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Periodic dividends and capital injections for a
spectrally negative Lévy risk process under
absolute ruin

DONG Hua ZHAO Xiang-hua

Abstract. The spectrally negative Lévy risk model with random observation times is considered
in this paper, in which both dividends and capital injections are made at some independent
Poisson observation times. Under the absolute ruin, the expected discounted dividends and the
expected discounted capital injections are discussed. We also study the joint Laplace transforms
including the absolute ruin time and the total dividends or the total capital injections. All the

results are expressed in scale functions.

81 Introduction

Let X = {X}; t > 0} be a spectrally negative Lévy process (SNLP) with nonmonotone paths
defined on the filtered space (Q, F, {F; : t > 0}, P), i.e. X is a stochastic process which has
stationary and independent increments, cadlag paths that have no positive jump discontinuities.
For z € R, we denote by P, the law of X given Xy = = and write for convenience P instead of
Py. Accordingly, we write E, and [E for the associated expectations. The process X is uniquely
characterized by the Laplace exponent

1 oo
PY(\) =al+ 502)\2 + / (e”‘z =14+ Azl (z)) II(dz),
0
where o € R, 0 > 0, and the Lévy measure II is a o—finite measure on (0, co) satisfying

/OO (1A 2%)II(dz) < oo.

In classical dividend barrier strategy, dividends are paid immediately to the shareholders
once the surplus reaches a fixed barrier b > 0, as long as ruin has not occurred. However,
the insurer’s surplus can not be monitored continuously in practice. Then Albrecher et al.
(2011a) first proposed periodic barrier dividend strategy in the Cramér-Lundberg model, in
which ruin and dividend can only be observed at some random observation times. After that,
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the risk models with periodic dividends have attracted a lot of attention, see e.g. Albrecher et
al. (2011b), Avanzi et al. (2014), Albrecher et al. (2016), Pérez and Yamazaki (2018), Noba
et al. (2018), Liu et al. (2015), Peng et al. (2013), Zhang (2014), Zhang and Cheung (2016),
Dong et al. (2019) and references therein.

Since ruin is certain under barrier strategy, then it may be profitable to rescue the company
by capital injection. For risk model with classical barrier dividends and capital injections reader
is referred to Avanzi et al. (2011) and Yao et al. (2011) and references therein. More recently,
Zhao et al. (2017) studied a spectrally positive Lévy risk process with periodic dividends and
classical capital injection, Avram et al. (2018) investigated a spectrally negative Lévy risk
process with classical barrier dividend, periodic capital injection and absolute ruin.

In practice, the capital can not be injected as soon as the surplus drops below zero, which
may occur at some discrete time points. Hence, Dong and Zhou (2020) considered the spectrally
negative Lévy process with both dividends and capital injections being made at some indepen-
dent Poisson observation times. In this paper, we continue this topic. The rate of opportunities
for dividends and capital injections may be different in insurance practice. But we assume that
they can be observed at the same sequence of Poisson times here. Otherwise, different sequence
of observation times can make the problem and the mathematical calculation more complex.
The modified surplus process is described as follows:

Let {T;} be the sequence of observation times and T; — T;_1 be independently exponential
distribution with rate » > 0. Denote by X" = {X];t > 0} the Lévy process with periodic
capital injections. Define the capital injection times:

Ty (1) :=inf{T; : X7, <0}, and Ty (n):=inf{T; >T; (n—1): X7 _ <0}
with convention inf ) = co. Then X" is given by
X=X+ R}, t>0,
where R} := ZTO_ ()<t |XTO‘(1‘) — | is the cumulative amount of reflection until time ¢ > 0.
For b > 0, consider an extension of X] with additional periodic dividends, which we denote
by X, * . Similar procedure to the definition for X,., we have
X=X, 0<t<TH(1),
where Tb+(1) = inf{T; : X}, > b} with convention inf) = oco. Obviously, X(T}’b()l) = b. For
T, (1) <t < T, (2) :=inf{T; > T, (1) : X}, > b},
X=X - (
Repeating the procedure above, we have
X=X, - L" + R,

where L:’b and R:’b are the cumulative amounts of periodic dividends and capital injections

b).

e

until time ¢ > 0, respectively.

The remainder of the paper is organized as follows. Section 2 is the preliminaries. The
spectrally negative Lévy process and some fluctuation results and identities on scale functions
are listed. In Section 3, the expected discounted dividends and the expected discounted capital
injections before absolute ruin are discussed. Some joint Laplace transforms involving the
absolute ruin time and the total periodic dividends or the total periodic capital injections are
also investigated.
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§2 Preliminaries

In this section, we first present the definition of the scale functions. For ¢ > 0, the g-scale
function W@ (y) is defined as the continuous function on [0, 00) with Laplace transform

= 2y WD () dy = 1
/Oe (y)dy T

where &, = sup{A > 0: 9(\) = ¢}. This function is unique, positive and strictly increasing for
x> 0. We extend W@ to the whole real line by setting W (@ (z) = 0 for z < 0. When X has
unbounded variation or IT has no atoms, by Kyprianou et al. (2010), W) € C*(0, c0).

A> @, (1)

We also define the following notations:

W (@) / W W (2) = / W (2)dz, 29 (x) =1+ q¥ (@),
0

=(9)

for z > 0, and w )(Jc) =0, W “(x) :=0,Z@(x) := 1 for x < 0. For convenience, we write

W and Z instead of W(© and Z(©)| respectively.

Furthermore, denote by
2y )= (14 G- 0l0) [ MWOGy) . oz @)
0
and Z,(x,0) := e’ for x < 0. Obviously, Z,(z,0) = Z¥)(x).
Given p,q > 0, for 0 < a < z, by Li and Zhou (2014), we know

WD (@) = WO () + (g — p/ WD (z — )W) (y)dy
= WO®@) + (p-q) /0 W (z — )W (y)dy (3)

" Z00(z): = ZW(2)+(g—p / Wz — )2 (y)dy
— Z@(@) 4+ (p—q) /0 W (z —y) 2P (y)dy (4)

with the conventions of W 7% (z) := W®)(z) and ZP (z) := Z®)(z) for z < a.
Let
=inf{t > 0,X; > b} and 7, =inf{t >0,X; <b}, beR,
be the first passage times. Since X; has no positive jumps, XTb+ = b. Then it follows from
Kyprianou (2014) that

ey WO
Eu (e a7y ] T; < TO ) = WT)(I))’ (5)
- (@)
E, (e_‘”o i Ty < oo) = ZW() - 7qu) (u)7 (6)
q

for 0 < u < band ¢ > 0.
For any ¢ > 0 and 0 < z,y < b, the g-potential measure of a spectrally negative Lévy
process killed on exiting [0, b] has a density function
W@ (2)WD (b —y)
W(Q)(b)

q)(b’x’y) = - W(q)(x - y) (7)
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Let e, be an independent exponential random variable with parameter r, then
Py(X., €dy,e, <75 )= (e_‘bryW(T) (x) — w) (x — y)) dy, z,y >0, (8)
which is given in Section 8.4 of Kyprianou (2006).
Forg>0,0<z<hb,
W) (@) —(g+r)

r(atr)
T 0 - ) )

E.le” e, < le' AT =7 (

see (5.1) of Perez and Yamazaki (2018).

83 Main results

For any a € R, define
7 (r) ;== inf{t > 0; X] > a} and 7, (r) :=inf{t > 0; X] < a}
and
() i=inf{t > 0; X" > a} and 7, (r) := inf{t > 0; X" < a}.
For a < 0, 7, (r) may be seen as the absolute ruin time for Xtr’b.
We then give some notations that are used throughout this paper. For a < 0 < b,
q,r,0 >0, x > a, the following results can be derived directly by (8) and some calculations:

A((gg‘) (z,0) = Ex[e_qe“‘g(x“_b);er <77, Xe >V
z—b
= +; W) (3 — g)ePatr(b=a) _ po—0a—b) / ) (1),
q+r 0

Bc(lq,r)(%g) = Ex[e—qewexe,.;er <71 a< X, <0

B rW(Q-i-T)(m —a) Bysra oa

= Tgoa,, o)

r a
+m (Zqur(.’L', 9) - 60 Zq+r((E —a, 9)) .

For a <0< b, q,r,01,00 >0, z > a, we also define
1 + TW(‘]"FT) (711)

(a.7) — (a+ma) (.
Ha (‘T) T W(q+r) (—Cl) W—a (‘T a’)
—LZ(_Q;T"]) (x—a)+ d Z9D(z),
q+r q+r
with H{""(0) = 1.
W) = (O IW @ - a) - WO @ —y))
MG (@,00,05) = HOO(B)[1 = AL (,01)]

b
- / A () HEO (y)dy — B (2,05),
0

b

K0 w00 = = [ A0 @) KD @)y + K 01 - A5 0.00),
0

QU (b)) = 2 (@ —a) = TEWO @ - a) = K (2, 60),

q+r



DONG Hua, ZHAO Xiang-hua. Periodic dividends and capital injections for a spectrally...

and also define, for any measurable function f: R — R,
b
Lf(z,01) = /0 YD (@) f(y)dy + B (2,6,) 1(0).

To prove Theorem 1, the following Lemma will be needed:

Lemma 1. For any p,q >0 and 0 < a < x < b, we have

- W@ (z — a)
=4t WP (X~ ). +1 (p,a) _ (p,a)
E;le WYX )1, <7 = WP%(x) Wb —a) W P9 (b),
- W@ (z — a)
a7, 7(P) (X~ . +— +1 (p,9) _ (»,9)
Em[e Z (XTa)aTa < 7—b ] - Za (I) W(Q)(b—a) Za (b)a

see Loeffen et al. (2014) for details.

Theorem 1. Given a <0 < b, for ¢ >0 and x > a, denote by
V(z;a,b) = E, [fo%‘:(r) e~ UdLT"). Then we have
P W) (b — q) (ng"") (b) — M%7 (z, 0, 0))
V(z;a,b) = ’ e~ Patr(b=a)
(133+TM((1%T) (b’ 0, 0)
rW(atn) (2 — q)

2
q)q-i-r

e_‘I’qur (b—a) .

Proof. For a < x < 0, by the strong Markov property, (5) and (9), we have

V(z;a,b) = E, [e_qTJ;TOJr < e AT, |V(0;a,b) + Egle e, < 157 AT, |V(0;a,b)
= E, [e_(q”)TJr;TJ <77|V(0;a,b) + Eple % se,. < 7 AT ]V(0;a,b)

Wt (z — a)
= mv(o, a, b)

o (W(‘”” (= ) gpr(a+n)

w7(a+T) .
W (—a) (—a) —W (x — a)) V(0;a,b)
wr(atr)
. 1 + TW (—CI,) ( +’I‘) .
= W (—a) Wi (z — a)V(0; a, b)

et (x —a)V(0;a,b).

For 0 < x < b, by the strong Markov property, (5) and (11), we have

V(z;a,b) = Em[e*qﬁ;nf <75 1V (b;a,b) +Em[eiq7—0_V(XTO—;b);TO_ < T;']
— ‘;//((Z))((i)) V (b;a,b) 4+ Eye 970 W(:;;)if?’_;) ) 1T < TbJr]V(O; a,b)
+rE, [67QT‘;EXTO_ [e7% e, < 7'0+ ATy limy < T;]V(O; a,b)
_ E//Z))((“Z)) V(b a,b)
1 +I/I;g:-(::—)i;a) E, [ef‘”of W(q”)(XT(; —a);7y < T;—]V(O; a,b)

_q n TEI [e_ng Zq_w(XT& —a);7y < T;]V(O; a,b)

353
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+LEm[e*qTO_;T07 < T;]V(O;a,b)

q+r
. +W(Wf;( T_);C” [w&q;“% —a) =W (p - )M] V(0;a,0)
_q% [Z(q;rm (& a)— 2o+ >$(<z))((§))} V(0;a,b)
+ — [Z@ () — 29 (b) g((z))((g ] V(0;a,b) + vaw; @)
- mwb;a,b) + (ngﬂ(x) — H{")(b) VV[;Z))({;; ) V(0;a,b), (12)

where we have used Lemma 1 in the fourth equality.

If X; has bounded variation, letting z = 0 in (12), we have
H@™ (5)V(0;a,b) = V(b; a,b). (13)
For the unbounded variation case, we use the perturbation approach, which was proposed by
Li et al. (2014). For 0 < x < b, it is easy to show that

V(0;a,b) = E[equ;;Tj <71, NeylV(x;a,b)
+/ Ele~% e, <1, AT, Xe, € dy]V (y; a,b)
= E[e_qT;;T; <71, NeylV(x;a,b)

xT
+/ Ele~% e, <7, AT, Xe. € dy]V(y;a,b)
0

0
+/ Ele % e, <7, A7, X, € dy]V(0;a,b)

W@t (—q)

= mv(x; a,b) + As(x) + AL (2)V (05 a,b), (14)
where
Ag(z) = / Ele~% e, <1, AT, Xe, € dy|V (y;a,b),
0
0
AP () = / Ele™ e, <7, AT, X, € dyl.

For z — 0%, by (7), we have the following results:

z (at+r)(—g YW latr) (g —
As(z) = ?"/O <W Vé(ﬁ):)/[(/xa() ) _W(q+r)(—y)> V(y;a,b)dy

(q+7’)
S W<q+’"> V(ysa,b)dy = oW+ ().
(‘I‘H’) Jj—a
(g+7) W g+r)
(@) Wt (—a (z—y) ()
I N e A P

0 wa+r)
(q " ( ) ( ,r‘)
— Wwlea+r) W
r/a (1 Wi r)( ) (x —y)dy —r (—a)

+ oWt (2))
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HE ()

and

(q+7")'_a —(q+r ——(q+r = (g+r
r (1_W:¢> (T (= a) =W () =W (—a)

o(Wt) (z))

(g+r)! —a ) —(q+r —(q+r
r (1 - Wm) (ﬂcW(q'H)(—a) + W( i )(—a)) - TW( i )(—a)
o(W ) (z))

W@+ (—a) (g4

(g+r)(_ _ /)
rW (—a)z —r W (—a)

(—a)a + oW+ (x));

—(a+7)
. _
1+ < W (20 e’ (g — TW(‘H'T)(—CL)) -+ o(WH) (z)),

W(Q‘H‘)(—a)
Watr) (—q) Wia+n'(—q)
AR S S S S (g+r)
W (@ —a) 1 W (—a) z+o(W (z)).

Substituting (12) into (14) and letting @ — 0, we get (13) again.

For = > a, conditioning on the first observation time, we have

V(z;a,b) = Eule % (X, —b)e, <7, ,Xc, >

+E [e" e, < Ty, X, > bV (b;a,b)
+E.[e” V(X ;a,b);e, < T, ,0 < X, <D
+E [e” e, <7, ,a < X, <0]V(0;a,b)
= QLW((H_T) ({L‘ _ a/)e_q)Q+7‘(b—a) + Az(zq,ér) ({L‘7 O)V(b, a, b)

CI)q-&-?'
b (a4 (g;7) Y)
+/ YN 2 — a,y — a) ——"-dyV (b; a,b)
0 HE (b)
+B) (2,0)V (0;a,b). (15)

Letting = b in (15) and using (14), we have

rW @) (b — @) HE (b)e—Patr(b=a)

V(b;a,b) = BT MO 0,0 (16)
Then (10) can be obtained from (13), (15) and (16).
O
Remark 1. For a — 0, (10) is identical to (3.9) in Zhang and Chueng (2018).
Using the same method as that in Theorem 1, we can derive the following result:
Theorem 2. For q,0 >0,a <0 <b, and x > a, denote by U(x) = E, [e_q%‘;(r)_aL:;m], Then

we have

(q,r) (a,r)
HE ) = M%) (@,0,0)
Uz) = ( )( ~ a,b ( )ngi) )(b, )
MG (5,6,0) ’

+Q%7 (2, 0) + T (b).

The following Lemma is given in Theorem 3.1 and Theorem 3.2 of Avram et al. (2018).
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Lemma 2. Fora<0<b,q,0>0 andx <b,

7o (AT (1) e
f(x:0,0) = Eq (/ b eqthf) = S N ) - N (o),
0

= H(gq,T) (b) a
_ - Héo’r)(x)
h(w;a,b) = Egle™ e =0R-0a ()75 (r) < b ()] = 2007 (2) — Wféq’”(b)v
Ha " (b)
and
i H(Qﬂ’)
Bale~ st () < 7 ()] = LD,
Ha"" (b)
where
(g+7)(_
(a.7) _ e wrlarra £ (—a)
Ia (.’E) - Z—a (.’B CL) W—a (l‘ a‘) W(q_Hn) (—CL) 9
w7(g+r) —aw=(q+r)
(q,7) _ raW (—CL) +r fo W (y)dy (g+7,9) .
Na (‘T) - W(q_;'_.,«) (_a) W—a (.73 Cl)
Dy
q +7r —a q +7r a -y ’

with NS (0) = 0.
Theorem 3. For ¢ > 0, x > a,a < 0 < b, denote by g(x;a,b) = Ew[fof‘; e~ 1dR"]. Then for
x> a,

£f(6,0) — B (b,0)

g(z;a,b) = . HE) (b) — M%7 (2,0,0)
M0 (6,0,0) ( ’ )

+Lf(2,0) — B (2,0). (17)

Proof. For 0 < x < b, by the strong Markov property and Lemma 2, one obtains

g(z;a,b) = f(z;a,b) —i—Em[e*qTJ(’");T;(T) <7, (r)]g(b;a,b)
Hé‘”)(x)
= f(z;a,b) + ———g(b;a,b), (18)
H (b)
Let z — 0% in (18), then
9(0:0,6) = £(0;0,b) + LG (19)
) ) ) b Hc('/q7'r‘) (b) .
For x > a, conditioning on the first observation time, one obtains
g(x;a,b) = Eyle e, <75 ,Xc,. > blg(b;a,b)
b (a,7)
_ _ H, (y, 1)
+ [ B rne, < X, € dy)  fgsad) + S gtat)
0 e H (b)

+E[e " (=X, +9(0;a,D));e, < 7p,a < X, <0]
= A% (@.0)g(bia.b)

b (g,7)
HU« (yv]-)
+/ Y (2, y) | Fysa,b) + =T g(b;a,b) | dy
ot (st + Bt Dot

a

—B@" (,0) + B (2,0)9(0; a, ). (20)
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Letting = b in (20), then substituting (19) into (20), we have

/
e HED (b) (L££(6,0) - B (0,0)) o
g\9%a,0) = .
M (6,0,0,1,1)

Substituting (21) into (20) leads to (17).

O
Remark 3. If b — oo, then we have g(z;a,00) = f(x;a,00).
Theorem 4. Fora <0 < b,z > a, let h(x;a,b) = B, [e”a (N=0RGa ()] Then
. Lh(b,0) + Z @) (b —a) — LW+ (b — a)
h(z;a,b) = o atr (HE (b) — MP7(2,0,0))
M (5,0,0) ’
(g+r7) 97t
+Lh(x,0)+ Z (x—a)— —W (x — a). (22)
q+r
Proof. For a < x < b, by the strong Markov property, we have
) (g;7) (2) -
h(z;a,b) = h(z;a,b) + ————2h(b;a,b). (23)
H (b)
Specially,
A 1 ~
h(0;a,b) = h(0;a,b) + ————h(b;a,b). (24)
HE (b)
For = > a, conditioning on the first observation time, we have
h(z;a,b) = E.le® e, <77, X., > blh(b;a,b)
b (q,7)
Ha™'(y) 5
+/ Y0 (2, ) [Alys a,b) + ——=2h(b; a, b)]dy
o | H ()
0
+ / Py (@, y)h(0; a, b)dy + By e @)™ ] (25)
Inserting (24) into (25), using (6) and letting x = b in (25), one obtains
. Lh(b,0) + 24+ (b — a) — ZE=W @+ (b — a)
h(b;a,b) = Cyrara H(b). (26)
M5 (0,0,0)
By (24), (25) and (26), (22) is obtained.
O
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