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Lipschitz estimates for commutator of fractional integral

operators on non-homogeneous metric measure spaces

WANG Ding-huai∗ ZHOU Jiang MA Bo-lin

Abstract. In this paper, the authors establish the (Lp(µ), Lq(µ))-type estimate for fractional

commutator generated by fractional integral operators Tα with Lipschitz functions (b ∈ Lipβ(µ)),

where 1 < p < 1/(α+β) and 1/q = 1/p−(α+β), and obtain their weak (L1(µ), L1/(1−α−β)(µ))-

type. Moreover, the authors also consider the boundedness in the case that 1/(α+β) < p < 1/α,

1/α ≤ p ≤ ∞ and the endpoint cases, namely, p = 1/(α+ β).

§1 Introduction and Notation

It is well known that the doubling condition is a key assumption in the analysis on spaces

of homogeneous type. However, some theories have been proved still valid with non-doubling

measure (see[6-8]). In 2010, Hytönen [4] introdeced a new class of metric measure spaces

satisfying both the so-called geometrically doubling and the upper doubling conditions (see the

definition below), which are called non-homogeneous spaces. Recently, many classical results

have been proved still valid if the underlying spaces are replaced by the non-homogeneous

spaces, for example, the theory of Carlderón-Zygmund operators(see [1,3,6]).

In 2014, J. Zhou and D. Wang [10] established the definition of fractional operator and the

definition of Lipschitz space on non-homogeneous metric measure spaces and they also establish

some equivalent characterizations for the Lipschitz spaces. Motivated by [10], we consider the

endpoint estimates for commutator generated by fractional integral operators with Lipschitz

functions.

In this paper, we will prove the (Lp(µ), Lq(µ)) boundedness of commutator generated by

fractional integral operator Tα (see the definition below) with Lipschitz functions b ∈ Lipβ(µ),

where 1 < p < 1/(α+ β) and 1/q = 1/p− (α+ β), and their weak (L1(µ), L1/(1−α−β)(µ)). We

also consider the boundedness in the case that 1/(α + β) < p < 1/α, 1/α ≤ p ≤ ∞ and the

endpoint case of p = 1/(α+ β).

Received: 2014-09-03. Revised: 2019-12-30.
MR Subject Classification: 47B47, 42B25.
Keywords: Non-homogeneous space, Fractional integral, Lipschitz function, Commutator, Endpoint esti-

mate.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-020-3319-8.
Supported by the National Natural Science Foundation of China (Grant No.11661075).
∗Corresponding author.



254 Appl. Math. J. Chinese Univ. Vol. 35, No. 3

To state the main results of this paper, we first recall some necessary notions and remarks.

Firstly, we make some conventions on notation. Throughout the whole paper, C stands for a

positive constant, which is independent of the main parameters, but it may vary from line to

line.

Definition 1.1. [4] A metric space (X , d, µ) is said to be geometrically doubling if there exists

some N0 ∈ N such that, for any ball B(x, r) ⊂ X , there exist a finite ball covering{B(xi, r/2)}i
of B(x, r) such that the cardinality of this covering is at most N0.

Definition 1.2. [4] A metric measure space (X , d, µ) is said to be upper doubling if µ is a

Borel measure on X and there exist a dominating function λ : X × (0,∞) → (0,∞) and a

positive constant cλ such that, for each x ∈ X , r → λ(x, r) is non-decreasing and

µ(B(x, r)) ≤ λ(x, r) ≤ cλλ(x, r/2) for all x ∈ X , r > 0. (1.1)

A metric measure space (X , d, µ) is called a non-homogeneous metric measure space if

(X , d, µ) is geometrically doubling and (X , d, µ) is upper doubling.

Remark 1.1. Let (X , d, µ) be upper doubling with λ being the dominating function on X×(0,∞)

as in Definition 1.3. It was proved in [2] that there exists another dominating function λ̃ such

that λ̃ ≤ λ and, for all x, y ∈ X with d(x, y) ≤ r,

λ̃(x, r) ≤ Cλ̃λ̃(y, r). (1.2)

Thus, in this paper, we always suppose that λ satisfies (1.2).

Definition 1.3. [4] Let α, βα ∈ (1,∞). A ball B ⊂ X is called (α, β)-doubling if µ(αB) ≤
βαµ(B).

As stated in Lemma of [4], there exist a plenty of doubling balls with small radii and with

large radii. In the rest of the paper, unless α and βα are specified otherwise, by an (α, βα)-

doubling ball we mean a (6, β6)-doubling with a fixed number β6 > max{C3log26
λ , 6n}, where

n = log2N0 be viewed as a geometric dimension of the spaces.

Definition 1.4. [3] Let ϵ ∈ (0,∞). A dominating function λ satisfies the ϵ-weak reverse

doubling condition if, for all r ∈ (0, 2diam(X )) and a ∈ (1, 2diam(X )/r), there exists a number

C(a) ∈ [1,∞) depending only on a and X , such that, for all x ∈ X ,

λ(x, ar) ≥ C(a)λ(x, r) (1.3)

and, moreover,
∞∑
k=1

1

[C(ak)]ϵ
< ∞. (1.4)

Remark 1.2. (i) It is easy to see that, if ϵ1 < ϵ2 and λ satisfies the ϵ1-weak reverse doubling

condition, then λ also satisfies the ϵ2-weak reverse doubling condition.

(ii) Assume that diam(X ) = ∞. For any fixed x ∈ X , we know that

lim
r→0

λ(x, r) = 0, lim
r→∞

λ(x, r) = ∞. (1.5)

(iii) It is easy to see that the ϵ-weak reverse doubling condition is much weaker than the

assumption introduced by Bui and Duong in [2, Subsection 7.3]: there exists m ∈ (0,∞) such

that, for all x ∈ X and a, r ∈ (0,∞), λ(x, ar) = amλ(x, r).
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Definition 1.5. [4] For any two balls B ⊂ S, define

KB,S = 1 +

∫
2S\B

1

λ(cB , d(x, cB))
dµ(x),

where cB is the center of the ball B.

Definition 1.6. [4] Let ρ ∈ (1,∞). A function f ∈ L1
loc(µ) is said to be in the space RBMO(µ)

if there exist a positive constant C, and for any ball B ⊂ X , a number fB such that
1

µ(ρB)

∫
B

|f(x)− fB |dµ(x) ≤ C, (1.6)

for any two balls B and B1 such that B ⊂ B1,

|fB − fB1 | ≤ CKB,B1 . (1.7)

The infimum of the positive constants C satisfying above two inequalities is defined to be

the RBMO(µ) norm of f and denoted by ∥f∥RBMO(µ).

From Lemma 4.6 of [4], it follows that the space RBMO(µ) is independent of ρ ∈ (1,∞).

In what follows, the definition of fractional integral operators and Lipschitz space are a little

different from those in [10], but it can easily be seen that the related results still valid.

Definition 1.7. [6] Let 0 < α < 1 and 0 < δ ≤ 1. A functionKα ∈ L1
loc(X×X\{(x, y) : x = y})

is said to be a fractional kernel of order α and regularity δ if it satisfies the following two

conditions:

(i) for all x, y ∈ X with x ̸= y,

|Kα(x, y)| ≤ C
1

[λ(x, d(x, y))]1−α
; (1.8)

(ii) for all x, x̃, y ∈ X with λ(x, d(x, y)) ≥ 2λ(x, d(x, x̃)),

|Kα(x, y)−Kα(x̃, y)|+ |Kα(y, x)−Kα(y, x̃)| ≤ C
[λ(x, d(x, x̃))]δ

[λ(x, d(x, y))]1−α+δ
. (1.9)

A linear operator Tα is called fractional integral operator with Kα satisfying (1.8) and (1.9),

for all f ∈ L∞
b (µ) and x /∈ suppf ,

Tαf(x) :=

∫
X
Kα(x, y)f(y)dµ(y). (1.10)

Definition 1.8. [10] Given β ∈ (0, 1], we say that the function f : X → C satisfies a Lipschitz

condition of order β provided

|f(x)− f(y)| ≤ C[λ(x, d(x, y))]β for every x, y ∈ X (1.11)

and the smallest constant in inequality (1.11) will be denoted by ∥f∥Lipβ(µ). If we identify two

functions whose difference is a constant, it follows that the linear space with the norm ∥·∥Lipβ(µ)

is a Banach space.

Remark 1.3. The Lipschitz condition can also be defined by

|f(x)− f(y)| ≤ C[λ(y, d(x, y))]β for every x, y ∈ X , (1.12)

by (1.2), it is easy to see that (1.11) and (1.12) are equivalent.
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Noting that b ∈ Lipβ(µ), we discuss the behavior of commutators Tα,b generated by fraction-

al integral operator Tα with Lipschitz function b in Lebesgue spaces. For µ-a.e. x ∈ supp(µ),

|Tα,b(f)(x)| ≤ C∥b∥Lip(β)Iα+β(|f |)(x), (1.13)

where Iβ is defined by

Iβ(f)(x) =

∫
X

f(y)

[λ(x, d(x, y))]1−β
dy.

From now on, we shall assume that µ(X ) = ∞.

Theorem 1.4. Let 1 ≤ p < 1
β and 1

q = 1
p − β. If λ satisfies the ϵ-weak reverse doubling

condition with ϵ ∈ (0,min{β, ( 1p − β)p′}), then

µ({x ∈ X : |Iβf(x)| > ν}) ≤
(
C∥f∥Lp(µ)

ν

)q

,

that is, Iβ is a bounded operator from Lp(µ) into the space Lq,∞(µ).

The proof of Theorem 1.4 is similar to the Theorem 1.13 of [6], we omit the details.

Theorem 1.5. For a measure µ, finite over balls and not having any atoms, condition

µ(B(cB , rB)) ≤ Cλ(cB , rB) is necessary for the Hardy-Littlewood-Sobolev theorem to hold.

Proof. Suppose that Iβ(f) is bounded from Lp(µ) to Lq(µ), where 1 < p < 1
β and 1

q = 1
p−β. Let

B = B(cB , rB), if µ(B) = 0, then µ(B(cB , rB)) ≤ Cλ(cB , rB) is trivially true. Let µ(B) ̸= 0.

For each x ∈ B, since λ satisfies (1.2), we have λ(x, rB) ≤ Cλλ(cB , rB), then

IβχB(x) =

∫
B

1

[λ(x, d(x, y))]1−β
dµ(y) ≥

∫
B

1

[λ(x, rB)]1−β
dµ(y) ≥ C

[λ(cB , rB)]1−β
µ(B).

Assume that Iβf is bounded from Lp(µ) to Lq(µ), then

C

[λ(cB , rB)]1−β
µ(B)1+

1
q ≤

(∫
B

|IβχB(x)|q
)1/q

≤ C∥χB∥Lp(µ) = Cµ(B)
1
p ,

so, we get

µ(B(cB , rB))
1+ 1

q−
1
p ≤ C[λ(cB , rB)]

1−β ,

that is, µ(B(cB , rB)) ≤ Cλ(cB , rB). A similar proofs if we assume Iβf is bounded from Lp(µ)

to Lq,∞(µ), where 1 ≤ p < 1
β and 1

q = 1
p − β.

From (1.13) and Theorem 1.4, it is easy to verify the following results.

Theorem 1.6. Let b ∈ Lipβ(µ). Suppose that 0 < α+ β < 1 and λ satisfy the ϵ-weak reverse

doubling condition with ϵ ∈ (0,min{α+ β, ( 1p − α− β)p′}), then
(i) for all bounded functions f with compact support,

∥Tα,b(f)∥Lq(µ) ≤ C∥b∥Lipβ(µ)∥f∥Lp(µ),

where 1 < p < 1/(α+ β) and 1/q = 1/p− α− β.

(ii) for all bounded functions f with compact support and all λ > 0,

µ

({
x ∈ Rd : |Tα,b(f)| > ν

})
≤ C∥b∥Lipβ(µ)

(∥f∥L1(µ)

ν

)1/(1−α−β)

.
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Using the above Theorem, we consider the case of p = 1/(α+ β), 1/(α+ β) < p < 1/α and

1/α ≤ p ≤ ∞, respectively. Now our main results can be stated as follows:

Theorem 1.7. Let b ∈ Lipβ(µ), 1/(β+α) < p < 1/α with 0 < α+β < 1 and 1/p−α−β+δ > 0.

If λ satisfy the ϵ-weak reverse doubling condition with ϵ ∈ (0,min{(1− α− β + δ)p′ − 1,

(1− α)p′ − 1}), then for all bounded functions f with compact support,

∥Tα,b(f)∥Lipα+β−1/p(µ) ≤ C∥b∥Lipβ(µ)∥f∥Lp(µ).

Theorem 1.8. Let b ∈ Lipβ(µ), 0 < α + β < 1. If λ satisfy the ϵ-weak reverse doubling

condition with ϵ ∈ (0,min{δ/(1−α−β), β/(1−α−β)}), then for all bounded functions f with

compact support,

∥Tα,b(f)∥RBMO(µ) ≤ C∥b∥Lipβ(µ)∥f∥L1/(β+α)(µ).

Theorem 1.9. Let b ∈ Lipβ(µ), 1/α ≤ p ≤ ∞. If λ satisfies the ϵ-weak reverse doubling

condition with ϵ ∈ (0,min{(1−α− β+ δ)p′ − 1, β/(1−α− β)}), then the following statements

are equivalent.

(1) For all bounded functions f with compact support,

∥Tα,b(f)∥Lipα+β−1/p(µ) ≤ C∥f∥Lp(µ)∥b∥Lipβ(µ); (1.14)

(2) For any ball B and u ∈ B,

1

µ(B)

∫
B

|b(x)−mQ(b)|dµ(x)
∣∣∣∣ ∫

X\2B
Kα(u, y)f(y)dµ(y)

∣∣∣∣
≤ C∥f∥Lp(µ)∥b∥Lipβ(µ)[λ(cB , rB)]

α+β−1/p, (1.15)

and for any ball U such that B ⊂ U with rU ≤ 2rB , and any v ∈ U ,

|mU (b)−mB(b)|
∣∣∣∣ ∫

X\2U
Kα(v, y)f(y)dµ(y)

∣∣∣∣ ≤ C∥f∥Lp(µ)∥b∥Lipβ(µ)[λ(cB , rB)]
α+β−1/p. (1.16)

§2 Preliminary lemma

To prove our theorems we need the following lemma, which is a little different from those

in [10], but it can easily seen that the lemma is still valid.

Lemma 2.1. For a function f ∈ L1
loc(µ), the conditions (A), (B), and (C) below, are

equivalent.

(A) There exist some constant C1 and a collection of numbers of fB , one for each B, such

that these two properties hold: for any B = B(cB, rB)

1

µ(6B)

∫
B

|f(x)− fB |dµ(x) ≤ C1λ(cB, rB)
β , (2.1)

and for any ball U such that B ⊂ U and rU ≤ 2rB ,

|fB − fU | ≤ C1λ(cB , rB)
β ; (2.2)

(B) There is a constant C2 such that

|f(x)− f(y)| ≤ C2λ(x, d(x, y))
β , (2.3)
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for µ-almost every x and y in the support of µ;

(C) For any given p, 1 ≤ p ≤ ∞, there is a constant C(p), such that for every ball

B = B(cB, rB), we have(
1

µ(B)

∫
B

|f(x)−mB(f)|pdµ(x)
) 1

p

≤ C(p)λ(cB, rB)
β , (2.4)

where mB(f) =
1

µ(B)

∫
B
f(y)dµ(y) and also for any ball U such that B ⊂ U and rU ≤ 2rB ,

|mB(f)−mU (f)| ≤ C(p)λ(cB , rB)
β , (2.5)

In addition, the quantities: inf C1, inf C2, and inf C(p) with a fixed p are equivalent.

§3 Proofs of Theorem 1.7 and Theorem 1.8

Proof of Theorem 1.7. For any ball B = B(cB , rB) and U = U(cU , rU ) such that B ⊂ U

satisfying rU ≤ 2rB . Let

aB = mB[Tα,b(fχX\ 6
5B

)],

and

aU = mU [Tα,b(fχX\ 6
5U

)].

By Lemma 2.1, we need to show that there exists a constant C > 0 such that
1

µ(6B)

∫
B

|Tα,b(f)(x)− aB |dµ(x) ≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)λ(cB , rB)
α+β−1/p (3.1)

and

|aB − aU | ≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)λ(cB , rB)
α+β−1/p. (3.2)

Decompose f = f1 + f2, where f1 = fχ 6
5B

and f2 = f − f1. Then

1

µ(6B)

∫
B

|Tα,b(f)(x)− aB|dµ(x)

≤ 1

µ(6B)

∫
B

|Iα,b(f1)(x)|dµ(x) +
1

µ(6B)

∫
B

|Tα,b(f2)(x)− aB |dµ(x)

:= I1 + I2.

Taking 1 < p1 < 1/(β + α) < p, and q1 satisfying the condition of 1/q1 = 1/p1 − β − α.

From Theorem 1.5 and Hölder inequality, we have

I1 ≤ 1

µ(6B)

[ ∫
B

|Iα,b(f1)(x)|q1dµ(x)
]1/q1

µ(B)1−1/q1

≤ C∥b∥Lipβ(µ)
1

µ(6B)

[ ∫
6
5B

|f(x)|p1dµ(x)

]1/p1

µ(B)1−1/q1

≤ C∥b∥Lipβ(µ)
1

µ(6B)

[ ∫
6
5B

|f(x)|pdµ(x)
]1/p

µ(
6

5
B)1/p1−1/pµ(B)1−1/q1

≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)λ(cB ,
6

5
rB)

α+β−1/p

≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)λ(cB , rB)
α+β−1/p.
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To estimate I2, using the Hölder’s inequality, we obtain

|Tα,b(f2)(x)− Tα,b(f2)(y)|

=

∣∣∣∣ ∫
X\ 6

5B

[
(b(x)− b(z))Kα(x, z)− (b(y)− b(z))Kα(y, z)

]
f(z)dz

∣∣∣∣
≤

∫
X\ 6

5B

|b(x)− b(z)||Kα(x, z)−Kα(y, z)||f(z)|dz

+

∫
X\ 6

5B

|(b(x)− b(y)||Kα(y, z)||f(z)|dz

:= I
(1)
2 + I

(2)
2 .

For I
(1)
2 , by x, y ∈ B, we obtain d(x, y) ≤ rB and d(x, cB) ≤ rB , and 1/p−α− β+ δ > 0. Then

I
(1)
2 ≤ C∥b∥Lipβ

∫
X\ 6

5B

[λ(x, d(x, z))]β
λ(x, d(x, y))δ

[λ(x, d(x, z))]1−α+δ
|f(z)|dz

= C∥b∥Lipβ(µ)[λ(x, d(x, y))]
δ

∫
X\ 6

5B

1

[λ(x, d(x, z))]1−α−β+δ
|f(z)|dz

≤ C∥b∥Lipβ(µ)[λ(x, rB)]
δ∥f∥Lp(µ)

( ∞∑
k=1

∫
2k 6

5B\2k−1 6
5B

1

[λ(x, d(x, z))](1−α−β+δ)p′ dµ(z)

)1/p′

≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)[λ(x, rB)]
δ

( ∞∑
k=1

µ(B(x, 2k 6
5rB))

[λ(x, 2k−1 6
5rB)]

(1−α−β+δ)p′

)1/p′

≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)[λ(x, rB)]
δ

( ∞∑
k=1

[λ(x, 2k−1rB)]
1−(1−α−β+δ)p′

)1/p′

≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)[λ(x, rB)]
δ

( ∞∑
k=1

1

[C(2k)](1−α−β+δ)p′−1

)1/p′

[λ(x, rB)]
α+β−δ−1/p

≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)[λ(x, rB)]
α+β−1/p

≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)[λ(cB , rB)]
α+β−1/p.

For I
(2)
2 , by 1/p > α, we obtain

I
(2)
2 ≤ C∥b∥Lipβ

∫
X\ 6

5B

[λ(x, d(x, y))]β
1

[λ(x, d(x, z))]1−α
|f(z)|dz

≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)[λ(x, rB)]
β

( ∞∑
k=1

1

[C(2k)](1−α)p′−1

)1/p′

[λ(x, rB)]
α−1/p

≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)[λ(x, rB)]
α+β−1/p

≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)[λ(cB , rB)]
α+β−1/p.

Then

I2 =
1

µ(6B)

∫
B

|Iα,b(f2)(x)− aQ|dµ(x)

≤ 1

µ(6B)

∫
B

1

µ(B)

∫
B

|Iα,b(f2)(x)− Iα,b(f2)(y)|dµ(y)dµ(x)

≤ C∥b∥Lipβ
∥f∥Lp [λ(cB , rB)]

α+β−1/p.
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The estimates for I1 and I2 yield the estimate (3.1).

Now we turn to estimate (3.2). For x ∈ B, y ∈ U and B ⊂ U , we write

|aB − aU | =

∣∣∣∣ ∫
X\ 6

5U

[b(x)− b(z)]Kα(x, z)f(z)dµ(z)

+

∫
6
5U\ 6

5B

[b(x)− b(z)]Kα(x, z)f(z)dµ(z)

−
∫
X\ 6

5U

[b(y)− b(z)]Kα(y, z)f(z)dµ(z)

∣∣∣∣
≤

∫
X\ 6

5U

∣∣∣∣[b(x)− b(z)]Kα(x, z)− [b(y)− b(z)]Kα(y, z)

∣∣∣∣|f(z)|dµ(z)
+

∫
6
5R\ 6

5B

|b(x)− b(z)||Kα(x, z)||f(z)|dµ(z)

:= II1 + II2.

Arguing similarly to that in the estimate of I2, we obtain that

II1 ≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)[λ(cB, rB)]
α+β−1/p.

Now we give the estimate for II2. Noting that Q ⊂ U and rU ≤ 2rB , we obtain

II2 ≤ C∥b∥Lipβ

∫
6
5U\ 6

5B

[λ(x, d(x, z))]β

[λ(x, d(x, z))]1−α
|f(z)|dµ(z)

≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)

(∫
6
5R\ 6

5Q

1

[λ(x, d(x, z))](1−α−β)p′ dµ(z)

)1/p′

≤ C∥b∥Lipβ(µ)∥f∥Lp(µ)[λ(cB, rB)]
α+β−1/p.

Combining the estimates for II1 and II2 yield the estimate (3.2). This completes the proof of

Theorem1.7.

The aim of the following is to prove Theorem 1.8, it should be pointed out that the proof

of Theorem 1.7 and Theorem 1.8 have little different.

Proof of Theorem 1.8. By Lemma 2.1 and Theorem 1.7, it suffices to show

|aB − aU | ≤ CKB,U∥b∥Lipβ(µ)∥f∥L1/(α+β)(µ), (3.3)

where B ⊂ U ,

aB = mB[Tα,b(fχX\ 6
5B

)],

and

aU = mU [Tα,b(fχX\ 6
5U

)].

Now we verify (3.3). LetN be the first integer k such that U ⊂ 6kB. We denote B̄ = 6N+1B.

|aB − aU | = |mB [Tα,b(fχX\ 6
5B

)]−mU [Tα,b(fχX\ 6
5U

)]|
≤ |mB [Tα,b(fχX\B̄)]−mU [Tα,b(fχX\B̄)]|

+|mB [Tα,b(fχB̄\ 6
5B

)]|+ |mU [Tα,b(fχB̄\ 6
5U

)]|
:= III1 + III2 + III3.

Arguing similarly to that in the estimate of I2, we obtain that

III1 ≤ C∥b∥Lipβ(µ)∥f∥Lp(µ).
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Now we deal with the term III2. For any x ∈ B,

|Tα,b(fχB̄\ 6
5B

)(x)| ≤
∫
B̄\ 6

5B

|f(y)(b(x)− b(y))|
[λ(x, d(x, y))]1−α

dµ(y)

≤ ∥b∥Lipβ(µ)∥f∥Lp(µ)

(∫
B̄\ 6

5B

1

[λ(x, d(x, y))](1−α−β)p′ dµ(y)

)1/p′

≤ CK 6
5B,B̄∥b∥Lipβ(µ)∥f∥L1/(α+β)(µ).

Therefore, III2 ≤ CKB,U∥b∥Lipβ(µ)∥f∥L1/(α+β)(µ).

Similarly, since rB̄ ≈ rU , we have

|Tα,b(fχB̄\ 6
5U

)(x)| ≤ C∥b∥Lipβ(µ)∥f∥L1/(α+β) .

To sum up, we have

|aB − aU | ≤ CKB,U∥b∥Lipβ(µ)∥f∥L1/(α+β)(µ), (3.3)

this complete the proof of Theorem 1.8.

§4 Proof of Theorem 1.9

Now we consider the endpoint case that 1/α ≤ p ≤ ∞. The basic idea is form [6].

Proof of Theorem 1.9. The proof of the above Theorem is divided into the following two

steps.

(i) Let us first prove

1

µ(B)

∫
B

|Tα,b(f)(x)−mB(Tα,b(f))|dµ(x) ≤ C∥f∥Lp(µ)[λ(cB , rB)]
α−1/p (4.1)

is equivalent to (1.15), for any bounded function f with compact support and any ball B.

Decompose f = f1 + f2, where f1 = fχ2B and f2 = f − f1. Then for x ∈ B,

Tα,b(f)(x)−mB(Tα,b(f))

= Tα,b(f1)(x)−mB(Tα,b(f1)) + Tα,b(f2)(x)−
1

µ(B)

∫
B

Tα,b(f2)(z)dµ(z)

= Tα,b(f1)(x)−mB(Tα,b(f1)) + [b(x)−mB(b)]Tα(f2)(x)− Tα([b−mB(b)]f2)(x)

− 1

µ(B)

∫
B

[b(z)−mB(b)]Tα(f2)(z)dµ(z) +
1

µ(B)

∫
B

Tα([b−mB(b)]f2)(z)dµ(z).

Let u ∈ Q,

Tα,b(f)(x)−mB(Tα,b(f))

= Tα,b(f1)(x)−mB(Tα,b(f1)) + [b(x)−mB(b)]

[
Tα(f2)(x)− Tα(f2)(u)

]
+[b(x)−mB(b)]Tα(f2)(u)−

1

µ(B)

∫
B

[b(z)−mQ(b)]

[
Tα(f2)(z)− Tα(f2)(u)

]
dµ(z)

+
1

µ(B)

∫
B

[
Tα([b−mB(b)]f2)(z)− Tα([b−mB(b)]f2)(x)

]
dµ(z).
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Now, if we let

η1(x) = Tα,b(f1)(x)

η2(x, u) = [b(x)−mB(b)]

[
Tα(f2)(x)− Tα(f2)(u)

]
η3(x, u) = Tα([b−mB(b)]f2)(u)− Tα([b−mB(b)]f2)(x).

and

η4(x, u) = [b(x)−mB(b)]Tα(f2)(u),

we have

Tα,b(f)(x)−mB(Tα,b(f)) = η1(x)−mB(η1) + η2(x, u) + η4(x, u)−mB[η2(·, u)] +mB[η3(·, u)].
We claim that the following estimates hold:

1

µ(B)

∫
B

|η1(x)−mB(η1)|dµ(x) ≤ C∥b∥Lipβ
∥f∥Lp(µ)[λ(cB , rB)]

β , (4.2)

1

µ(B)

∫
B

|η2(x, u)|dµ(x) ≤ C∥b∥Lipβ
∥f∥Lp(µ)[λ(cB, rB)]

β , (4.3)

1

µ(B)

∫
B

|η3(x, u)|dµ(x) ≤ C∥b∥Lipβ
∥f∥Lp(µ)[λ(cB, rB)]

β . (4.4)

By Theorem 1.7 with 1/(α+ β) < p1 < 1/α, then f1 ∈ Lp2 , it follows that

1

µ(B)

∫
B

|η1(x)−mB(η1)|dµ(x) ≤ C∥b∥Lipβ
∥f1∥Lp1 (µ)[λ(cB , rB)]

α+β−1/p1

≤ C∥b∥Lipβ
∥f∥Lp(µ)[λ(cB , rB)]

α+β−1/p.

For (4.3), using the Hölder inequality, we have

1

µ(B)

∫
B

|η2(x, u)|dµ(x)

≤ 1

µ(B)

∫
B

|b(x)−mB(b)|
∫
X\2B

|Kα(x, z)−Kα(u, z)||f(z)|dµ(z)dµ(x)

≤ C∥f∥Lp(µ)
1

µ(B)

∫
B

|b(x)−mB(b)|

×
{ ∞∑

k=1

∫
2k+1B\2kB

[λ(x, d(x, u))]δp
′

[λ(x, d(x, z))](1−α+δ)p′ dµ(z)

}1/p′

dµ(x)

≤ C∥f∥Lp(µ)∥b∥Lipβ(µ)[λ(cB , rB)]
α+β−1/p.

Finally we give the proof of (4.4).∣∣∣∣Tα([b−mB(b)]f2)(u)− Tα([b−mB(b)]f2)(x)

∣∣∣∣
≤

∫
X\2B

|Kα(u, z)−Kα(x, z)||b(z)−mB(b)||f(z)|dµ(z)

≤ C∥f∥Lp(µ)

{ ∞∑
k=1

∫
2k+1B\2kB

[λ(x, d(x, u))]δp
′

[λ(x, d(x, z))](1−α+δ)p′ |b(z)−mB(b)|p
′
dµ(z)

}1/p′

≤ C∥f∥Lp(µ)∥b∥Lipβ(µ)[λ(cB , rB)]
α+β−1/p.
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From this, it follows that
1

µ(B)

∫
B

|η3(x, u)|dµx ≤ C∥f∥Lp(µ)∥b∥Lipβ(µ)[λ(cB, rB)]
α+β−1/p.

Assume (4.1) holds and the estimates (4.2), (4.3) and (4.4), we obtain

1

µ(B)

∫
B

|η4(x, u)|dµ(x)

=
1

µ(B)

∫
B

∣∣∣∣Tα,b(f)(x)−mB [Tα,bf ]− (η1(x)−mB(η1))

− η2(x, u) +mB(η2(·, u))−mB(η3(·, u))
∣∣∣∣dµ(x)

≤ 1

µ(B)

∫
B

|Tα,b(f)(x)−mB[Tα,bf ]|dµ(x) +
1

µ(B)

∫
B

|η1(x)−mB(η1)|dµ(x)

+
2

µ(B)

∫
B

|η2(x, u)|dµ(x) +
1

µ(B)

∫
B

|η3(x, u)|dµ(x)

≤ C∥f∥Lp(µ)∥b∥Lipβ(µ)[λ(cB , rB)]
α+β−1/p,

that is, for any B and u ∈ B, (1.15) holds. Conversely, (1.15) implies that (4.1) holds.

(ii)Now let us verify that

|mU [Tα,bf ]−mB [Tα,bf ]| ≤ C∥f∥Lp(µ)∥b∥Lipβ(µ)[λ(cB , rB)]
α+β−1/p (4.5)

is equivalent to (1.16). We write f1 = fχ2U and f2 = f − f1, then

mB(Tα,b(f))−mU (Tα,b(f))

=

[
mB[Tα,b(f1)]−mU [Tα,b(f1)]

]
+

[
mB [Tα,b(f2)]−mU [Tα,b(f2)]

]
:= IV1 + IV2.

From Theorem 1.7 with 1/(α+ β) < p1 < 1/α, it follows that

|IV1| ≤ C∥f1∥Lp1 [λ(cB , rB)]
α+β−1/p1 ≤ C∥f∥Lp [λ(cB, rB)]

α+β−1/p.

To estimates IV2, for any x ∈ B and v ∈ U , we write

Tα,b(f)(x)−mU (Tα,b(f)) = η′2(x, v) + η′4(x, v)−mU [η
′
2(·, v)] +mU [η

′
3(·, v)],

where

η′2(x, v) = [b(x)−mU (b)]

[
Tα(f2)(x)− Tα(f2)(v)

]
η′3(x, v) = Tα([b−mU (b)]f2)(v)− Tα([b−mU (b)]f2)(x).

and

η′4(x, v) = [b(x)−mU (b)]Tα(f2)(v),

Some computations similar above, implies that

mB [η
′
2(x, v)] ≤ C∥f∥Lp(µ)∥b∥Lipβ(µ)[λ(cB , rB)]

α+β−1/p,

mU [η
′
2(x, v)] ≤ C∥f∥Lp(µ)∥b∥Lipβ(µ)[λ(cU , rU )]

α+β−1/p

≤ C∥f∥Lp(µ)∥b∥Lipβ(µ)[λ(cB , 2rB)]
α+β−1/p

≤ C∥f∥Lp(µ)∥b∥Lipβ(µ)[λ(cB , rB)]
α+β−1/p,

mU [η
′
3(x, v)] ≤ C∥f∥Lp(µ)∥b∥Lipβ(µ)[λ(cB , rB)]

α+β−1/p.



264 Appl. Math. J. Chinese Univ. Vol. 35, No. 3

An argument similar to the proof of the equivalence between (4.1) and (1.15), we obtain (4.5)

is equivalent to (1.16). By Lemma 2.1, we complete the proof of theorem.
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