order Present method Galerkin [27] Order
0.1 2.83061 8.338473 1. 047 4.07858 12.975162 1. 050
0.05 1.36994 4.188691 1. 025 1.96936 6.501840 1. 028
0.01 0.26308 0.781645 0.982 0.37666 1.215807 0.988
0.005 0.13322 0.347984 0.872 0.18989 0.545445 0.888
0.001 0.03271 0.020029 - 0.04545 0.033970 -

Table 3: The RMSE for Example 1 for different values of M and γ when τ = 0.0001, t = 1.

M γ = 1.75 γ = 1.95

Sinc-Legender

(degree=3) [25]
Present
method Order

Sinc-Legender

(degree=3) [25]
Present
method Order

5 9.937e− 04 2.955e− 04 1. 913 9.578e− 04 2.809e− 04 1.905
10 1.598e− 04 7.845e− 05 1. 882 1.538e− 04 7.501e− 05 1.844
15 3.707e− 05 3.658e− 05 1. 815 3.567e− 05 3.551e− 05 1.751
20 1.047e− 05 2.170e− 05 - 1.008e− 05 2.146e− 05 -

Table 4: Approximate solutions for many values of γ when h = 1
40 , τ = 0.01, t = 1 for Example

1.
x γ = 1.2 γ = 1.4 γ = 1.6 γ = 1.8
0.1 0.010038 0.010045 0.010054 0.010067
0.2 0.039610 0.039623 0.039642 0.039669
0.3 0.087538 0.087557 0.087585 0.087627
0.4 0.151908 0.151932 0.151969 0.152025
0.5 0.230152 0.230180 0.230222 0.230293
0.6 0.319145 0.319174 0.319219 0.319299
0.7 0.415330 0.415358 0.415401 0.415483
0.8 0.514863 0.514886 0.514922 0.514995
0.9 0.613763 0.613777 0.613799 0.613846
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Figure 1: The exact (lines) and approximate (rectangles, stars, bullets) solutions for Example
1 when M = 80, τ = 0.01 at different time levels.
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Figure 2: 2D and 3D absolute error profiles when M = 60, τ = 0.01, t = 1 for Example 1.
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Figure 3: The exact (right) and numerical (left) solutions when M = 60, τ = 0.01, t = 1 for
Example 1.

Example 2. Assume γ1 = γ2 = γ3 = 1 in (1) with initial conditions u(x, 0) = x cos(x2), ut(x, 0) =

0 and the boundary conditions u(0, t) = 0, u(1, t) = cos(t2 + 1).

The source term f(x, t) is chosen such that the exact solution of the problem is u(x, t) =

x cos(x2 + t2) [10]. Table 5 compares the RMSE with those of [10] for different values of

γ, M and τ . The comparison reveals that the present method provides better accuracy. In Table

6, the approximate solutions for diverse values of γ are listed by taking h = 1
40 , τ = 0.01, t = 1.

Figure 4 shows a comparison between the exact and approximate solutions at different time

levels. An excellent agreement between the solutions can be observed. Figure 5 displays 2D

and 3D error plots at time level t = 1. An excellent comparison between exact and approximate

solutions in 3D is presented in Figure 6 at time step t = 1.
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Table 5: The RMSE for different values of M, τ and γ for Example 2.

M τ γ = 1.25 γ = 1.5 γ = 1.75

RBF [10]
Present
method Order RBF [10]

Present
method Order RBF [10]

Present
method Order

20 1
10

8.620e-03 4.483e-03 1.101 1.038e-02 6.026e-03 1.065 1.217e-02 1.004e-02 1.038
1
30

3.795e-03 1.477e-03 2.303 5.348e-03 1.870e-03 1.109 6.468e-03 3.211e-03 1.138
1
50

2.604e-03 4.555e-04 - 4.099e-03 1.061e-03 - 5.316e-03 1.795e-03 -
50

1
10

8.772e-03 8.779e-03 1.605 1.056e-02 6.197e-03 1.038 1.239e-02 1.036e-02 1.002
1
30

3.865e-03 1.505e-03 1.011 5.445e-03 1.982e-03 1.138 6.581e-03 3.444e-03 1.055
1
50

2.655e-03 8.981e-04 - 4.174e-03 1.162e-03 - 5.416e-03 2.009e-03 -

Table 6: Approximate solutions for many values of γ when h = 1
40 , τ = 0.01, t = 1 for Example

2.
x γ = 1.2 γ = 1.4 γ = 1.6 γ = 1.8
0.1 0.041992 0.048868 0.057477 0.068599
0.2 0.079641 0.092923 0.109522 0.130923
0.3 0.108299 0.127053 0.150401 0.180375
0.4 0.122781 0.145608 0.173854 0.209847
0.5 0.117256 0.142313 0.173041 0.211746
0.6 0.085366 0.110420 0.140737 0.178305
0.7 0.020650 0.043174 0.069909 0.102284
0.8 −0.082638 −0.065289 −0.045269 −0.021820
0.9 −0.228242 −0.218568 −0.207867 −0.195957
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Figure 4: The exact (lines) and approximate (rectangles, stars, bullets) solutions for Example
2 when M = 80, τ = 0.01 at different time levels.

Example 3. Consider (1) with spatial domain [0, 1] and γ1 = γ2 = γ3 = 1 with initial condi-

tions u(x, 0) = 0, ut(x, 0) = x(x− 1) and the boundary conditions u(0, t) = 0, u(1, t) = 0.

The exact solution of the problem is u(x, t) = (x2 − x)t [25] so that the corresponding

source term is given by f(x, t) =
(

Γ(2)
Γ(3−γ) t

2−γ + t
)
(x2 − x) − 2t. In Table 7, absolute errors

are computed and the results are compared with those of [25] for γ = 1.95 at t = 1. The

comparison shows better accuracy. In Table 8, the approximate solutions for various values

of γ are tabulated using h = 1
40 , τ = 0.01, t = 1. In Figure 7, the exact and approximate
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Figure 5: 2D and 3D absolute error profiles when M = 60, τ = 0.01, t = 1 for Example 2.
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Figure 6: The exact (right) and numerical (right) solutions when M = 60, τ = 0.01, t = 1 for
Example 2.

solutions are compared at different time levels. Figure 8 displays 2D and 3D error profiles when

M = 60, τ = 0.01 and t = 1. Figure 9 displays a 3D comparison of the exact and approximate

solutions when M = 60, τ = 0.01 at t = 1.

Example 4. Consider (1) with spatial domain [0, 1] and γ1 = γ2 = γ3 = 1 with initial condi-

tions u(x, 0) = 0, ut(x, 0) = 0 and the boundary conditions u(0, t) = 0, u(1, t) = tγ tan(1).

The exact solution of the problem is u(x, t) = tγ tanx so that the corresponding source

term is f(x, t) = γ(1 + t) tanxΓ(γ)− 2tγ tan3 x− tγ tanx. In Table 9 different error norms are

tabulated for various values of M by taking τ = 0.01, γ = 1.5, t = 1. Table 10 records various

error norms for different values of τ when M = 160, γ = 1.5, t = 1. Figure 10 displays the exact

and approximate solutions at different time levels. An close similarity between the solutions can
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Table 7: The comparison of absolute errors when γ = 1.95, τ = 0.001 at t = 1 for Example 3.

x M = 5 M = 7 M = 10

Sinc-Legendre
[25] (degree=3)

Present
method

Sinc-Legendre
[25] (degree=3)

Present
method

Sinc-Legendre
[25] (degree=3)

Present
method

0 0 0 0 0 0 0
0.1 1.63e-03 6.40e-04 1.69e-04 3.16e-04 2.90e-04 1.52e-04
0.2 2.48e-03 1.08e-03 1.09e-03 5.51e-04 3.79e-04 2.66e-04
0.3 2.32e-03 1.42e-03 1.07e-03 7.08e-04 3.82e-04 3.45e-04
0.4 2.18e-03 1.59e-03 1.01e-03 8.04e-04 3.64e-04 3.91e-04
0.5 2.15e-03 1.67e-03 9.93e-04 8.38e-04 3.55e-04 4.06e-04
0.6 2.18e-03 1.59e-03 1.01e-03 8.04e-04 3.64e-04 3.91e-04
0.7 2.32e-03 1.42e-03 1.07e-03 7.08e-04 3.82e-04 3.45e-04
0.8 2.47e-03 1.08e-03 1.09e-03 5.51e-04 3.79e-04 2.66e-04
0.9 1.63e-03 6.40e-03 7.69e-04 3.16e-04 2.90e-04 1.52e-04
1 0 0 0 0 0 0

Table 8: Approximate solutions for many values of γ when h = 1
40 , τ = 0.01, t = 1 for Example

3.
x γ = 1.2 γ = 1.4 γ = 1.6 γ = 1.8
0.1 −0.090009 −0.090009 −0.090009 −0.090010
0.2 −0.160016 −0.160016 −0.160016 −0.160017
0.3 −0.210020 −0.210021 −0.210021 −0.210021
0.4 −0.240023 −0.240023 −0.240024 −0.240024
0.5 −0.250024 −0.250024 −0.250025 −0.250025
0.6 −0.240023 −0.240023 −0.240024 −0.240024
0.7 −0.210020 −0.210021 −0.210021 −0.210021
0.8 −0.160016 −0.160016 −0.160016 −0.160017
0.9 −0.090009 −0.090009 −0.090009 −0.090010
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Figure 7: The exact (lines) and approximate (rectangles, stars, bullets) solutions for Example
4 when M = 80, τ = 0.01 at different time levels.

be seen. Figure 11 displays 2D and 3D error plots at time level t = 1. An excellent comparison

between exact and approximate solutions in 3D is presented in Figure 12 at time step t = 1.
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Figure 8: 2D and 3D absolute error profiles when M = 60, τ = 0.01, t = 1 for Example 3.
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Figure 9: The exact (right)and numerical (left) solutions when M = 60, τ = 0.01, t = 1 for
Example 3.

Table 9: The error norms for different values of M when τ = 0.01, γ = 1.5, t = 1 for Example
4.

M Absolute Error L2− Error RMS Error
20 2.8836× 10−3 2.0593× 10−3 2.010× 10−3

40 2.2937× 10−3 1.6414× 10−3 1.6212× 10−3

80 2.1497× 10−3 1.5381× 10−3 1.5285× 10−3

160 2.1141× 10−3 1.5123× 10−3 1.5076× 10−3
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Table 10: The error norms for different values of τ when M = 40, γ = 1.5, t = 1 for Example
4.

τ Absolute Error L2− Error RMS Error
0.0125 2.5626× 10−3 1.8344× 10−3 1.8119× 10−3

0.01 2.2936× 10−3 1.6414× 10−3 1.6212× 10−3

0.00125 9.1459× 10−4 6.5344× 10−4 6.4542× 10−4

0.001 2.1497× 10−3 1.5381× 10−3 1.5285× 10−3

Table 11: Approximate solutions for many values of γ when h = 1
40 , τ = 0.01, t = 1 for Example

4.
x γ = 1.2 γ = 1.4 γ = 1.6 γ = 1.8
0.1 0.097472 0.099345 0.100106 0.100388
0.2 0.197123 0.200778 0.202255 0.202782
0.3 0.301305 0.306556 0.308663 0.309374
0.4 0.412752 0.419314 0.421919 0.422752
0.5 0.534860 0.542334 0.545264 0.546164
0.6 0.672102 0.679959 0.682995 0.683912
0.7 0.830711 0.838267 0.841139 0.842010
0.8 1.019870 1.026250 1.028630 1.029360
0.9 1.253960 1.258020 1.259490 1.259950
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Figure 10: The exact (lines) and approximate (rectangles, stars, bullets) solutions for Example
4 when M = 80, τ = 0.01 at different time levels.

§6 Concluding Remarks

This investigation exhibits a numerical procedure dependent on cubic trigonometric B-spline

for the TFTE. The scheme utilized the usual finite difference scheme to approximate the Ca-

puto time-fractional derivative and the derivative in space are approximated using the cubic

trigonometric B-spline basis functions. Exceptional consideration has been given to examine

the stability and convergence analysis of the scheme. The obtained outcomes are contrasted

with those of some current procedures. The comparison uncovers that the presented scheme

is comparable with other existing techniques for TFTE regarding precision, adaptability, and

proficiency. In addition, the scheme can be applied to a large class of fractional order partial

differential equations with some modifications.
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Figure 11: 2D and 3D absolute error profiles when M = 60, τ = 0.01, t = 1 for Example 4.

(a) (b)

Figure 12: The exact (right) and numerical (right) solutions when M = 60, τ = 0.01, t = 1 for
Example 4.
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