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On the rate of convergence of two generalized Bernstein

type operators

LIAN Bo-yong1 CAI Qing-bo2,∗

Abstract. In this paper, we introduce the Bézier variant of two new families of generalized

Bernstein type operators. We establish a direct approximation by means of the Ditzian-Totik

modulus of smoothness and a global approximation theorem in terms of second order modulus

of continuity. By means of construction of suitable functions and the method of Bojanic and

Cheng, we give the rate of convergence for absolutely continuous functions having a derivative

equivalent to a bounded variation function.

§1 Introduction

In the year 1912, Bernstein [1] introduced a sequence of positive linear operators for f ∈
C[0, 1], as

Bn(f, x) =
n∑

k=0

f(
k

n
)pn,k(x), x ∈ [0, 1],

where pn,k(x) = (nk )x
k(1 − x)n−k. Then many scholars have done a lot of relevant research.

Lorentz [2] gave an exhaustive exposition of main facts about the Bernstein polynomials and

discussed some of their applications in analysis. Cheng [3] obtained an estimate for the rate of

convergence of Bn for functions of bounded variation in terms of the arithmetic means of the

sequence of total variations and proved that the estimate was essentially the best possible at

points of continuity. Bojanic [4] investigated the asymptotic behavior of Bn for some absolutely

continuous functions having a derivative equivalent to a bounded variation function. King [5]

defined a new type of Bernstein operators which preserve x2. Quantitative estimates were given

and compared with estimates of approximation by the class Bernstein polynomials Bn in [5].
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Very recently, Chen et al. [6] introduced a new family of generalized Bernstein operators

based on a non-negative parameter α(0 ≤ α ≤ 1) as follows:

Tn,α(f, x) =

n∑
k=0

f(
k

n
)p

(α)
n,k(x), x ∈ [0, 1], (1)

where

p
(α)
1,0 (x) = 1− x, p

(α)
1,1 (x) = x,

p
(α)
n,k(x) =

[
(n−2

k )(1− α)x+ (n−2
k−2)(1− α)(1− x) + (nk )αx(1− x)

]
xk−1(1− x)n−k−1

for n ≥ 2 and (nk ) = 0(k > n). When α = 1, the operators Tn,α reduces to the Bernstein

operators Bn.

In [6], the authors studied many approximaiton properties of Tn,α such as uniform conver-

gence, rate of convergence in terms of modulus of continuity, voronovskaya-type asymptotic

formula, and shape preserving properties.

To approximate Lebesgue integrable functions, Mohiuddine et al. [7] introduced the follow-

ing integral modification of the operators (1):

Kn,α(f, x) = (n+ 1)

n∑
k=0

p
(α)
n,k(x)

∫ k+1
n+1

k
n+1

f(t)dt. (2)

In [7], the uniform convergence of the operators and rate of convergence in local and global

sense in terms of first and second order modulus of continuity are studied. In [8-9], Acar et

al. introduced α-Bernstein-Durrmeyer operators and genuine α-Bernstein-Durrmeyer operators.

They obtained some approximation results, which include local approximation, error estimation

in terms of Ditzian-Totik modulus of smoothness.

As everyone knows, the Bézier curve plays an important role in computer aided design and

computer graphics. Zeng and Piriou [10] opened up the work of two Bernstein-Bézier type

operators for bounded variation functions. Then many scholars [11-14] have done research

work in related fields. Acar et al. [15] introduced the Bézier variant of summation integral type

operators based on the parameter α. They studied a direct approximation theorem by means

of the first order modulus of smoothness and the rate of convergence for absolutely continuous

functions having a derivative equivalent to a function of bounded variation. Also, they obtained

the quantitative voronovskaja type theorem.

Base on this, we propose the Bézier variant of the operators (1) and (2) in the following

way:

T (β)
n,α(f, x) =

n∑
k=0

f(
k

n
)Q

(β)
n,k,α(x), x ∈ [0, 1], (3)

K(β)
n,α(f, x) = (n+ 1)

n∑
k=0

Q
(β)
n,k,α(x)

∫ k+1
n+1

k
n+1

f(t)dt, (4)

where β ≥ 1, Q
(β)
n,k,α(x) = [Jn,k,α(x)]

β − [Jn,k+1,α(x)]
β
, Jn,k,α(x) =

∑n
j=k p

(α)
n,j (x) and

Jn,n+1,α(x) = 0.

Obviously for β = 1, the operators (3) and (4) reduce to the operators (1) and (2) respec-

tively. Our results extend the work of [6] and [7].
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Let

R
(1)
n,α,β(x, t) =

{ ∑
k≤nt Q

(β)
n,k,α(x), 0 < t ≤ 1;

0, t = 0.

and

R
(2)
n,α,β(x, t) =

n∑
k=0

(n+ 1)Q
(β)
n,k,α(x)χk(t),

where χk(t) is the characteristic function of the interval [ k
n+1 ,

k+1
n+1 ] with respect to I = [0, 1].

By the Lebesgue-Stieltjes integral representations, we have

T (β)
n,α(f, x) =

∫ 1

0

f(t)dtR
(1)
n,α,β(x, t) (5)

and

K(β)
n,α(f, x) =

∫ 1

0

f(t)R
(2)
n,α,β(x, t)dt. (6)

The aim of this paper is to establish a direct approximaiton by means of the Ditzian-Totik

modulus of smoothness and a global approximation theorem in terms of second order modulus

of continuity. Furthermore, the rate of convergence for some absolutely continuous functions

having a derivative equivalent to a bounded function is obtained. With regard to the research

work related to this topic, we can refer to references [16-25].

§2 Some lemmas

The proof of our results are based on the following lemmas.

Lemma 2.1 ([6]) For ei = ti, i = 0, 1, 2, we have

Tn,α(e0, x) = 1, Tn,α(e1, x) = x,

Tn,α(e2, x) = x2 +
n+ 2(1− α)

n2
x(1− x).

By Lemma 2.1 and Cauchy Schwarz inequality, we get

Tn,α(t− x, x) = 0, (7)

Tn,α((t− x)2, x) =
n+ 2(1− α)

n2
x(1− x) = γ2

nα(x). (8)

Tn,α(|t− x|, x) ≤
√
Tn,α((t− x)2, x) ·

√
Tn,α(1, x) = γnα(x). (9)

According to (8), it is clear that γnα(x) tends to 0 with the help of (n+ 2(1− a))x(1− x)/n2

tends to 0 as n tends to ∞.

Lemma 2.2 ([7]) For ei = ti, i = 0, 1, 2, we have

Kn,α(e0, x) = 1, Kn,α(e1, x) =
nx

n+ 1
+

1

2(n+ 1)
,

Kn,α(e2, x) =
n2

(n+ 1)2

(
x2 +

n+ 2(1− α)

n2
x(1− x)

)
+

nx

(n+ 1)2
+

1

3(n+ 1)2
.

By Lemma 2.2 and Cauchy Schwarz inequality, we get

Kn,α(t− x, x) =
1− 2x

2(n+ 1)
, (10)

Kn,α((t− x)2, x) =
n+ 2(1− α)− 1

(n+ 1)2
x(1− x) +

1

3(n+ 1)2
= η2nα(x). (11)
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Kn,α(|t− x|, x) ≤
√

Kn,α((t− x)2, x) ·
√
Kn,α(1, x) = ηnα(x). (12)

Obviously, ηnα(x) → 0(n → ∞).

By the definition of the operators Tn,α and Kn,α, combined with Lemma 2.1 and 2.2, we

have

Lemma 2.3 For f ∈ C[0, 1], x ∈ [0, 1], the following inequalities hold

∥Tn,α(f)∥ ≤ ∥f∥,
∥Kn,α(f)∥ ≤ ∥f∥.

We omit the proof of Lemma 2.3.

Lemma 2.4 For f ∈ C[0, 1], x ∈ [0, 1], we have

∥T (β)
n,α(f)∥ ≤ β∥f∥,

∥K(β)
n,α(f)∥ ≤ β∥f∥.

Proof. For 0 ≤ x, y ≤ 1 and β ≥ 1, the inequality |xβ − yβ | ≤ β|x− y| holds, then we get

0 < [Jn,k,α(x)]
β − [Jn,k+1,α(x)]

β ≤ β (Jn,k,α(x)− Jn,k+1,α(x)) = βp
(α)
n,k(x).

By (3), (4) and Lemma 2.3, we have

∥T (β)
n,α(f)∥ ≤ β∥Tn,α(f)∥ ≤ β∥f∥

and

∥K(β)
n,α(f)∥ ≤ β∥Kn,α(f)∥ ≤ β∥f∥.

Lemma 2.5 (i) For 0 ≤ y < x < 1, there holds

R
(1)
n,α,β(x, y) ≤

β

(x− y)2
γ2
nα(x). (13)

(ii) For 0 < x < z ≤ 1, there holds

1−R
(1)
n,α,β(x, z) ≤

β

(x− z)2
γ2
nα(x). (14)

Proof. (i) By (5) and (8), we get

R
(1)
n,α,β(x, y) ≤ βR

(1)
n,α,1(x, y) = β

∫ y

0

dtR
(1)
n,α,1(x, t)

≤ β

∫ y

0

(
x− t

x− y

)2

dtR
(1)
n,α,1(x, t)

≤ β

(x− y)2

∫ 1

0

(t− x)2dtR
(1)
n,α,1(x, t)

=
β

(x− y)2
Tn,α((t− x)2, x)

=
β

(x− y)2
γ2
nα(x).

(ii) Using a similar method, we can get (14) easily.

Along the same line of proof, we have

Lemma 2.6 (i) For 0 ≤ y < x < 1, there holds∫ y

0

R
(2)
n,α,β(x, t)dt ≤

β

(x− y)2
η2nα(x). (15)
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(ii) For 0 < x < z ≤ 1, there holds∫ 1

z

R
(2)
n,α,β(x, t)dt ≤

β

(x− z)2
η2nα(x). (16)

§3 Main results

Let f(x) ∈ C[0, 1], t > 0 and W 2[0, 1] = {g ∈ C[0, 1] : g′′ ∈ C[0, 1]}, the Peetre K-functional

K2(f, t) and the second order modulus of continuity ω2(f, t) are defined as follows:

K2(f, t) = inf
g∈W 2[0,1]

{∥f − g∥+ t∥g′∥+ t2∥g′′∥},

ω2(f,
√
t) = sup

0<|h|≤
√
t

sup
x,x+h,x+2h∈[0,1]

|f(x+ 2h)− 2f(x+ h) + f(x)|.

By [26], there exists an absolute constant C > 0, such that

K2(f, t) ≤ Cω2(f,
√
t). (17)

Theorem 3.1 For f ∈ C[0, 1] and x ∈ [0, 1], we have

|T (β)
n,α(f, x)− f(x)| ≤ Cω2

(
f,

√
βγnα(x)

2

)
, (18)

where C is a positive constant.

Proof. Let g ∈ W 2. By Taylor’s formula, we can write

g(t) = g(x) + g′(x)(t− x) +

∫ t

x

(t− u)g′′(u)du.

Applying the operators T
(β)
n,α(·, x) to the above equation, we have

T (β)
n,α(g, x) = g(x) + g′(x)T (β)

n,α(t− x, x) + T (β)
n,α

(∫ t

x

(t− u)g′′(u)du, x

)
.

By Cauchy Schwarz inequality, (8) and Lemma 2.4, we obtain

|T (β)
n,α(g, x)− g(x)|

≤ |g′(x)|T (β)
n,α(|t− x|, x) +

∣∣∣∣T (β)
n,α

(∫ t

x

(t− u)g′′(u)du, x

)∣∣∣∣
≤ ∥g′∥T (β)

n,α(|t− x|, x) + ∥g′′∥
2

T (β)
n,α((t− x)2, x)

≤ ∥g′∥T (β)
n,α

(
(t− x)2, x

)1/2
+

∥g′′∥
2

T (β)
n,α((t− x)2, x)

≤
√
β∥g′∥Tn,α

(
(t− x)2, x

)1/2
+ β

∥g′′∥
2

Tn,α((t− x)2, x)

≤
√
β∥g′∥γnα(x) + β

∥g′′∥
2

γ2
nα(x).

Thus

|T (β)
n,α(f, x)− f(x)| ≤ |T (β)

n,α(f − g, x)|+ |f − g|+ |T (β)
n,α(g, x)− g(x)|

≤ 2∥f − g∥+
√
β∥g′∥γnα(x) + β

∥g′′∥
2

γ2
nα(x).
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For all g ∈ W 2, taking the infimum on the right hand side, we can get

|T (β)
n,α(f, x)− f(x)| ≤ 2K2

(
f,

βγ2
nα(x)

4

)
.

By (17) and the above inequality, we obtain the desired result of Theorem 3.1.

Using a similar method, we prove

Theorem 3.2 For f ∈ C[0, 1] and x ∈ [0, 1], we have

|K(β)
n,α(f, x)− f(x)| ≤ Cω2

(
f,

√
βηnα(x)

2

)
, (19)

where C is a positive constant.

Let ϕ(x) =
√
x(1− x) and f ∈ C[0, 1]. The first order Ditzian-Totik modulus of smoothness

and corresponding K-functional are given by, respectively,

ωϕ(f, t) = sup
0<h≤t

∣∣∣∣f(x+
hϕ(x)

2
)− f(x− hϕ(x)

2
)

∣∣∣∣ , x± hϕ(x)

2
∈ [0, 1],

Kϕ(f, t) = inf
g∈Wϕ[0,1]

{∥f − g∥+ t∥ϕg′∥}(t > 0),

where Wϕ[0, 1] = {g : g ∈ AC[0, 1], ∥ϕg′∥ < ∞}. By [27], there exists a constant C > 0 such

that

Kϕ(f, t) ≤ Cωϕ(f, t). (20)

Theorem 3.3 For f ∈ C[0, 1], x ∈ (0, 1) and ϕ(x) =
√

x(1− x), we have

|T (β)
n,α(f, x)− f(x)| ≤ Cωϕ

(
f,

√
2β

x(1− x)
γnα(x)

)
, (21)

where C is a positive constant.

Proof. Applying the operators T
(β)
n,α(·, x) to the representation

g(t) = g(x) +

∫ t

x

g′(u)du,

we have

T (β)
n,α(g, x) = g(x) + T (β)

n,α

(∫ t

x

g′(u)du, x

)
.

For any x, t ∈ (0, 1), we can get∣∣∣∣∫ t

x

g′(u)du

∣∣∣∣ ≤ ∥ϕg′∥
∣∣∣∣∫ t

x

1

ϕ(u)
du

∣∣∣∣ .
On the other hand,∣∣∣∣∫ t

x

1

ϕ(u)
du

∣∣∣∣ =

∣∣∣∣∣
∫ t

x

1√
u(1− u)

du

∣∣∣∣∣
≤

∣∣∣∣∫ t

x

(
1√
u
+

1√
1− u

)
du

∣∣∣∣
≤ 2

(
|
√
t−

√
x|+ |

√
1− t−

√
1− x|

)
= 2|t− x|

(
1√

t+
√
x
+

1√
1− t+

√
1− x

)
≤ 2|t− x|

(
1√
x
+

1√
1− x

)
≤ 2

√
2|t− x|
ϕ(x)

.
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Applying the Cauchy-Schwarz inequality, we obtain

|T (β)
n,α(g, x)− g(x)| ≤ 2

√
2∥ϕg′∥ϕ−1(x)T (β)

n,α(|t− x|, x)

≤ 2
√
2∥ϕg′∥ϕ−1(x)

(
T (β)
n,α((t− x)2, x)

)1/2
≤ 2

√
2
√
β∥ϕg′∥ϕ−1(x)

(
Tn,α((t− x)2, x)

)1/2
= 2

√
2
√
β∥ϕg′∥ϕ−1(x)γnα(x).

Thus

|T (β)
n,α(f, x)− f(x)| ≤ |T (β)

n,α(f − g, x)|+ |f − g|+ |T (β)
n,α(g, x)− g(x)|

≤ 2∥f − g∥+ 2
√
2
√

β∥ϕg′∥ϕ−1(x)γnα(x).

For all g ∈ Wϕ[0, 1], taking the infimum on the right hand side, we can get

|T (β)
n,α(f, x)− f(x)| ≤ 2Kϕ

(
f,

√
2β

x(1− x)
γnα(x)

)
.

By (20) and the above inequality, we get (21) immediately.

Using a similar method, we prove

Theorem 3.4 For f ∈ C[0, 1], x ∈ (0, 1) and ϕ(x) =
√

x(1− x), we have

|K(β)
n,α(f, x)− f(x)| ≤ Cωϕ

(
f,

√
2β

x(1− x)
ηnα(x)

)
, (22)

where C is a positive constant.

Finally, we study the approximation properties of T
(β)
n,α(f, x) and K

(β)
n,α(f, x) for some

absolutely continuous functions f ∈ DBV [0, 1], which is defined by

DBV [0, 1] =

{
f |f(x) = f(0) +

∫ x

0

h(t)dt

}
,

where x ∈ [0, 1], h ∈ BV [0, 1], i.e., h is a function of bounded variation on [0, 1].

Theorem 3.5 Let f ∈ DBV [0, 1]. If h(x+) and h(x−) exist at a fixed point x ∈ (0, 1),

then we have∣∣T (β)
n,α(f, x)− f(x)

∣∣ ≤ β
(
|h(x+)|+ |h(x−)|

)
γnα(x)

+
2βγ2

nα(x)

x(1− x)

[
√
n]∑

k=1

x+ 1−x
k∨

x− x
k

(φx) +
1√
n

x+ 1−x√
n∨

x− x√
n

(φx),

where

φx(t) =


h(t)− h(x+), x < t ≤ 1;

0, t = x;

h(t)− h(x−), 0 ≤ t < x.

Proof. Let f satisfy the conditions of Theorem 3.5, by using Bojanic-Cheng’s method [4], we

have

f(t)− f(x) =

∫ t

x

h(u)du (23)
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and h(u) can be expressed as

h(u) =
h(x+) + h(x−)

2
+ φx(u) +

h(x+)− h(x−)

2
sign(u− x)

+δx(u)

[
h(x)− h(x+) + h(x−)

2

]
, (24)

where

δx(u) =

{
1, u = x;

0, u ̸= x.

sign(x) =


1, x > 0;

0, x = 0;

−1, x < 0.

From (23), (24), and noting
∫ t

x
sign(u− x)du = |t− x|,

∫ t

x
δx(u)du = 0, we find that∣∣∣T (β)

n,α(f, x)− f(x)
∣∣∣

=
∣∣∣T (β)

n,α(f(t)− f(x), x)
∣∣∣ = ∣∣∣∣T (β)

n,α(

∫ t

x

h(u)du, x)

∣∣∣∣
=

∣∣h(x+) + h(x−)

2
T (β)
n,α(t− x, x)

+
h(x+)− h(x−)

2
T (β)
n,α(|t− x|, x) + T (β)

n,α(

∫ t

x

φx(u)du, x)
∣∣

≤ (|h(x+)|+ |h(x−)|)T (β)
n,α(|t− x|, x) +

∣∣∣∣T (β)
n,α(

∫ t

x

φx(u)du, x)

∣∣∣∣ .
By the inequality T

(β)
n,α(|t− x|, x) ≤ βTn,α(|t− x|, x) and (9), we have∣∣∣T (β)

n,α(f, x)− f(x)
∣∣∣

≤ β (|h(x+)|+ |h(x−)|) γnα(x) +
∣∣∣∣T (β)

n,α(

∫ t

x

φx(u)du, x)

∣∣∣∣ . (25)

Next, we estimate another item T
(β)
n,α(

∫ t

x
φx(u)du, x).

By the Lebesgue-Stieltjes integral representations of (5), the term T
(β)
n,α(

∫ t

x
φx(u)du, x) can be

expressed as

T (β)
n,α

(∫ t

x

φx(u)du, x

)
=

∫ 1

0

(

∫ t

x

φx(u)du)dtR
(1)
n,α,β(x, t)

=

∫ x

0

(

∫ t

x

φx(u)du)dtR
(1)
n,α,β(x, t) +

∫ 1

x

(

∫ t

x

φx(u)du)dtR
(1)
n,α,β(x, t).

Let

∆1n(f, x) =

∫ x

0

(

∫ t

x

φx(u)du)dtR
(1)
n,α,β(x, t),

∆2n(f, x) =

∫ 1

x

(

∫ t

x

φx(u)du)dtR
(1)
n,α,β(x, t).
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Then we have

T (β)
n,α

(∫ t

x

φx(u)du, x

)
= ∆1n(f, x) + ∆2n(f, x). (26)

Applying the integration by parts and noticing R
(1)
n,α,β(x, 0) = 0,

∫ x

x
φx(u)du = 0, we get

∆1n(f, x)

= R
(1)
n,α,β(x, t)

∫ t

x

φx(u)du
∣∣x
0
−
∫ x

0

R
(1)
n,α,β(x, t)φx(t)dt

= −
∫ x

0

R
(1)
n,α,β(x, t)φx(t)dt = −(

∫ x− x√
n

0

+

∫ x

x− x√
n

)R
(1)
n,α,β(x, t)φx(t)dt.

Thus, it follows that∣∣∆1n(f, x)
∣∣ ≤ ∫ x− x√

n

0

R
(1)
n,α,β(x, t)

x∨
t

(φx)dt+

∫ x

x− x√
n

R
(1)
n,α,β(x, t)

x∨
t

(φx)dt.

From Lemma 2.5 (i) and 0 ≤ R
(1)
n,α,β(x, t) ≤ 1, we get∣∣∆1n(f, x)

∣∣ ≤ βγ2
nα(x)

∫ x− x√
n

0

∨x
t (φx)

(x− t)2
dt+

x√
n

x∨
x− x√

n

(φx). (27)

Putting t = x− x
u for the integral of (27), we get∫ x− x√

n

0

∨x
t (φx)

(x− t)2
dt =

1

x

∫ √
n

1

x∨
x− x

u

(φx)du ≤ 2

x

[
√
n]∑

k=1

x∨
x− x

k

(φx). (28)

From (27),(28), it follows that∣∣∆1n(f, x)
∣∣ ≤ 2βγ2

nα(x)

x

[
√
n]∑

k=1

x∨
x− x

k

(φx) +
x√
n

x∨
x− x√

n

(φx). (29)

From Lemma 2.5 (ii), using the same method, we also get

∣∣∆2n(f, x)
∣∣ ≤ 2βγ2

nα(x)

1− x

[
√
n]∑

k=1

x+ 1−x
k∨

x

(φx) +
1− x√

n

x+ 1−x√
n∨

x

(φx). (30)

Theorem 3.5 now follows from (25),(26),(29) and (30).

From Lemma 2.2, Lemma 2.4 and Lemma 2.6, using a similar method, we prove

Theorem 3.6 Let f ∈ DBV [0, 1]. If h(x+) and h(x−) exist at a fixed point x ∈ (0, 1),

then we have∣∣K(β)
n,α(f, x)− f(x)

∣∣ ≤ β
(
|h(x+)|+ |h(x−)|

)
ηnα(x)

+
2βη2nα(x)

x(1− x)

[
√
n]∑

k=1

x+ 1−x
k∨

x− x
k

(φx) +
1√
n

x+ 1−x√
n∨

x− x√
n

(φx).

§4 Conclusion

The Bézier variant of two new families of generalized Bernstein operators has been intro-

duced. A direct approximaiton by means of the Ditzian-Totik modulus of smoothness and
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a global approximation theorem in terms of second order modulus of continuity have been

established. The approximation of functions with derivatives of bounded variation has been

studied.
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operators, Math Slovaca, 2007, 57(4): 349-358.

[14] B Y Lian. Rate of approximation of bounded variation functions by the Bézier variant of
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