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On the ordering of the Kirchhoff indices of the

complements of trees and unicyclic graphs

CHEN Xiao-dan∗ HAO Guo-liang JIN De-quan

Abstract. The Kirchhoff index Kf(G) of a graph G is defined to be the sum of the resistance

distances between all pairs of vertices of G. In this paper, we develop a novel method for ordering

the Kirchhoff indices of the complements of trees and unicyclic graphs. With this method, we

determine the first five maximum values of Kf(T ) and the first four maximum values of Kf(U),

where T and U are the complements of a tree T and unicyclic graph U , respectively.

§1 Introduction

The concept of the resistance distance of a graph was conceived by Klein and Randić [17]

in 1993 based on the electrical network theory and graph theory. A (connected) graph G is

regarded as an electrical network N by replacing each edge of G with a unit resistor and then,

the resistance distance between a pair of vertices in G is defined to be the effective resistance

between them in N , which is computed by the Ohm’s and Kirchhoff’s laws. As the common

shortest-path distance, the resistance distance is a distance function on graphs, which not only

has some nice purely mathematical and physical interpretations, but also has a substantial

potential for chemical applications [17,18].

All graphs considered throughout this paper are finite, undirected, and simple graphs. Let

G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. Denote by rG(vi, vj) the resistance

distance between the vertices vi and vj in G. The Kirchhoff index of G [3, 17] is defined as

Kf(G) =
1

2

n∑
i=1

n∑
j=1

rG(vi, vj).

Here G is allowed to be disconnected; in this case, we have rG(vi, vj) = +∞ for the ver-

tices vi and vj in different components of G and Kf(G) = +∞. Up to now, this resistance-

distance-based graph invariant, as a molecular structure descriptor, has been found noteworthy
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applications in chemistry [2, 3, 9], and many of its mathematical properties have also been

established [5–8,10–12,16,19,20,24–32,35,36,38,39].

Recall that the Laplacian matrix of a graph G is defined to be L(G) = D(G)−A(G), where

A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of vertex degrees of G. The

eigenvalues of L(G), usually known as the Laplacian eigenvalues of the graph G, are arranged

(in non-increasing order) as µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G). It is well known that µn(G) = 0

and, µn−1(G) > 0 if and only if G is connected. For more details concerning the Laplacian

eigenvalues of a graph one may refer to [23].

One of the most beautiful and important mathematical properties of the Kirchhoff index,

due to Gutman and Mohar [12], and Zhu et al. [39], is the following relation between the

Kirchhoff index and the Laplacian eigenvalues:

Kf(G) = n
n−1∑
i=1

1

µi(G)
, (1)

for any connected graph G of order n ≥ 2.

Another interesting mathematical property of the Kirchhoff index, given by Deng and Chen

[7] recently, is to establish a relation between the Kirchhoff index of the complement G of a

bipartite graph G and the numbers of closed walks in the subdivision graph S(G) of G (that

is, the graph obtained from G by inserting a new vertex in each edge of G):

Kf(G) =
n−m

2
+

1

2

∑
k≥0

M2k(S(G))

nk
− 1, (2)

for any bipartite graph G with n ≥ 2 vertices and m edges, where Mk(G) is the number of

closed walks of length k in G. The relation (2) provides alternative method for comparing

the Kirchhoff indices of the complements of bipartite graphs, which is to compare directly the

numbers of closed walks in the subdivision graphs of those bipartite graphs. Using this method,

one successfully determined the first and second maximum values of Kf(G) when G is a tree [7],

bipartite unicyclic graph [8], and bipartite bicyclic graph [16].

However, for non-bipartite graphs, the method based on (2) will be no longer valid. In

addition, even for trees T , it seems hard to apply the method based on (2) to extend the ordering

of Kf(T ). Hence, it would be of interest to develop some efficient methods for ordering the

Kirchhoff indices of the complements of (general) graphs. As a first step to this work, in the

present paper we develop a novel method for ordering the Kirchhoff indices of the complements

of trees and unicyclic graphs. With this method, we determine the first five maximum values

of Kf(T ) and the first four maximum values of Kf(U), where T and U are the complements

of trees T and unicyclic graphs U , respectively.

§2 Preliminaries

In this section, we give some known results as necessary preliminaries.

Lemma 2.1 (see [23]). If G is a graph with n vertices and G is its complement, then µn(G) = 0

and µi(G) = n− µn−i(G) (i = 1, 2, . . . , n− 1).
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Figure 1: The trees T1, T2, . . . , T31.

Lemma 2.2 (see [1]). For any graph G of order n, µ1(G) ≤ n with equality if and only if G is

disconnected.

Let Kn and Ka,b (a + b = n) denote the complete graph and the complete bipartite graph

with n vertices, respectively.

Lemma 2.3 (see [4]). If G is a connected graph with n ≥ 3 vertices, then µ2(G) = µ3(G) =

· · · = µn−1(G) if and only if G ∼= Kn, or G ∼= Kn−1,1, or G ∼= Kn/2,n/2 (n is even).

Let T (n) and U(n) denote the sets of all trees and unicyclic graphs with n vertices, respec-

tively.

Lemma 2.4 (see [13,33,34,37]). For n ≥ 16, if T ∈ T (n)\{T1, T2, . . . , T31}, then µ1(T ) ≤ n−4,

where T1, T2, . . . , T31 are depicted in Figure 1.

Lemma 2.5 (see [15,21,22]). For n ≥ 14, if U ∈ U(n)\{U1, U2, . . . , U16}, then µ1(U) ≤ n−2,

where U1, U2, . . . , U16 are depicted in Figure 2.

For a square matrix M , denote by Φ(M ;x) (or simply, Φ(M)) the characteristic polynomial

of M , i.e., Φ(M ;x) = det(xI − M). For a vertex v ∈ V (G), let Lv(G) be the principal sub-

matrix of L(G) obtained by deleting the row and column corresponding to the vertex v. The

following result, due to Guo [14], is usually used to calculate the characteristic polynomial of

L(G).
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Figure 2: The unicyclic graphs U1, U2, . . . , U16.

Lemma 2.6 (see [14]). If G = G1u : vG2 is the graph obtained by joining the vertex u of the

graph G1 to the vertex v of the graph G2 by an edge, where G1 and G2 are vertex-disjoint, then

Φ(L(G)) = Φ(L(G1))Φ(L(G2))− Φ(L(G1))Φ(Lv(G2))− Φ(L(G2))Φ(Lu(G1)).

Clearly, for any graph G with n vertices, we have

Φ(L(G);x) = x(x− µ1(G))(x− µ2(G)) · · · (x− µn−1(G)),

and then
Φ′(L(G);x)

Φ(L(G);x)
=

n−1∑
i=1

1

(x− µi(G))
+

1

x
,

which, together with (1) and Lemma 2.1, would yield the following result immediately (see

also [7]).

Lemma 2.7 (see [7]). If G is a graph with n vertices and G is its complement, then

Kf(G) = n
Φ′(L(G);n)

Φ(L(G);n)
− 1,

with a convention that α
0 (α ̸= 0) means ∞.

§3 Main results

In this section, we provide a method for ordering the Kirchhoff indices of the complements

of trees and unicyclic graphs.

The key to our method is the following result.
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Theorem 3.1. If G is a connected graph with n vertices and m edges, then

Kf(G) ≤ n(n− 1)− 2m

µn−1(G)
+ n− 1, (3)

with equality if and only if G ∼= Kn, or G ∼= Kn−1,1, or G ∼= Kn/2,n/2 (n is even).

Proof. Recall first that
∑n−1

i=1 µi(G) = 2m. From (1) it follows that

Kf(G) = n

n−1∑
i=1

1

µi(G)
= n

[
n− 1

µ1(G)
+

n−1∑
i=2

(
1

µi(G)
− 1

µ1(G)

)]

= n

[
n− 1

µ1(G)
+

n−1∑
i=2

µ1(G)− µi(G)

µ1(G)µi(G)

]

≤ n

[
n− 1

µ1(G)
+

∑n−1
i=2

(
µ1(G)− µi(G)

)
µ1(G)µn−1(G)

]
=

n
[
(n− 1)

(
µ1(G) + µn−1(G)

)
− 2m

]
µ1(G)µn−1(G)

. (4)

For x > 0, consider the following function

f(x) =
(n− 1)

(
x+ µn−1(G)

)
− 2m

xµn−1(G)
,

for which

f ′(x) =
2m− (n− 1)µn−1(G)

x2µn−1(G)
.

Since 2m =
∑n−1

i=1 µi(G) ≥ (n−1)µn−1(G), we have f ′(x) ≥ 0, implying that f(x) is a increasing

function for x > 0. Thus, noting that µ1(G) ≤ n (by Lemma 2.2), and by (4) we may obtain

Kf(G) ≤ nf(µ1(G)) ≤ nf(n) =
n(n− 1)− 2m

µn−1(G)
+ n− 1, (5)

as desired, completing the first part of the proof.

We now suppose that the equality holds in (3). Then all inequalities in the above argument

must be equalities. In fact, from the equality in (4), we have µ2(G) = µ3(G) = · · · = µn−1(G),

which implies that G ∼= Kn, or G ∼= Kn−1,1, or G ∼= Kn/2,n/2 (by Lemma 2.3). Meanwhile,

from the equality in (5), we get µ1(G) = n, implying that G is disconnected (by Lemma 2.2).

Clearly, Kn, Kn−1,1, and Kn/2,n/2 are disconnected. Therefore, the required result follows.

Conversely, if G is isomorphic to one of these graphs: Kn, Kn−1,1, and Kn/2,n/2, then one

may easily check that the equality holds in (3), by noting that the Laplacian spectra of Kn,

Kn−1,1, and Kn/2,n/2 are {n, . . . , n, 0}, {n, 1, . . . , 1, 0}, and {n, n/2, . . . , n/2, 0}, respectively.
This completes the proof.

Remark 1. It should be mentioned that the idea of Theorem 3.1 comes from [25].

If T ∈ T (n) \ {T1, T2, . . . , T31}, then by Lemma 2.4, we have µ1(T ) ≤ n− 4, and hence, by

Lemma 2.1, we get µn−1(T ) = n − µ1(T ) ≥ 4. This, together with Theorem 3.1, would yield

the next corollary.

Corollary 3.2. For n ≥ 16, if T ∈ T (n) \ {T1, T2, . . . , T31}, then Kf(T ) ≤ 3
2 (n− 1).
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Likewise, by Theorem 3.1 and Lemma 2.5, we may have the following.

Corollary 3.3. For n ≥ 14, if U ∈ U(n) \ {U1, U2, . . . , U16}, then Kf(U) ≤ 2n− 1.

Now we are ready to present the main results of this paper.

Theorem 3.4. For n ≥ 16, if T ∈ T (n)\{T1, T2, T3, T4, T5},
then Kf(T1) > Kf(T2) > Kf(T3) > Kf(T4) > Kf(T5) > Kf(T ).

Proof. We first show that Kf(T1) > Kf(T2) > Kf(T3) > Kf(T4) > Kf(T5) > 3
2 (n − 1).

Indeed, since T1 is disconnected, by convention we have Kf(T1) = +∞. Furthermore, by

Lemma 2.6 and some elementary calculation, we get

Φ(L(T2);x) = x(x− 1)n−4
[
x3 − (n+ 2)x2 + (3n− 2)x− n

]
,

Φ(L(T3);x) = x(x− 1)n−4
[
x3 − (n+ 2)x2 + (4n− 7)x− n

]
,

Φ(L(T4);x) = x(x− 1)n−6(x2 − 3x+ 1)
[
x3 − (n+ 1)x2 + (3n− 5)x− n

]
,

Φ(L(T5);x) = x(x− 1)n−5
[
x4 − (n+ 3)x3 + (5n− 4)x2 − (6n− 10)x+ n

]
,

and then, by Lemma 2.7, we obtain

Kf(T2) =
2n3 − 9n2 + 11n+ 2

(n− 1)(n− 3)
,

Kf(T3) =
3n3 − 17n2 + 25n+ 7

2(n− 1)(n− 4)
,

Kf(T4) =
3n5 − 23n4 + 65n3 − 67n2 − 3n+ 5

2(n− 1)(n− 3)(n2 − 3n+ 1)
,

Kf(T5) =
3n4 − 20n3 + 46n2 − 31n− 10

(n− 1)(2n2 − 10n+ 11)
.

Thus, for n ≥ 16, we may conclude that

Kf(T2)−Kf(T3) =
(n− 1)2(n− 5)

2(n− 3)(n− 4)
> 0,

Kf(T3)−Kf(T4) =
5n3 − 6n2 − 22n− 1

2(n− 1)(n− 3)(n− 4)(n2 − 3n+ 1)
> 0,

Kf(T4)−Kf(T5) =
(n− 5)(n4 − 13n2 + 14n+ 1)

2(n− 1)(n− 3)(n2 − 3n+ 1)(2n2 − 10n+ 11)
> 0,

Kf(T5)−
3

2
(n− 1) =

2n3 − 7n2 + 34n− 53

2(n− 1)(2n2 − 10n+ 11)
> 0.

Consequently, the desired result follows.
Next, by Corollary 3.2, we just need to verify that Kf(Ti) <

3
2 (n − 1) for i = 6, 7, . . . , 31.

Indeed, based on the characteristic polynomials of L(Ti) listed in Appendix, and bearing Lemma
2.7 in mind, one can conclude that, for n ≥ 16,

Kf(T6)−
3

2
(n− 1) = −

n3 − 9n2 + 9n− 73

6(n− 1)(n− 5)
< 0,

Kf(T7)−
3

2
(n− 1) = −

n5 − 11n4 + 30n3 − 80n2 + 213n− 53

2(n− 1)(3n3 − 21n2 + 39n− 11)
< 0,

Kf(T8)−
3

2
(n− 1) = −

n5 − 10n4 + 23n3 − 65n2 + 178n− 43

6(n− 1)(n− 3)(n2 − 3n+ 1)
< 0,
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Kf(T9)−
3

2
(n− 1) = −

n5 − 11n4 + 31n3 − 83n2 + 190n− 88

2(n− 1)(3n3 − 21n2 + 40n− 18)
< 0,

Kf(T10)−
3

2
(n− 1) = −

n6 − 12n5 + 43n4 − 106n3 + 276n2 − 330n+ 68

2(n− 1)(3n4 − 24n3 + 64n2 − 62n+ 14)
< 0,

Kf(T11)−
3

2
(n− 1) = −

n4 − 10n3 + 22n2 − 62n+ 113

2(n− 1)(3n2 − 18n+ 23)
< 0,

Kf(T12)−
3

2
(n− 1) = −

n4 − 10n3 + 23n2 − 54n+ 128

2(n− 1)(3n2 − 18n+ 26)
< 0,

Kf(T13)−
3

2
(n− 1) = −

n3 − 9n2 + 7n− 59

4(n− 1)(n− 6)
< 0,

Kf(T14)−
3

2
(n− 1) = −

n5 − 11n4 + 29n3 − 64n2 + 179n− 44

2(n− 1)(2n3 − 16n2 + 32n− 9)
< 0,

Kf(T15)−
3

2
(n− 1) = −

n5 − 11n4 + 30n3 − 58n2 + 197n− 39

4(n− 1)(n− 4)(n2 − 4n+ 1)
< 0,

Kf(T16)−
3

2
(n− 1) = −

n7 − 13n6 + 54n5 − 127n4 + 329n3 − 570n2 + 262n− 34

2(n− 1)(n2 − 3n+ 1)(2n3 − 14n2 + 26n− 7)
< 0,

Kf(T17)−
3

2
(n− 1) = −

n5 − 9n4 + 17n3 − 41n2 + 133n− 29

4(n− 1)(n− 3)(n2 − 3n+ 1)
< 0,

Kf(T18)−
3

2
(n− 1) = −

2n5 − 22n4 + 59n3 − 133n2 + 327n− 133

2(n− 1)(4n3 − 32n2 + 65n− 27)
< 0,

Kf(T19)−
3

2
(n− 1) = −

2n7 − 26n6 + 109n5 − 261n4 + 642n3 − 1088n2 + 641n− 103

2(n− 1)(4n5 − 40n4 + 141n3 − 209n2 + 119n− 21)
< 0,

Kf(T20)−
3

2
(n− 1) = −

2n6 − 24n5 + 85n4 − 176n3 + 468n2 − 592n+ 93

2(n− 1)(4n4 − 36n3 + 105n2 − 104n+ 19)
< 0,

Kf(T21)−
3

2
(n− 1) = −

2n8 − 28n7 + 137n6 − 368n5 + 876n4 − 1800n3 + 1938n2 − 728n+ 83

2(n− 1)(n2 − 3n+ 1)(4n4 − 32n3 + 85n2 − 81n+ 17)
< 0,

Kf(T22)−
3

2
(n− 1) = −

n5 − 11n4 + 31n3 − 62n2 + 170n− 79

2(n− 1)(2n3 − 16n2 + 35n− 16)
< 0,

Kf(T23)−
3

2
(n− 1) = −

n6 − 12n5 + 43n4 − 91n3 + 222n2 − 297n+ 74

2(n− 1)(n2 − 3n+ 1)(2n2 − 12n+ 15)
< 0,

Kf(T24)−
3

2
(n− 1) = −

2n6 − 24n5 + 86n4 − 182n3 + 447n2 − 562n+ 173

2(n− 1)(4n4 − 36n3 + 106n2 − 114n+ 35)
< 0,

Kf(T25)−
3

2
(n− 1) = −

n6 − 12n5 + 43n4 − 90n3 + 224n2 − 302n+ 64

2(n− 1)(2n4 − 18n3 + 53n2 − 56n+ 13)
< 0,

Kf(T26)−
3

2
(n− 1) = −

n7 − 13n6 + 56n5 − 132n4 + 303n3 − 550n2 + 431n− 54

2(n− 1)(2n2 − 10n+ 11)(n3 − 5n2 + 6n− 1)
< 0,

Kf(T27)−
3

2
(n− 1) = −

2n6 − 24n5 + 88n4 − 176n3 + 431n2 − 668n+ 143

2(n− 1)(4n4 − 36n3 + 110n2 − 124n+ 29)
< 0,

Kf(T28)−
3

2
(n− 1) = −

2n4 − 20n3 + 41n2 − 96n+ 193

2(n− 1)(4n2 − 28n+ 39)
< 0,

Kf(T29)−
3

2
(n− 1) = −

2n6 − 24n5 + 87n4 − 186n3 + 427n2 − 574n+ 208

2(n− 1)(4n4 − 36n3 + 107n2 − 122n+ 42)
< 0,

Kf(T30)−
3

2
(n− 1) = −

2n4 − 20n3 + 45n2 − 76n+ 233

2(n− 1)(4n2 − 28n+ 47)
< 0,

Kf(T31)−
3

2
(n− 1) = −

2n6 − 24n5 + 89n4 − 182n3 + 413n2 − 606n+ 248

2(n− 1)(4n4 − 36n3 + 111n2 − 134n+ 50)
< 0,

completing the proof.
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Remark 2. In fact, based on the above values ofKf(Ti), one may further verify thatKf(T1) >

Kf(T2) > · · · > Kf(T31) holds for n ≥ 103. On the other hand, based on the results in

[13, 33, 34, 37], and using the method given in [34], one can also check that µ1(T1) > µ1(T2) >

· · · > µ1(T31) holds for sufficiently large n. This would imply that the Kirchhoff indices of the

complements of trees are likely to be relevant to the Laplacian spectral radii of those trees.

Formally, we pose the following problem:

Problem. For any two trees T ′ and T ′′ of order n and sufficiently large n, is it true that

µ1(T
′) > µ1(T

′′) implies Kf(T ′) > Kf(T ′′)?

Theorem 3.5. For n ≥ 14, if U ∈ U(n)\{U1, U2, U3, U4}, then Kf(U1) > Kf(U2) > Kf(U3) >

Kf(U4) > Kf(U).

Proof. This proof is analogous to the proof of Theorem 3.4. We first prove that Kf(U1) >

Kf(U2) > Kf(U3) > Kf(U4) > 2n − 1. Indeed, since U1 is disconnected, by convention we

have Kf(U1) = +∞. Furthermore, by Lemma 2.6 and some elementary calculation, we obtain

Φ(L(U2);x) = x(x− 1)n−5(x− 2)
[
x3 − (n+ 3)x2 + (4n− 2)x− 2n

]
,

Φ(L(U3);x) = x(x− 1)n−5
[
x4 − (n+ 5)x3 + (6n+ 3)x2 − (9n− 5)x+ 3n

]
,

Φ(L(U4);x) = x(x− 1)n−5(x− 3)
[
x3 − (n+ 2)x2 + (3n− 2)x− n

]
,

and then, by Lemma 2.7, we have

Kf(U2) =
2n4 − 15n3 + 39n2 − 34n− 4

(n− 1)(n− 2)(n− 4)
,

Kf(U3) =
2n4 − 15n3 + 38n2 − 32n− 5

(n− 1)(n− 2)(n− 4)
,

Kf(U4) =
2n3 − 9n2 + 13n+ 2

(n− 1)(n− 3)
.

Thus, for n ≥ 14, we may conclude that

Kf(U2)−Kf(U3) =
n− 1

(n− 2)(n− 4)
> 0,

Kf(U3)−Kf(U4) =
2n+ 1

(n− 2)(n− 3)(n− 4)
> 0,

Kf(U4)− (2n− 1) =
3n+ 5

(n− 1)(n− 3)
> 0,

as desired.

Next, by Corollary 3.3, we only need to check that Kf(Ui) < 2n − 1 for i = 5, 6, . . . , 16.

Actually, based on the characteristic polynomials of L(Ui) listed in Appendix, and bearing in

mind Lemma 2.7, one can conclude that, for n ≥ 14,

Kf(U5)− (2n− 1) = − (n− 3)(n3 − 5n2 − 4n− 14)

(n− 1)(2n2 − 14n+ 23)
< 0,

Kf(U6)− (2n− 1) = −n6 − 10n5 + 29n4 − 30n3 + 50n2 − 106n+ 36

(n− 1)(n− 2)(2n3 − 14n2 + 27n− 10)
< 0,

Kf(U7)− (2n− 1) = −n4 − 8n3 + 10n2 − 8n+ 37

2(n− 1)(n− 2)(n− 5)
< 0,



316 Appl. Math. J. Chinese Univ. Vol. 35, No. 3

Kf(U8)− (2n− 1) = −n5 − 9n4 + 19n3 − 13n2 + 55n− 33

2(n− 1)(n− 3)(n2 − 5n+ 3)
< 0,

Kf(U9)− (2n− 1) = −n5 − 9n4 + 20n3 − 16n2 + 36n− 52

2(n− 1)(n− 2)(n2 − 6n+ 7)
< 0,

Kf(U10)− (2n− 1) = Kf(U11)− (2n− 1) = −n4 − 8n3 + 12n2 − 2n+ 45

2(n− 1)(n− 3)(n− 4)
< 0,

Kf(U12)− (2n− 1) = −n6 − 10n5 + 29n4 − 32n3 + 59n2 − 108n+ 31

(n− 1)(2n4 − 18n3 + 54n2 − 60n+ 17)
< 0,

Kf(U13)− (2n− 1) = −n5 − 9n4 + 21n3 − 13n2 + 35n− 55

2(n− 1)(n− 3)(n2 − 5n+ 5)
< 0,

Kf(U14)− (2n− 1) = −n5 − 7n4 + 9n3 − 5n2 + 37n− 11

2(n− 1)(n− 3)(n2 − 3n+ 1)
< 0,

Kf(U15)− (2n− 1) = −n5 − 9n4 + 21n3 − 17n2 + 39n− 55

(n− 1)(2n3 − 16n2 + 39n− 29)
< 0,

Kf(U16)− (2n− 1) = −n5 − 9n4 + 22n3 − 16n2 + 35n− 63

(n− 1)(n− 3)(2n2 − 10n+ 11)
< 0,

completing the proof.

Remark 3. Based on the above values of Kf(Ui), one may further verify that Kf(U1) >

Kf(U2) > · · · > Kf(U10) = Kf(U11) > · · · > Kf(U16) holds for n ≥ 28, whereas it was shown

in [15,21,22] that µ1(U1) > µ1(U2) > · · · > µ1(U7) > µ1(U9) > µ1(U10) = µ1(U11) > µ1(U12) >

µ1(U8) = µ1(U13) = µ1(U14) > µ1(U15) > µ1(U16). This means that the Kirchhoff indices of

the complements of unicyclic graphs are likely to be irrelevant to the Laplacian spectral radii

of those unicyclic graphs, which behaves in a way different from trees.

§4 Concluding remarks

We have provided a method for ordering the Kirchhoff indices of the complements of trees

and unicyclic graphs, which is mainly based on Theorem 3.1. With this method, we have

determined the first 5 maximum values of Kf(T ) for trees, which extends the ordering given by

Deng and Chen [7]; we have also determined the first 4 maximum values of Kf(U) for unicyclic

graphs. Comparing with the method based on (2), our method seems to be more efficient to

some extent. In fact, using our method, one can further extend the ordering given in Theorems

3.4 and 3.5 (for sufficient large n). For example, the first 12 maximum values of Kf(T ) would

be determined as long as all the trees T with µ1(T ) > n − 6 could be drawn out from T (n),

which are exactly those trees T with the maximum degree ∆(T ) ≥ n−7 (see [34]). Likewise, the

first 16 maximum values of Kf(U) would be determined as long as all the unicyclic graphs U

with µ1(U) > n− 4 could be drawn out from U(n), which are exactly those unicyclic graphs U

with ∆(U) ≥ n− 5 (see [21]). The calculation in this extending work is, of course, considerably

large and tedious.
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Appendix

Here we list the Laplacian characteristic polynomials of the trees T1, T2, . . . , T31 (shown in

Figure 1) and unicyclic graphs U1, U2, . . . , U16 (shown in Figure 2), which are computed by the

software ‘Mathematica 5.0’ based on Lemma 2.6.

List 1. The characteristic polynomials of L(T1), L(T2), . . . , L(T31)
Φ(L(T1); x) = x(x − 1)

n−2
(x − n)

Φ(L(T2); x) = x(x − 1)
n−4[

x
3 − (n + 2)x

2
+ (3n − 2)x − n

]
Φ(L(T3); x) = x(x − 1)

n−4[
x
3 − (n + 2)x

2
+ (4n − 7)x − n

]
Φ(L(T4); x) = x(x − 1)

n−6
(x

2 − 3x + 1)
[
x
3 − (n + 1)x

2
+ (3n − 5)x − n

]
Φ(L(T5); x) = x(x − 1)

n−5[
x
4 − (n + 3)x

3
+ (5n − 4)x

2 − (6n − 10)x + n
]

Φ(L(T6); x) = x(x − 1)
n−4[

x
3 − (n + 2)x

2
+ (5n − 14)x − n

]
Φ(L(T7); x) = x(x − 1)

n−6[
x
5 − (n + 4)x

4
+ (7n − 7)x

3 − (14n − 32)x
2
+ (7n − 10)x − n

]
Φ(L(T8); x) = x(x − 1)

n−8
(x

2 − 3x + 1)
2[

x
3 − nx

2
+ (3n − 8)x − n

]
Φ(L(T9); x) = x(x − 1)

n−6[
x
5 − (n + 4)x

4
+ (7n − 7)x

3 − (14n − 32)x
2
+ (8n − 17)x − n

]
Φ(L(T10); x) = x(x − 1)

n−7[
x
6 − (n + 5)x

5
+ (8n − 2)x

4 − (22n − 40)x
3

+ (24n − 53)x
2 − (9n − 13)x + n

]
Φ(L(T11); x) = x(x − 1)

n−5[
x
4 − (n + 3)x

3
+ (6n − 10)x

2 − (8n − 22)x + n
]

Φ(L(T12); x) = x(x − 1)
n−5[

x
4 − (n + 3)x

3
+ (6n − 9)x

2 − (9n − 25)x + n
]

Φ(L(T13); x) = x(x − 1)
n−4[

x
3 − (n + 2)x

2
+ (6n − 23)x − n

]
Φ(L(T14); x) = x(x − 1)

n−6[
x
5 − (n + 4)x

4
+ (8n − 15)x

3 − (17n − 56)x
2
+ (8n − 17)x − n

]
Φ(L(T15); x) = x(x − 1)

n−6
(x

2 − 4x + 1)
[
x
3 − nx

2
+ (4n − 15)x − n

]
Φ(L(T16); x) = x(x − 1)

n−8
(x

2 − 3x + 1)
[
x
5 − (n + 3)x

4
+ (7n − 14)x

3 − (14n − 45)x
2

+ (7n − 13)x − n
]

Φ(L(T17); x) = x(x − 1)
n−10

(x
2 − 3x + 1)

3[
x
3 − (n − 1)x

2
+ (3n − 11)x − n

]
Φ(L(T18); x) = x(x − 1)

n−6[
x
5 − (n + 4)x

4
+ (8n − 15)x

3 − (17n − 56)x
2
+ (9n − 26)x − n

]
Φ(L(T19); x) = x(x − 1)

n−8[
x
7 − (n + 6)x

6
+ (10n − 4)x

5 − (36n − 84)x
4
+ (57n − 170)x

3

− (39n − 108)x
2
+ (11n − 20)x − n

]
Φ(L(T20); x) = x(x − 1)

n−7[
x
6 − (n + 5)x

5
+ (9n − 9)x

4 − (27n − 75)x
3

+ (30n − 94)x
2 − (10n − 18)x + n

]
Φ(L(T21); x) = x(x − 1)

n−9
(x

2 − 3x + 1)
[
x
6 − (n + 4)x

5
+ (8n − 10)x

4 − (22n − 61)x
3

+ (24n − 72)x
2 − (9n − 16)x + n

]
Φ(L(T22); x) = x(x − 1)

n−6[
x
5 − (n + 4)x

4
+ (8n − 14)x

3 − (18n − 60)x
2
+ (10n − 31)x − n

]
Φ(L(T23); x) = x(x − 1)

n−7
(x

2 − 3x + 1)
[
x
4 − (n + 2)x

3
+ (6n − 16)x

2 − (8n − 29)x + n
]

Φ(L(T24); x) = x(x − 1)
n−7[

x
6 − (n + 5)x

5
+ (9n − 9)x

4 − (27n − 75)x
3

+ (31n − 102)x
2 − (12n − 34)x + n

]
Φ(L(T25); x) = x(x − 1)

n−7[
x
6 − (n + 5)x

5
+ (9n − 9)x

4 − (27n − 75)x
3

+ (31n − 101)x
2 − (11n − 25)x + n

]
Φ(L(T26); x) = x(x − 1)

n−8
(x

3 − 5x
2
+ 6x − 1)

[
x
4 − (n + 1)x

3
+ (5n − 14)x

2 − (6n − 21)x + n
]

Φ(L(T27); x) = x(x − 1)
n−7[

x
6 − (n + 5)x

5
+ (9n − 8)x

4 − (28n − 76)x
3

+ (34n − 112)x
2 − (12n − 28)x + n

]
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Φ(L(T28); x) = x(x − 1)
n−5[

x
4 − (n + 3)x

3
+ (7n − 18)x

2 − (10n − 38)x + n
]

Φ(L(T29); x) = x(x − 1)
n−7[

x
6 − (n + 5)x

5
+ (9n − 9)x

4 − (27n − 75)x
3

+ (32n − 109)x
2 − (13n − 41)x + n

]
Φ(L(T30); x) = x(x − 1)

n−5[
x
4 − (n + 3)x

3
+ (7n − 16)x

2 − (12n − 46)x + n
]

Φ(L(T31); x) = x(x − 1)
n−7[

x
6 − (n + 5)x

5
+ (9n − 8)x

4 − (28n − 76)x
3

+ (35n − 119)x
2 − (15n − 49)x + n

]
List 2. The characteristic polynomials of L(U1), L(U2), . . . , L(U16)

Φ(L(U1); x) = x(x − 1)
n−3

(x − 3)(x − n)

Φ(L(U2); x) = x(x − 1)
n−5

(x − 2)
[
x
3 − (n + 3)x

2
+ (4n − 2)x − 2n

]
Φ(L(U3); x) = x(x − 1)

n−5[
x
4 − (n + 5)x

3
+ (6n + 3)x

2 − (9n − 5)x + 3n
]

Φ(L(U4); x) = x(x − 1)
n−5

(x − 3)
[
x
3 − (n + 2)x

2
+ (3n − 2)x − n

]
Φ(L(U5); x) = x(x − 1)

n−5[
x
4 − (n + 5)x

3
+ (7n − 1)x

2 − (13n − 19)x + 4n
]

Φ(L(U6); x) = x(x − 1)
n−7

(x − 2)
[
x
5 − (n + 5)x

4
+ (7n + 1)x

3 − (15n − 17)x
2
+ (10n − 8)x − 2n

]
Φ(L(U7); x) = x(x − 1)

n−5[
x
4 − (n + 5)x

3
+ (7n − 3)x

2 − (11n − 17)x + 3n
]

Φ(L(U8); x) = x(x − 1)
n−6

(x
2 − 5x + 3)

[
x
3 − (n + 1)x

2
+ (3n − 5)x − n

]
Φ(L(U9); x) = x(x − 1)

n−6
(x − 2)

[
x
4 − (n + 4)x

3
+ (6n − 4)x

2 − (8n − 12)x + 2n
]

Φ(L(U10); x) = Φ(L(U11);x) = x(x − 1)
n−5

(x − 3)
[
x
3 − (n + 2)x

2
+ (4n − 7)x − n

]
Φ(L(U12); x) = x(x − 1)

n−7[
x
6 − (n + 7)x

5
+ (9n + 10)x

4 − (28n − 18)x
3

+ (36n − 42)x
2 − (18n − 14)x + 3n

]
Φ(L(U13); x) = x(x − 1)

n−6
(x

2 − 5x + 5)
[
x
3 − (n + 1)x

2
+ (3n − 5)x − n

]
Φ(L(U14); x) = x(x − 1)

n−7
(x − 3)(x

2 − 3x + 1)
[
x
3 − (n + 1)x

2
+ (3n − 5)x − n

]
Φ(L(U15); x) = x(x − 1)

n−6[
x
5 − (n + 6)x

4
+ (8n + 4)x

3 − (20n − 22)x
2
+ (17n − 26)x − 3n

]
Φ(L(U16); x) = x(x − 1)

n−6
(x − 3)

[
x
4 − (n + 3)x

3
+ (5n − 4)x

2 − (6n − 10)x + n
]
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