Lipschitz estimates for commutator of fractional integral operators on non-homogeneous metric measure spaces

WANG Ding-huai^{*} ZHOU Jiang MA Bo-lin

Abstract. In this paper, the authors establish the $(L^p(\mu), L^q(\mu))$ -type estimate for fractional commutator generated by fractional integral operators T_α with Lipschitz functions $(b \in Lip_\beta(\mu))$, where $1 and <math>1/q = 1/p - (\alpha + \beta)$, and obtain their weak $(L^1(\mu), L^{1/(1-\alpha-\beta)}(\mu))$ -type. Moreover, the authors also consider the boundedness in the case that $1/(\alpha + \beta) , <math>1/\alpha \le p \le \infty$ and the endpoint cases, namely, $p = 1/(\alpha + \beta)$.

§1 Introduction and Notation

It is well known that the doubling condition is a key assumption in the analysis on spaces of homogeneous type. However, some theories have been proved still valid with non-doubling measure (see[6-8]). In 2010, Hytönen [4] introdeced a new class of metric measure spaces satisfying both the so-called geometrically doubling and the upper doubling conditions (see the definition below), which are called non-homogeneous spaces. Recently, many classical results have been proved still valid if the underlying spaces are replaced by the non-homogeneous spaces, for example, the theory of Carlderón-Zygmund operators(see [1,3,6]).

In 2014, J. Zhou and D. Wang [10] established the definition of fractional operator and the definition of Lipschitz space on non-homogeneous metric measure spaces and they also establish some equivalent characterizations for the Lipschitz spaces. Motivated by [10], we consider the endpoint estimates for commutator generated by fractional integral operators with Lipschitz functions.

In this paper, we will prove the $(L^p(\mu), L^q(\mu))$ boundedness of commutator generated by fractional integral operator T_α (see the definition below) with Lipschitz functions $b \in Lip_\beta(\mu)$, where $1 and <math>1/q = 1/p - (\alpha + \beta)$, and their weak $(L^1(\mu), L^{1/(1-\alpha-\beta)}(\mu))$. We also consider the boundedness in the case that $1/(\alpha + \beta) , <math>1/\alpha \le p \le \infty$ and the endpoint case of $p = 1/(\alpha + \beta)$.

Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-020-3319-8.

Received: 2014-09-03. Revised: 2019-12-30.

MR Subject Classification: 47B47, 42B25.

Keywords: Non-homogeneous space, Fractional integral, Lipschitz function, Commutator, Endpoint estimate.

Supported by the National Natural Science Foundation of China (Grant No.11661075).

^{*}Corresponding author.

To state the main results of this paper, we first recall some necessary notions and remarks. Firstly, we make some conventions on notation. Throughout the whole paper, C stands for a positive constant, which is independent of the main parameters, but it may vary from line to line.

Definition 1.1. ^[4] A metric space (\mathcal{X}, d, μ) is said to be geometrically doubling if there exists some $N_0 \in \mathbb{N}$ such that, for any ball $B(x, r) \subset \mathcal{X}$, there exist a finite ball covering $\{B(x_i, r/2)\}_i$ of B(x, r) such that the cardinality of this covering is at most N_0 .

Definition 1.2. ^[4] A metric measure space (\mathcal{X}, d, μ) is said to be upper doubling if μ is a Borel measure on \mathcal{X} and there exist a dominating function $\lambda : \mathcal{X} \times (0, \infty) \to (0, \infty)$ and a positive constant c_{λ} such that, for each $x \in \mathcal{X}, r \to \lambda(x, r)$ is non-decreasing and

$$\mu(B(x,r)) \le \lambda(x,r) \le c_\lambda \lambda(x,r/2) \text{ for all } x \in \mathcal{X}, r > 0.$$
(1.1)

A metric measure space (\mathcal{X}, d, μ) is called a non-homogeneous metric measure space if (\mathcal{X}, d, μ) is geometrically doubling and (\mathcal{X}, d, μ) is upper doubling.

Remark 1.1. Let (\mathcal{X}, d, μ) be upper doubling with λ being the dominating function on $\mathcal{X} \times (0, \infty)$ as in Definition 1.3. It was proved in [2] that there exists another dominating function $\tilde{\lambda}$ such that $\tilde{\lambda} \leq \lambda$ and, for all $x, y \in \mathcal{X}$ with $d(x, y) \leq r$,

$$\tilde{\lambda}(x,r) \le C_{\tilde{\lambda}}\tilde{\lambda}(y,r).$$
 (1.2)

Thus, in this paper, we always suppose that λ satisfies (1.2).

Definition 1.3. ^[4] Let $\alpha, \beta_{\alpha} \in (1, \infty)$. A ball $B \subset X$ is called (α, β) -doubling if $\mu(\alpha B) \leq \beta_{\alpha}\mu(B)$.

As stated in Lemma of [4], there exist a plenty of doubling balls with small radii and with large radii. In the rest of the paper, unless α and β_{α} are specified otherwise, by an (α, β_{α}) -doubling ball we mean a $(6, \beta_6)$ -doubling with a fixed number $\beta_6 > \max\{C_{\lambda}^{3log_26}, 6^n\}$, where $n = log_2 N_0$ be viewed as a geometric dimension of the spaces.

Definition 1.4. ^[3] Let $\epsilon \in (0, \infty)$. A dominating function λ satisfies the ϵ -weak reverse doubling condition if, for all $r \in (0, 2diam(\mathcal{X}))$ and $a \in (1, 2diam(\mathcal{X})/r)$, there exists a number $C(a) \in [1, \infty)$ depending only on a and \mathcal{X} , such that, for all $x \in \mathcal{X}$,

$$\lambda(x, ar) \ge C(a)\lambda(x, r) \tag{1.3}$$

and, moreover,

$$\sum_{k=1}^{\infty} \frac{1}{[C(a^k)]^{\epsilon}} < \infty.$$
(1.4)

Remark 1.2. (i) It is easy to see that, if $\epsilon_1 < \epsilon_2$ and λ satisfies the ϵ_1 -weak reverse doubling condition, then λ also satisfies the ϵ_2 -weak reverse doubling condition.

(ii) Assume that $diam(\mathcal{X}) = \infty$. For any fixed $x \in \mathcal{X}$, we know that

$$\lim_{r \to 0} \lambda(x, r) = 0, \lim_{r \to \infty} \lambda(x, r) = \infty.$$
(1.5)

(iii) It is easy to see that the ϵ -weak reverse doubling condition is much weaker than the assumption introduced by Bui and Duong in [2, Subsection 7.3]: there exists $m \in (0, \infty)$ such that, for all $x \in \mathcal{X}$ and $a, r \in (0, \infty)$, $\lambda(x, ar) = a^m \lambda(x, r)$.

Definition 1.5. ^[4] For any two balls $B \subset S$, define

$$K_{B,S} = 1 + \int_{2S\setminus B} \frac{1}{\lambda(c_B, d(x, c_B))} d\mu(x),$$

where c_B is the center of the ball B.

Definition 1.6. ^[4] Let $\rho \in (1, \infty)$. A function $f \in L^1_{loc}(\mu)$ is said to be in the space $RBMO(\mu)$ if there exist a positive constant C, and for any ball $B \subset \mathcal{X}$, a number f_B such that

$$\frac{1}{\iota(\rho B)} \int_{B} |f(x) - f_B| d\mu(x) \le C, \tag{1.6}$$

for any two balls B and B_1 such that $B \subset B_1$,

$$|f_B - f_{B_1}| \le CK_{B,B_1}.$$
 (1.7)

The infimum of the positive constants C satisfying above two inequalities is defined to be the $RBMO(\mu)$ norm of f and denoted by $||f||_{RBMO(\mu)}$.

From Lemma 4.6 of [4], it follows that the space $RBMO(\mu)$ is independent of $\rho \in (1, \infty)$.

In what follows, the definition of fractional integral operators and Lipschitz space are a little different from those in [10], but it can easily be seen that the related results still valid.

Definition 1.7. ^[6] Let $0 < \alpha < 1$ and $0 < \delta \leq 1$. A function $K_{\alpha} \in L^{1}_{loc}(\mathcal{X} \times \mathcal{X} \setminus \{(x, y) : x = y\})$ is said to be a fractional kernel of order α and regularity δ if it satisfies the following two conditions:

(i) for all $x, y \in \mathcal{X}$ with $x \neq y$,

$$|K_{\alpha}(x,y)| \le C \frac{1}{[\lambda(x,d(x,y))]^{1-\alpha}};$$
(1.8)

(ii) for all $x, \tilde{x}, y \in \mathcal{X}$ with $\lambda(x, d(x, y)) \ge 2\lambda(x, d(x, \tilde{x}))$,

$$|K_{\alpha}(x,y) - K_{\alpha}(\tilde{x},y)| + |K_{\alpha}(y,x) - K_{\alpha}(y,\tilde{x})| \le C \frac{[\lambda(x,d(x,\tilde{x}))]^{\delta}}{[\lambda(x,d(x,y))]^{1-\alpha+\delta}}.$$
(1.9)

A linear operator T_{α} is called fractional integral operator with K_{α} satisfying (1.8) and (1.9), for all $f \in L_b^{\infty}(\mu)$ and $x \notin supp f$,

$$T_{\alpha}f(x) := \int_{\mathcal{X}} K_{\alpha}(x, y)f(y)d\mu(y).$$
(1.10)

Definition 1.8. ^[10] Given $\beta \in (0, 1]$, we say that the function $f : \mathcal{X} \to \mathbb{C}$ satisfies a Lipschitz condition of order β provided

$$|f(x) - f(y)| \le C[\lambda(x, d(x, y))]^{\beta} \text{ for every } x, y \in \mathcal{X}$$

$$(1.11)$$

and the smallest constant in inequality (1.11) will be denoted by $||f||_{Lip_{\beta}(\mu)}$. If we identify two functions whose difference is a constant, it follows that the linear space with the norm $||\cdot||_{Lip_{\beta}(\mu)}$ is a Banach space.

Remark 1.3. The Lipschitz condition can also be defined by

$$|f(x) - f(y)| \le C[\lambda(y, d(x, y))]^{\beta} \text{ for every } x, y \in \mathcal{X},$$

$$(1.12)$$

by (1.2), it is easy to see that (1.11) and (1.12) are equivalent.

Noting that $b \in Lip_{\beta}(\mu)$, we discuss the behavior of commutators $T_{\alpha,b}$ generated by fractional integral operator T_{α} with Lipschitz function b in Lebesgue spaces. For μ -a.e. $x \in \text{supp}(\mu)$,

 $|T_{\alpha,b}(f)(x)| \le C ||b||_{Lip(\beta)} I_{\alpha+\beta}(|f|)(x), \tag{1.13}$

where I_{β} is defined by

From now on, we sha

$$I_{\beta}(f)(x) = \int_{\mathcal{X}} \frac{f(y)}{[\lambda(x, d(x, y))]^{1-\beta}} dy.$$

all assume that $\mu(\mathcal{X}) = \infty$.

Theorem 1.4. Let $1 \leq p < \frac{1}{\beta}$ and $\frac{1}{q} = \frac{1}{p} - \beta$. If λ satisfies the ϵ -weak reverse doubling condition with $\epsilon \in (0, \min\{\beta, (\frac{1}{p} - \beta)p'\})$, then

$$\mu(\{x \in \mathcal{X} : |I_{\beta}f(x)| > \nu\}) \le \left(\frac{C\|f\|_{L^{p}(\mu)}}{\nu}\right)^{q},$$

that is, I_{β} is a bounded operator from $L^{p}(\mu)$ into the space $L^{q,\infty}(\mu)$.

The proof of **Theorem 1.4** is similar to the Theorem 1.13 of [6], we omit the details.

Theorem 1.5. For a measure μ , finite over balls and not having any atoms, condition $\mu(B(c_B, r_B)) \leq C\lambda(c_B, r_B)$ is necessary for the Hardy-Littlewood-Sobolev theorem to hold.

Proof. Suppose that $I_{\beta}(f)$ is bounded from $L^{p}(\mu)$ to $L^{q}(\mu)$, where $1 and <math>\frac{1}{q} = \frac{1}{p} - \beta$. Let $B = B(c_{B}, r_{B})$, if $\mu(B) = 0$, then $\mu(B(c_{B}, r_{B})) \leq C\lambda(c_{B}, r_{B})$ is trivially true. Let $\mu(B) \neq 0$. For each $x \in B$, since λ satisfies (1.2), we have $\lambda(x, r_{B}) \leq C_{\lambda}\lambda(c_{B}, r_{B})$, then

$$I_{\beta}\chi_B(x) = \int_B \frac{1}{[\lambda(x, d(x, y))]^{1-\beta}} d\mu(y) \ge \int_B \frac{1}{[\lambda(x, r_B)]^{1-\beta}} d\mu(y) \ge \frac{C}{[\lambda(c_B, r_B)]^{1-\beta}} \mu(B).$$

Assume that $I_{\beta}f$ is bounded from $L^p(\mu)$ to $L^q(\mu)$, then

$$\frac{C}{[\lambda(c_B, r_B)]^{1-\beta}} \mu(B)^{1+\frac{1}{q}} \leq \left(\int_B |I_\beta \chi_B(x)|^q \right)^{1/q} \\ \leq C \|\chi_B\|_{L^p(\mu)} = C \mu(B)^{\frac{1}{p}},$$

so, we get

$$\mu(B(c_B, r_B))^{1 + \frac{1}{q} - \frac{1}{p}} \le C[\lambda(c_B, r_B)]^{1 - \beta},$$

that is, $\mu(B(c_B, r_B)) \leq C\lambda(c_B, r_B)$. A similar proofs if we assume $I_{\beta}f$ is bounded from $L^p(\mu)$ to $L^{q,\infty}(\mu)$, where $1 \leq p < \frac{1}{\beta}$ and $\frac{1}{q} = \frac{1}{p} - \beta$.

From (1.13) and Theorem 1.4, it is easy to verify the following results.

Theorem 1.6. Let $b \in Lip_{\beta}(\mu)$. Suppose that $0 < \alpha + \beta < 1$ and λ satisfy the ϵ -weak reverse doubling condition with $\epsilon \in (0, \min\{\alpha + \beta, (\frac{1}{p} - \alpha - \beta)p'\})$, then

(i) for all bounded functions f with compact support,

$$||T_{\alpha,b}(f)||_{L^{q}(\mu)} \leq C ||b||_{L^{p}(\mu)} ||f||_{L^{p}(\mu)},$$

where $1 and <math>1/q = 1/p - \alpha - \beta$.

(ii) for all bounded functions f with compact support and all $\lambda > 0$,

$$\mu\bigg(\bigg\{x \in \mathbb{R}^d : |T_{\alpha,b}(f)| > \nu\bigg\}\bigg) \le C \|b\|_{Lip_{\beta}(\mu)} \bigg(\frac{\|f\|_{L^1(\mu)}}{\nu}\bigg)^{1/(1-\alpha-\beta)}$$

Using the above Theorem, we consider the case of $p = 1/(\alpha + \beta)$, $1/(\alpha + \beta) and <math>1/\alpha \le p \le \infty$, respectively. Now our main results can be stated as follows:

Theorem 1.7. Let $b \in Lip_{\beta}(\mu)$, $1/(\beta+\alpha) with <math>0 < \alpha+\beta < 1$ and $1/p-\alpha-\beta+\delta > 0$. If λ satisfy the ϵ -weak reverse doubling condition with $\epsilon \in (0, \min\{(1-\alpha-\beta+\delta)p'-1, (1-\alpha)p'-1\})$, then for all bounded functions f with compact support,

 $||T_{\alpha,b}(f)||_{Lip_{\alpha+\beta-1/p}(\mu)} \le C ||b||_{Lip_{\beta}(\mu)} ||f||_{L^{p}(\mu)}.$

Theorem 1.8. Let $b \in Lip_{\beta}(\mu)$, $0 < \alpha + \beta < 1$. If λ satisfy the ϵ -weak reverse doubling condition with $\epsilon \in (0, \min\{\delta/(1-\alpha-\beta), \beta/(1-\alpha-\beta)\})$, then for all bounded functions f with compact support,

$$||T_{\alpha,b}(f)||_{RBMO(\mu)} \le C ||b||_{Lip_{\beta}(\mu)} ||f||_{L^{1/(\beta+\alpha)}(\mu)}.$$

Theorem 1.9. Let $b \in Lip_{\beta}(\mu)$, $1/\alpha \leq p \leq \infty$. If λ satisfies the ϵ -weak reverse doubling condition with $\epsilon \in (0, \min\{(1 - \alpha - \beta + \delta)p' - 1, \beta/(1 - \alpha - \beta)\})$, then the following statements are equivalent.

(1) For all bounded functions f with compact support,

$$||T_{\alpha,b}(f)||_{Lip_{\alpha+\beta-1/p}(\mu)} \le C||f||_{L^{p}(\mu)} ||b||_{Lip_{\beta}(\mu)};$$
(1.14)

(2) For any ball B and $u \in B$,

$$\frac{1}{\mu(B)} \int_{B} \left| b(x) - m_{Q}(b) \right| d\mu(x) \left| \int_{\mathcal{X} \setminus 2B} K_{\alpha}(u, y) f(y) d\mu(y) \right|$$

$$\leq C \|f\|_{L^{p}(\mu)} \|b\|_{Lip_{\beta}(\mu)} [\lambda(c_{B}, r_{B})]^{\alpha + \beta - 1/p}, \qquad (1.15)$$

and for any ball U such that $B \subset U$ with $r_U \leq 2r_B$, and any $v \in U$,

$$|m_U(b) - m_B(b)| \left| \int_{\mathcal{X} \setminus 2U} K_{\alpha}(v, y) f(y) d\mu(y) \right| \le C ||f||_{L^p(\mu)} ||b||_{Lip_{\beta}(\mu)} [\lambda(c_B, r_B)]^{\alpha + \beta - 1/p}.$$
(1.16)

§2 Preliminary lemma

To prove our theorems we need the following lemma, which is a little different from those in [10], but it can easily seen that the lemma is still valid.

Lemma 2.1. For a function $f \in L^1_{loc}(\mu)$, the conditions (A), (B), and (C) below, are equivalent.

(A) There exist some constant C_1 and a collection of numbers of f_B , one for each B, such that these two properties hold: for any $B = B(c_B, r_B)$

$$\frac{1}{\mu(6B)} \int_{B} |f(x) - f_B| d\mu(x) \le C_1 \lambda(c_B, r_B)^{\beta},$$
(2.1)

and for any ball U such that $B \subset U$ and $r_U \leq 2r_B$, $|f_B - f_U| \leq C_1 \lambda (c_B)$

$$|B - f_U| \le C_1 \lambda (c_B, r_B)^{\beta};$$
(2.2)

(**B**) There is a constant C_2 such that

$$|f(x) - f(y)| \le C_2 \lambda(x, d(x, y))^{\beta}, \qquad (2.3)$$

for μ -almost every x and y in the support of μ ;

(C) For any given $p, 1 \leq p \leq \infty$, there is a constant C(p), such that for every ball $B = B(c_B, r_B)$, we have

$$\left(\frac{1}{\mu(B)}\int_{B}|f(x)-m_{B}(f)|^{p}d\mu(x)\right)^{\frac{1}{p}} \leq C(p)\lambda(c_{B},r_{B})^{\beta},$$
(2.4)

where $m_B(f) = \frac{1}{\mu(B)} \int_B f(y) d\mu(y)$ and also for any ball U such that $B \subset U$ and $r_U \leq 2r_B$,

$$|m_B(f) - m_U(f)| \le C(p)\lambda(c_B, r_B)^{\beta}, \qquad (2.5)$$

In addition, the quantities: inf C_1 , inf C_2 , and inf C(p) with a fixed p are equivalent.

§3 Proofs of Theorem 1.7 and Theorem 1.8

Proof of Theorem 1.7. For any ball $B = B(c_B, r_B)$ and $U = U(c_U, r_U)$ such that $B \subset U$ satisfying $r_U \leq 2r_B$. Let

$$a_B = m_B[T_{\alpha,b}(f\chi_{\mathcal{X}\setminus\frac{6}{5}B})],$$

and

$$a_U = m_U[T_{\alpha,b}(f\chi_{\mathcal{X}\setminus\frac{6}{5}U})].$$

By Lemma 2.1, we need to show that there exists a constant C > 0 such that

$$\frac{1}{\mu(6B)} \int_{B} |T_{\alpha,b}(f)(x) - a_B| d\mu(x) \le C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^p(\mu)} \lambda(c_B, r_B)^{\alpha + \beta - 1/p}$$
(3.1)

and

$$|a_B - a_U| \le C ||b||_{Lip_\beta(\mu)} ||f||_{L^p(\mu)} \lambda(c_B, r_B)^{\alpha + \beta - 1/p}.$$
(3.2)

Decompose $f = f_1 + f_2$, where $f_1 = f\chi_{\frac{6}{5}B}$ and $f_2 = f - f_1$. Then

$$\begin{aligned} &\frac{1}{\mu(6B)} \int_{B} |T_{\alpha,b}(f)(x) - a_{B}| d\mu(x) \\ &\leq & \frac{1}{\mu(6B)} \int_{B} |I_{\alpha,b}(f_{1})(x)| d\mu(x) + \frac{1}{\mu(6B)} \int_{B} |T_{\alpha,b}(f_{2})(x) - a_{B}| d\mu(x) \\ &:= & \mathbf{I}_{1} + \mathbf{I}_{2}. \end{aligned}$$

Taking $1 < p_1 < 1/(\beta + \alpha) < p$, and q_1 satisfying the condition of $1/q_1 = 1/p_1 - \beta - \alpha$. From **Theorem 1.5** and Hölder inequality, we have

$$\begin{split} \mathbf{I}_{1} &\leq \frac{1}{\mu(6B)} \left[\int_{B} |I_{\alpha,b}(f_{1})(x)|^{q_{1}} d\mu(x) \right]^{1/q_{1}} \mu(B)^{1-1/q_{1}} \\ &\leq C \|b\|_{Lip_{\beta}(\mu)} \frac{1}{\mu(6B)} \left[\int_{\frac{6}{5}B} |f(x)|^{p_{1}} d\mu(x) \right]^{1/p_{1}} \mu(B)^{1-1/q_{1}} \\ &\leq C \|b\|_{Lip_{\beta}(\mu)} \frac{1}{\mu(6B)} \left[\int_{\frac{6}{5}B} |f(x)|^{p} d\mu(x) \right]^{1/p} \mu(\frac{6}{5}B)^{1/p_{1}-1/p} \mu(B)^{1-1/q_{1}} \\ &\leq C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} \lambda(c_{B}, \frac{6}{5}r_{B})^{\alpha+\beta-1/p} \\ &\leq C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} \lambda(c_{B}, r_{B})^{\alpha+\beta-1/p}. \end{split}$$

To estimate I_2 , using the Hölder's inequality, we obtain

$$\begin{aligned} &|T_{\alpha,b}(f_{2})(x) - T_{\alpha,b}(f_{2})(y)| \\ &= \left| \int_{\mathcal{X} \setminus \frac{6}{5}B} \left[(b(x) - b(z))K_{\alpha}(x,z) - (b(y) - b(z))K_{\alpha}(y,z) \right] f(z)dz \right| \\ &\leq \int_{\mathcal{X} \setminus \frac{6}{5}B} |b(x) - b(z)||K_{\alpha}(x,z) - K_{\alpha}(y,z)||f(z)|dz \\ &+ \int_{\mathcal{X} \setminus \frac{6}{5}B} |(b(x) - b(y))||K_{\alpha}(y,z)||f(z)|dz \\ &:= I_{2}^{(1)} + I_{2}^{(2)}. \end{aligned}$$

For
$$I_{2}^{(1)}$$
, by $x, y \in B$, we obtain $d(x, y) \leq r_B$ and $d(x, c_B) \leq r_B$, and $1/p - \alpha - \beta + \delta > 0$. Then
 $I_{2}^{(1)} \leq C \|b\|_{Lip_{\beta}} \int_{X \setminus \frac{6}{9} B} [\lambda(x, d(x, z))]^{\beta} \frac{\lambda(x, d(x, y))^{\delta}}{[\lambda(x, d(x, z))]^{1-\alpha+\beta}} |f(z)| dz$
 $= C \|b\|_{Lip_{\beta}(\mu)} [\lambda(x, d(x, y))]^{\delta} \int_{X \setminus \frac{6}{9} B} \overline{[\lambda(x, d(x, z))]^{1-\alpha-\beta+\delta}} |f(z)| dz$
 $\leq C \|b\|_{Lip_{\beta}(\mu)} [\lambda(x, r_B)]^{\delta} \|f\|_{L^{p}(\mu)} \left(\sum_{k=1}^{\infty} \int_{2^{k} \frac{6}{9} B \setminus 2^{k-1} \frac{6}{9} B} \frac{1}{[\lambda(x, d(x, z))]^{(1-\alpha-\beta+\delta)p'}} d\mu(z) \right)^{1/p'}$
 $\leq C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} [\lambda(x, r_B)]^{\delta} \left(\sum_{k=1}^{\infty} \frac{\mu(B(x, 2^{k} \frac{6}{5} r_B))}{[\lambda(x, 2^{k-1} \frac{6}{5} r_B)]^{(1-\alpha-\beta+\delta)p'}} \right)^{1/p'}$
 $\leq C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} [\lambda(x, r_B)]^{\delta} \left(\sum_{k=1}^{\infty} [\lambda(x, 2^{k-1} \frac{6}{5} r_B)]^{(1-\alpha-\beta+\delta)p'} \right)^{1/p'}$
 $\leq C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} [\lambda(x, r_B)]^{\delta} \left(\sum_{k=1}^{\infty} \frac{1}{[C(2^{k})]^{(1-\alpha-\beta+\delta)p'-1}} \right)^{1/p'} [\lambda(x, r_B)]^{\alpha+\beta-\delta-1/p}$
 $\leq C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} [\lambda(x, r_B)]^{\alpha+\beta-1/p}$.
For $I_{2}^{(2)}$, by $1/p > \alpha$, we obtain
 $I_{2}^{(2)} \leq C \|b\|_{Lip_{\beta}} \int_{X \setminus \frac{6}{9} B} [\lambda(x, d(x, y))]^{\beta} \frac{1}{[\lambda(x, d(x, z))]^{1-\alpha}} |f(z)| dz$
 $\leq C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} [\lambda(x, r_B)]^{\alpha+\beta-1/p}$.
For $I_{2}^{(2)}$, by $1/p > \alpha$, we obtain
 $I_{2}^{(2)} \leq C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} [\lambda(x, r_B)]^{\beta} \left(\sum_{k=1}^{\infty} \frac{1}{[C(2^{k})]^{(1-\alpha)p'-1}} \right)^{1/p'} [\lambda(x, r_B)]^{\alpha-1/p}$
 $\leq C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} [\lambda(x, r_B)]^{\beta} (\sum_{k=1}^{\infty} \frac{1}{[C(2^{k})]^{(1-\alpha)p'-1}} \int^{1/p'} [\lambda(x, r_B)]^{\alpha-1/p}$
 $\leq C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} [\lambda(x, r_B)]^{\alpha+\beta-1/p}$.
Then
 $I_{2} = \frac{1}{\mu(GB)} \int_{B} |I_{\alpha,b}(f_{2})(x) - a_{Q}|d\mu(x)$
 $\leq \frac{1}{\mu(GB)} \int_{B} |I_{\alpha,b}(f_{2})(x) - I_{\alpha,b}(f_{2})(y)|d\mu(y)d\mu(x)$

$$\begin{array}{l} & = & \mu(6B) \int_{B} \mu(B) \int_{B} |f^{\alpha, 0}(f^{2})(w) - f^{\alpha, 0}(f^{2})(w) \\ \\ & \leq & C \|b\|_{Lip_{\beta}} \|f\|_{L^{p}} [\lambda(c_{B}, r_{B})]^{\alpha + \beta - 1/p}. \end{array}$$

The estimates for I_1 and I_2 yield the estimate (3.1).

Now we turn to estimate (3.2). For $x \in B$, $y \in U$ and $B \subset U$, we write

$$\begin{aligned} |a_{B} - a_{U}| &= \left| \int_{\mathcal{X} \setminus \frac{6}{5}U} [b(x) - b(z)] K_{\alpha}(x, z) f(z) d\mu(z) \right. \\ &+ \int_{\frac{6}{5}U \setminus \frac{6}{5}B} [b(x) - b(z)] K_{\alpha}(x, z) f(z) d\mu(z) \\ &- \int_{\mathcal{X} \setminus \frac{6}{5}U} [b(y) - b(z)] K_{\alpha}(y, z) f(z) d\mu(z) \right| \\ &\leq \left. \int_{\mathcal{X} \setminus \frac{6}{5}U} \left| [b(x) - b(z)] K_{\alpha}(x, z) - [b(y) - b(z)] K_{\alpha}(y, z) \right| |f(z)| d\mu(z) \\ &+ \int_{\frac{6}{5}R \setminus \frac{6}{5}B} |b(x) - b(z)| |K_{\alpha}(x, z)| |f(z)| d\mu(z) \\ &:= II_{1} + II_{2}. \end{aligned}$$

Arguing similarly to that in the estimate of I_2 , we obtain that

 $II_1 \le C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^p(\mu)} [\lambda(c_B, r_B)]^{\alpha + \beta - 1/p}.$

Now we give the estimate for II₂. Noting that $Q \subset U$ and $r_U \leq 2r_B$, we obtain

$$\begin{aligned} \text{II}_{2} &\leq C \|b\|_{Lip_{\beta}} \int_{\frac{6}{5}U \setminus \frac{6}{5}B} \frac{|\lambda(x, d(x, z))|^{\beta}}{[\lambda(x, d(x, z))]^{1-\alpha}} |f(z)| d\mu(z) \\ &\leq C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} \left(\int_{\frac{6}{5}R \setminus \frac{6}{5}Q} \frac{1}{[\lambda(x, d(x, z))]^{(1-\alpha-\beta)p'}} d\mu(z) \right)^{1/p'} \\ &\leq C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} [\lambda(c_{B}, r_{B})]^{\alpha+\beta-1/p}. \end{aligned}$$

Combining the estimates for II_1 and II_2 yield the estimate (3.2). This completes the proof of **Theorem1.7**.

The aim of the following is to prove **Theorem 1.8**, it should be pointed out that the proof of **Theorem 1.7** and **Theorem 1.8** have little different.

Proof of Theorem 1.8. By Lemma 2.1 and Theorem 1.7, it suffices to show

$$|a_B - a_U| \le CK_{B,U} ||b||_{Lip_\beta(\mu)} ||f||_{L^{1/(\alpha+\beta)}(\mu)},$$
(3.3)

where $B \subset U$,

$$a_B = m_B[T_{\alpha,b}(f\chi_{\mathcal{X}\setminus\frac{6}{5}B})],$$

and

$$a_U = m_U[T_{\alpha,b}(f\chi_{\mathcal{X}\setminus\frac{6}{\varepsilon}U})]$$

Now we verify (3.3). Let N be the first integer k such that $U \subset 6^k B$. We denote $\overline{B} = 6^{N+1} B$.

$$\begin{aligned} |a_B - a_U| &= |m_B[T_{\alpha,b}(f\chi_{\mathcal{X}\setminus \frac{6}{5}B})] - m_U[T_{\alpha,b}(f\chi_{\mathcal{X}\setminus \frac{6}{5}U})]| \\ &\leq |m_B[T_{\alpha,b}(f\chi_{\mathcal{X}\setminus \overline{B}})] - m_U[T_{\alpha,b}(f\chi_{\mathcal{X}\setminus \overline{B}})]| \\ &+ |m_B[T_{\alpha,b}(f\chi_{\overline{B}\setminus \frac{6}{5}B})]| + |m_U[T_{\alpha,b}(f\chi_{\overline{B}\setminus \frac{6}{5}U})]| \\ &:= \mathrm{III}_1 + \mathrm{III}_2 + \mathrm{III}_3. \end{aligned}$$

Arguing similarly to that in the estimate of I_2 , we obtain that

 $III_1 \le C \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^p(\mu)}.$

Now we deal with the term III₂. For any
$$x \in B$$
,

$$|T_{\alpha,b}(f\chi_{\bar{B}\setminus \frac{6}{5}B})(x)| \leq \int_{\bar{B}\setminus \frac{6}{5}B} \frac{|f(y)(b(x) - b(y))|}{[\lambda(x, d(x, y))]^{1-\alpha}} d\mu(y)$$

$$\leq \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{p}(\mu)} \left(\int_{\bar{B}\setminus \frac{6}{5}B} \frac{1}{[\lambda(x, d(x, y))]^{(1-\alpha-\beta)p'}} d\mu(y)\right)^{1/p}$$

$$\leq CK_{\frac{6}{5}B,\bar{B}} \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{1/(\alpha+\beta)}(\mu)}.$$
The formula of CK with the constraint of the second seco

Therefore, III₂ $\leq CK_{B,U} \|b\|_{Lip_{\beta}(\mu)} \|f\|_{L^{1/(\alpha+\beta)}(\mu)}$.

Similarly, since $r_{\bar{B}} \approx r_U$, we have

 $|T_{\alpha,b}(f\chi_{\bar{B}\setminus\frac{6}{5}U})(x)| \le C ||b||_{L^{1/(\alpha+\beta)}} ||f||_{L^{1/(\alpha+\beta)}}.$

To sum up, we have

$$|a_B - a_U| \le CK_{B,U} ||b||_{Lip_\beta(\mu)} ||f||_{L^{1/(\alpha+\beta)}(\mu)},$$
(3.3)

this complete the proof of **Theorem 1.8**.

§4 Proof of Theorem 1.9

Now we consider the endpoint case that $1/\alpha \leq p \leq \infty$. The basic idea is form [6].

Proof of Theorem 1.9. The proof of the above Theorem is divided into the following two steps.

(i) Let us first prove $\frac{1}{2}$

$$\frac{1}{\mu(B)} \int_{B} |T_{\alpha,b}(f)(x) - m_B(T_{\alpha,b}(f))| d\mu(x) \le C ||f||_{L^p(\mu)} [\lambda(c_B, r_B)]^{\alpha - 1/p}$$
(4.1)

is equivalent to (1.15), for any bounded function f with compact support and any ball B.

Decompose
$$f = f_1 + f_2$$
, where $f_1 = f\chi_{2B}$ and $f_2 = f - f_1$. Then for $x \in B$,
 $T_{\alpha,b}(f)(x) - m_B(T_{\alpha,b}(f))$
 $= T_{\alpha,b}(f_1)(x) - m_B(T_{\alpha,b}(f_1)) + T_{\alpha,b}(f_2)(x) - \frac{1}{\mu(B)} \int_B T_{\alpha,b}(f_2)(z)d\mu(z)$
 $= T_{\alpha,b}(f_1)(x) - m_B(T_{\alpha,b}(f_1)) + [b(x) - m_B(b)]T_{\alpha}(f_2)(x) - T_{\alpha}([b - m_B(b)]f_2)(x)$
 $-\frac{1}{\mu(B)} \int_B [b(z) - m_B(b)]T_{\alpha}(f_2)(z)d\mu(z) + \frac{1}{\mu(B)} \int_B T_{\alpha}([b - m_B(b)]f_2)(z)d\mu(z).$
 $z, u \in Q,$

Let u

$$\begin{aligned} T_{\alpha,b}(f)(x) &- m_B(T_{\alpha,b}(f)) \\ &= T_{\alpha,b}(f_1)(x) - m_B(T_{\alpha,b}(f_1)) + [b(x) - m_B(b)] \Big[T_{\alpha}(f_2)(x) - T_{\alpha}(f_2)(u) \Big] \\ &+ [b(x) - m_B(b)] T_{\alpha}(f_2)(u) - \frac{1}{\mu(B)} \int_B [b(z) - m_Q(b)] \Big[T_{\alpha}(f_2)(z) - T_{\alpha}(f_2)(u) \Big] d\mu(z) \\ &+ \frac{1}{\mu(B)} \int_B \Big[T_{\alpha}([b - m_B(b)]f_2)(z) - T_{\alpha}([b - m_B(b)]f_2)(x) \Big] d\mu(z). \end{aligned}$$

Now, if we let

$$\begin{aligned} \eta_1(x) &= T_{\alpha,b}(f_1)(x) \\ \eta_2(x,u) &= [b(x) - m_B(b)] \left[T_\alpha(f_2)(x) - T_\alpha(f_2)(u) \right] \\ \eta_3(x,u) &= T_\alpha([b - m_B(b)]f_2)(u) - T_\alpha([b - m_B(b)]f_2)(x). \end{aligned}$$

and

 $\eta_4(x, u) = [b(x) - m_B(b)]T_{\alpha}(f_2)(u),$

we have

 $T_{\alpha,b}(f)(x) - m_B(T_{\alpha,b}(f)) = \eta_1(x) - m_B(\eta_1) + \eta_2(x,u) + \eta_4(x,u) - m_B[\eta_2(\cdot,u)] + m_B[\eta_3(\cdot,u)].$ We claim that the following estimates hold:

$$\frac{1}{\mu(B)} \int_{B} |\eta_{1}(x) - m_{B}(\eta_{1})| d\mu(x) \le C \|b\|_{Lip_{\beta}} \|f\|_{L^{p}(\mu)} [\lambda(c_{B}, r_{B})]^{\beta},$$
(4.2)

$$\frac{1}{\mu(B)} \int_{B} |\eta_{2}(x,u)| d\mu(x) \leq C \|b\|_{L^{p}\beta} \|f\|_{L^{p}(\mu)} [\lambda(c_{B}, r_{B})]^{\beta}, \tag{4.3}$$

$$\frac{1}{\mu(B)} \int_{B} |\eta_{3}(x,u)| d\mu(x) \leq C \|b\|_{Lip_{\beta}} \|f\|_{L^{p}(\mu)} [\lambda(c_{B}, r_{B})]^{\beta}.$$
By **Theorem 1.7** with $1/(\alpha + \beta) < p_{1} < 1/\alpha$, then $f_{1} \in L^{p_{2}}$, it follows that
$$(4.4)$$

$$\frac{1}{\mu(B)} \int_{B} |\eta_{1}(x) - m_{B}(\eta_{1})| d\mu(x) \leq C \|b\|_{Lip_{\beta}} \|f_{1}\|_{L^{p_{1}}(\mu)} [\lambda(c_{B}, r_{B})]^{\alpha+\beta-1/p_{1}}$$
$$\leq C \|b\|_{Lip_{\beta}} \|f\|_{L^{p}(\mu)} [\lambda(c_{B}, r_{B})]^{\alpha+\beta-1/p}.$$

For (4.3), using the Hölder inequality, we have

$$\begin{aligned} &\frac{1}{\mu(B)} \int_{B} |\eta_{2}(x,u)| d\mu(x) \\ &\leq \quad \frac{1}{\mu(B)} \int_{B} |b(x) - m_{B}(b)| \int_{\mathcal{X} \setminus 2B} |K_{\alpha}(x,z) - K_{\alpha}(u,z)| |f(z)| d\mu(z) d\mu(x) \\ &\leq \quad C \|f\|_{L^{p}(\mu)} \frac{1}{\mu(B)} \int_{B} |b(x) - m_{B}(b)| \\ &\quad \times \Big\{ \sum_{k=1}^{\infty} \int_{2^{k+1}B \setminus 2^{k}B} \frac{[\lambda(x,d(x,u))]^{\delta p'}}{[\lambda(x,d(x,z))]^{(1-\alpha+\delta)p'}} d\mu(z) \Big\}^{1/p'} d\mu(x) \\ &\leq \quad C \|f\|_{L^{p}(\mu)} \|b\|_{Lip_{\beta}(\mu)} [\lambda(c_{B},r_{B})]^{\alpha+\beta-1/p}. \end{aligned}$$

Finally we give the proof of (4.4).

$$\begin{aligned} & \left| T_{\alpha}([b - m_{B}(b)]f_{2})(u) - T_{\alpha}([b - m_{B}(b)]f_{2})(x) \right| \\ & \leq \int_{\mathcal{X}\setminus 2B} |K_{\alpha}(u, z) - K_{\alpha}(x, z)| |b(z) - m_{B}(b)| |f(z)| d\mu(z) \\ & \leq C \|f\|_{L^{p}(\mu)} \bigg\{ \sum_{k=1}^{\infty} \int_{2^{k+1}B\setminus 2^{k}B} \frac{[\lambda(x, d(x, u))]^{\delta p'}}{[\lambda(x, d(x, z))]^{(1-\alpha+\delta)p'}} |b(z) - m_{B}(b)|^{p'} d\mu(z) \bigg\}^{1/p'} \\ & \leq C \|f\|_{L^{p}(\mu)} \|b\|_{Lip_{\beta}(\mu)} [\lambda(c_{B}, r_{B})]^{\alpha+\beta-1/p}. \end{aligned}$$

$$\begin{aligned} \text{From this, it follows that} & \frac{1}{\mu(B)} \int_{B} |\eta_{3}(x,u)| d\mu_{x} \leq C \|f\|_{L^{p}(\mu)} \|b\|_{Lip_{\beta}(\mu)} [\lambda(c_{B},r_{B})]^{\alpha+\beta-1/p}. \\ \text{Assume (4.1) holds and the estimates (4.2), (4.3) and (4.4), we obtain} \\ & \frac{1}{\mu(B)} \int_{B} |\eta_{4}(x,u)| d\mu(x) \\ &= \frac{1}{\mu(B)} \int_{B} \left| T_{\alpha,b}(f)(x) - m_{B}[T_{\alpha,b}f] - (\eta_{1}(x) - m_{B}(\eta_{1})) - \eta_{2}(x,u) + m_{B}(\eta_{2}(\cdot,u)) - m_{B}(\eta_{3}(\cdot,u)) \right| d\mu(x) \\ &\leq \frac{1}{\mu(B)} \int_{B} |T_{\alpha,b}(f)(x) - m_{B}[T_{\alpha,b}f]| d\mu(x) + \frac{1}{\mu(B)} \int_{B} |\eta_{1}(x) - m_{B}(\eta_{1})| d\mu(x) \\ &+ \frac{2}{\mu(B)} \int_{B} |\eta_{2}(x,u)| d\mu(x) + \frac{1}{\mu(B)} \int_{B} |\eta_{3}(x,u)| d\mu(x) \\ &\leq C \|f\|_{L^{p}(\mu)} \|b\|_{Lip_{\beta}(\mu)} [\lambda(c_{B},r_{B})]^{\alpha+\beta-1/p}, \end{aligned}$$

that is, for any B and $u \in B$, (1.15) holds. Conversely, (1.15) implies that (4.1) holds. (ii)Now let us verify that

$$|m_U[T_{\alpha,b}f] - m_B[T_{\alpha,b}f]| \le C ||f||_{L^p(\mu)} ||b||_{Lip_\beta(\mu)} [\lambda(c_B, r_B)]^{\alpha+\beta-1/p}$$
(4.5)
to (1.16) We write $f_{\alpha} = f_{\alpha,\alpha}$ and $f_{\alpha} = f_{\alpha}$ for then

is equivalent to (1.16). We write $f_1 = f\chi_{2U}$ and $f_2 = f - f_1$, then $m_1(T_1(f_1)) = m_2(T_2(f_1))$

$$m_B(T_{\alpha,b}(f)) - m_U(T_{\alpha,b}(f)) = \left[m_B[T_{\alpha,b}(f_1)] - m_U[T_{\alpha,b}(f_1)] \right] + \left[m_B[T_{\alpha,b}(f_2)] - m_U[T_{\alpha,b}(f_2)] \right]$$

:= IV₁ + IV₂.

From **Theorem 1.7** with $1/(\alpha + \beta) < p_1 < 1/\alpha$, it follows that

$$|\mathrm{IV}_1| \le C ||f_1||_{L^{p_1}} [\lambda(c_B, r_B)]^{\alpha + \beta - 1/p_1} \le C ||f||_{L^p} [\lambda(c_B, r_B)]^{\alpha + \beta - 1/p}.$$

To estimates IV₂, for any $x \in B$ and $v \in U$, we write

$$T_{\alpha,b}(f)(x) - m_U(T_{\alpha,b}(f)) = \eta'_2(x,v) + \eta'_4(x,v) - m_U[\eta'_2(\cdot,v)] + m_U[\eta'_3(\cdot,v)],$$

where

$$\eta_2'(x,v) = [b(x) - m_U(b)] \left[T_\alpha(f_2)(x) - T_\alpha(f_2)(v) \right]$$

$$\eta_3'(x,v) = T_\alpha([b - m_U(b)]f_2)(v) - T_\alpha([b - m_U(b)]f_2)(x).$$

and

$$\eta'_4(x,v) = [b(x) - m_U(b)]T_{\alpha}(f_2)(v),$$

Some computations similar above, implies that

$$\begin{split} m_{B}[\eta'_{2}(x,v)] &\leq C \|f\|_{L^{p}(\mu)} \|b\|_{Lip_{\beta}(\mu)} [\lambda(c_{B},r_{B})]^{\alpha+\beta-1/p}, \\ m_{U}[\eta'_{2}(x,v)] &\leq C \|f\|_{L^{p}(\mu)} \|b\|_{Lip_{\beta}(\mu)} [\lambda(c_{U},r_{U})]^{\alpha+\beta-1/p} \\ &\leq C \|f\|_{L^{p}(\mu)} \|b\|_{Lip_{\beta}(\mu)} [\lambda(c_{B},2r_{B})]^{\alpha+\beta-1/p}, \\ &\leq C \|f\|_{L^{p}(\mu)} \|b\|_{Lip_{\beta}(\mu)} [\lambda(c_{B},r_{B})]^{\alpha+\beta-1/p}, \\ m_{U}[\eta'_{3}(x,v)] &\leq C \|f\|_{L^{p}(\mu)} \|b\|_{Lip_{\beta}(\mu)} [\lambda(c_{B},r_{B})]^{\alpha+\beta-1/p}. \end{split}$$

An argument similar to the proof of the equivalence between (4.1) and (1.15), we obtain (4.5) is equivalent to (1.16). By Lemma 2.1, we complete the proof of theorem.

References

- T A Bui. Boundedness of maximal operators and maximal commutators on non-homogeneous spaces, CMA Proceedings of AMSI International Conference on Harmonic Analysis and Applications (Macquarie University), 2011, 45: 22-36.
- [2] T A Bui, X T Duong. Hardy spaces, regularized BMO and the boundedness of Calderón-Zygmund operators on non-homogeneous spaces, Journal of Geometric Analysis, 2013, 23(2): 895-932.
- [3] X Fu, D Yang, W Yuan. Generalized fractional integrals and their commutators over nonhomogeneous spaces, Taiwanese Journal of Mathematics, 2014, 18(2): 201-577.
- [4] T Hytönen. A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa, Publicacions Matem'atiques, 2010, 54(2): 485-504.
- [5] T Hytönen, S Liu, Da Yang, Do Yang. Boundedness of Calderón-Zygmund operators on nonhomogeneous metric measure spaces, Canadian Journal of Mathematics, 2012, 64(4): 892-923.
- [6] Y Meng, D Yang. Boundedness of commutators with Lipschitz functions in non-homogeneous spaces, Taiwanese Journal of Mathematics, 2006, 10(6): 1443-1464.
- [7] X Tolsa. BMO, H¹, and Calderón-Zygmund operators for non doubling measures, Mathematische Annalen, 2001, 319(1): 9-149.
- [8] X Tolsa. Littlewood-Paley theory and the T(1) theorem with non-doubling measures, Advances in Mathematics, 2001, 164(1): 57-116.
- [9] X Tolsa. The space H¹ for nondoubling measures in terms of a grand maximal operator, Transactions of the American Mathematical Society, 2003, 355(1): 315-348.
- [10] J Zhou, D Wang. Lipschitz spaces and Fractional integral operators associated to non-homogeneous metric measure spaces, Abstract and Applied Analysis, 2014, 2014(6): 1-8.
- *School of Mathematics and Statistics, Anhui Normal University, Wuhu 241000, China. Email: Wangdh1990@126.com
- College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China. Email: zhoujiangshuxue@126.com
- College of Science and Information Engineering, Jiaxing University, Jiaxing 314001, China. Email: blma@mail.zjxu.edu.cn