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Boundedness in a fully parabolic quasilinear repulsion

chemotaxis model of higher dimension

ZHOU Shuang-shuang! GONG Ting?>* YANG Jin-ge?

Abstract. We deal with the boundedness of solutions to a class of fully parabolic quasilinear
repulsion chemotaxis systems

u =V - (¢(w)Vu) + V- (¢(u) Vo), (z,t) € 2 x (0,T),
vy =Av—v+u, (z,t) € 2 x(0,T),

under homogeneous Neumann boundary conditions in a smooth bounded domain Q ¢ RV (N >
3), where 0 < ¢¥(u) < K(u+ 1), Ki(s+1)™ < ¢(s) < Ka(s +1)™ with o, K, K1, K2 > 0 and

m € R. It is shown that if « — m < then for any sufficiently smooth initial data, the

4
N3
classical solutions to the system are uniformly-in-time bounded. This extends the known result

for the corresponding model with linear diffusion.

81 Introduction

In general chemotaxis models, such as those described by the classical Keller-Segel sys-
tem [8], cells move toward to the increasing signal concentration. The attraction mechanism
in these chemotaxis models results in possible blow-up of solutions, see [2, 3, 4, 7, 11] and
references therein. On the other hand, contrary phenomena can be observed in biology that
cells move away from the increasing signal concentration to resist the chemical signals, the so-
called chemorepulsion. In this paper, we consider the following quasilinear repulsion chemotaxis

system
ur =V - (p(u)Vu) + V- (¢(u) Vo), (z,t) € 2 x (0,T),
vy =Av—v+u, (z,t) € 2 x(0,T), )
Ju = Qv =, z,t) € 00 x (0,T),
u(z,0) = up(x),v(z,0) = vo(x), z €,

Received: 2019-12-17. Revised: 2020-04-08

MR Subject Classification: 35A01, 35K51, 35K57, 35M33, 92C17.

Keywords: chemotaxis, repulsion, quasilinear, fully parabolic, boundedness, high dimension.

Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-020-3994-5.

Supported by the National Natural Science Foundation of China (Grant No. 11601140, 11401082, 11701260)
and Program funded by Education Department of Liaoning Province (Grant No. LN2019Q15).

*Corresponding author.



ZHOU Shuang-shuang, et al. Boundedness in a fully parabolic quasilinear repulsion... 245

where @ C RY(N > 3) is a bounded domain with smooth boundary 09, u = u(z,t) is the
cell density, and v = v(z,t) denotes the concentration of a repulsion signal. The nonnegative
function ¢ and ¢ are assumed to satisfy

60 € C2(0,5) with (0) =0, @)

as well as
0<9(s) <K(s+1)* forall s> 0, (3)
Ki(s+1)™ < ¢(s) < Ka(s+1)™ for all s >0, 4)

with some K > 0,K, > Ky > 0,a > 0, and m € R.

The dynamical behavior of solutions to the corresponding attractive chemotaxis systems
obtained on replacing ¥ by —1) has been studied much more clearly. For example, the optimal
condition a < % was determined for the attractive question concerning global existence versus
blow-up by Tao and Winkler [10].

Generally speaking, the repulsion mechanism benefits the global existence of solution. How-
ever it seems difficult to gain the possible contribution of repulsions for the fully parabolic
systems of chemorepulsion models like (1) by using the current tools. So, it is not surpris-
ing that the mathematical analysis to the fully parabolic repulsion chemotaxis models is still
relatively weak.

When ¢ = 1 and m = 0 in (1), Cieslak at el [1] asserted the global existence of smooth
solutions and convergence to the steady states for N = 2, as well as the global existence of weak
solutions for N = 3,4. The global existence of smooth solutions of (1) for N > 3 remained open
in a long time, until Tao [9] proved that the system (1) possesses nonnegative bounded smooth
solutions for the linear diffusion case with m = 0 whenever a < N 5 His strategy includes

a combined estimate on [, u? + [, |Vv\m (instead of dealing with u and v separately), for
which the estimate to fQ u?~® is necessary. The present paper will extend Tao’s result to the
nonlinear diffusion case of (1). Our result is the following theorem.

Theorem 1 Let Q C RN(N > 3) be a bounded domain with smooth boundary 052, ¢ and
¥ satisfy (2)-(4) with K >0, Ko > K1 >0, m e R. If
4
a—m < 7N T (5)
then for any vy € C°(Q) and vy € CY(Q), there exists a couple (u,v) of nonnegative bounded
©,

functions in C°(Q x [0,00)) UC%L(Q x (0,00)) solving (1) classically.

Remark 1 The known boundedness condition a < for the chemorepulsion model

N+2
with nonlinear sensitivity and linear diffusion [9] can be obtained by letting m = 0 in Theorem

1.

Remark 2 Comparing with the optimal boundedness vs. blow-up condition a < 3 for the
corresponding attractive chemotaxis model [10], it can be found that a < & < m whenever
N > 3. This shows the positive contribution of the repulsion mechanism to the boundedness of

solutions.
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82 Local existence

The local existence of solutions to (1) can be addressed by methods involving standard
parabolic regularity theory in a suitable fixed point approach (refer e.g. [5] for details).

Lemma 2.1 Let ¢ and < satisfy (2)-(4) with ug € C°(Q) and vo € C*(Q) nonnega-
tive. Then there exist Tyax € (0,00] and a pair (u,v) of nonnegative functions from C°(Q x

[0, Trax)) N C%(Q x (0, Tiax)) solving (1) classically in Q x (0, Tiax) with

u>0 and v>0 inQx (0, Tmax)- (6)
Moreover, if Tyax < 00, then
timsup ([u,0)ll @) + 100 )= ) = oo. (7)
t/‘TlIl'dX

The next lemma can be obtained by a direct calculation.
Lemma 2.2 The solution (u,v) of (1) satisfies the following properties
uC, )z = lluollLr (@), (8)
o, t)llL1 () = llvollzr@e™ + llvoll Ly (1 — e ™) (9)
for all t € (0, Trax)-
We have also an elementary estimate for |Vo|?:
Lemma 2.3 Let ¢, satisfy (2)-(4). Then there exists C > 0 such that the solution (u,v)
of (1) satisfies
/ [Vo(, )| < C (10)
Q
for all t € (0, Trax)-
Proof. Conditions (2) and (3) ensure that the integral

):/15/161Z)(17_)d7d0, s>0

is well-defined. A straightforward computation shows

% o) - /Q &' (w)uy = /Q @ () (V- (6(w) V) + V- (1) V)

== [ @ otV - | & (wiwTu-vo

/ |V |2 /VU Vo for all t € (to, Tmax)s (11)

) is used. Multiply the second equation of (1) by —Awv and

where the fact that ®”(u) = W

integrate by part to get

th/ |Vo|? + /|Av|2 /|W|2 /vu Vo  forall t€ (ty, Tmax)- (12)

By adding (11) to (12) and integrating from 0 to ¢, we obtain

/Qd)(u(-,t))+§/Q|Vv(-,t)|2+/0 /Qmwum/o /Q|Av\2+/0 /Q|Vv|2
S/‘I’(Uo)-i-%/ Vol ?.
Q Q
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This completes the proof. O

83 Global boundedness of solutions

Now we deal with the global boundedness of (1) to prove Theorem 1.

We begin with an estimate on component wu.

Lemma 3.1 Let the conditions of Theorem 1 hold, and (u,v) be a solution ensured by
Lemma 2.1. Then for any p € (1,400), there exists C > 0 such that for all t € (0, Timax),

d - 1)K
R el K UR S e LT ()
dt Jq 2 0 0
Proof. For arbitrary p > 1, take p(u + 1)P~! as a test function for the first equation in (1)
and integrate by part to obtain

(u +1)7 = P/z(“ + 1PV - (d(u)Vu) +p/ (u+1)P71V - (Y (u) Vo)

= pp—1) /2 (u+ 1)P~2(w)| Vul? — p(p — 1) / (u+ 1) (u) V- Vo. (14)

Q
By the Cauchy inequality with (2)—(4), we have

—p(p—1) /Q(u + 1)P~ 24 (u)Vu - Vo

<pp— 1)K/ (u + 1)PTo72|Vuy, - Vo
Q

K?p(

1K -1
< P DK L[ ey SR )/(u+1)p+2a*m*2|vv|2. (15)
Q 2K, Q

- 2
Consequently,

- (u +1)P + M / (u+ 1)p+mf2|vu|2 < C/ (u + 1)P+2a7m72|vv‘2
dt 2 Q Q

K 1
with C _%. O

Next, we make an estimate for the component v.

Lemma 3.2 Let the conditions of Theorem 1 hold, and (u,v) be a solution ensured by
Lemma 2.1. Then for any q € (2 +oo) there exists C > 0 such that for all t € (0, Tiax),

th/w 2 4 /;vw af? <c/ (u+ 1)2| Vo[22 4 C. (16)

Proof. We know from the second equation of (1) with the identity 2Vv - VAv = A|Vv|? —
2|D?v|? that
(|Vv]?); = 2V - VAv — 2|Vo]? + 2Vu - Vo
= A|Vv|? = 2|D%v|? — 2|Vu|? + 2Vu - V.
Testing by |Vv|?772, we get
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1i/ |Vv|2q:2/ |Vo[2472Vy - V(Av — v + u)
qdt Jo Q
:/ \vv|2q—2A|vu\2—2/ |Vv\2‘1_2|D2v|2—2/ V|2
) Q Q
—2/ uV - (|[Vo]?72Vv)
Q
2
(- [ [vePr|ovolf + [ |V11|2‘1_2M—2/ T2
Q 0 v Q
—2/ |Vv|2q*2\D2v|2—2/ u|Vv|2q*2Av—2/qu~V(\Vv|2q*2)
Q Q Q

4(qg—1 0 2
=2 [owepf+ [ wepeTE s [ gy
q Q a0 ov Q

72/ |Vv|2q*2\D2v|272/ u|Vv|2q*2Av72/qu~V(\Vv|2q*2)
Q Q Q

for all t € (0, Tjnax). Due to |Av| < v/N|D?v|, we have by Young’s inequality that

72/ u|VU|2q72Av§2\/N/ u| Vo242 D%
Q Q

< / |Vo|2972| D%p)? +4N/ u?| Vo 242
Q Q
for all ¢t € (0, Tinax). Furthermore, with the help of Cauchy-Schwarz’s inequality,
—2/ WV - V([ Vo[2172) = —2(q 1)/ W[ Vo214V - V(| Vo)
Q Q

-1
<15 [P TIR ) +2 = 1) [ o
2 Ja Q
2(q—1
z—w/ |V|Vv|q|2+2(q—1)/uQ\VU|2q_2.
q Q Q

It is known from (3.10) of [6] (also in [12]) that the following inequality

_ 8|VU|2 2a
/m o220 < )9l 2 g, +

(18)

is true with @ ;= 2282~ ¢ (0,1), 7 € (0, %) and some C' > 0. Now, combining (17)—(20),

we obtain by Young%s iﬁeqilality that
1d 2(g—1
f—/ |Vv|2q+M/ ‘V|Vv|q‘2+2/ |Vv|2q+/ |Vv[2472| D%y)?
qdt Jo ¢ Q Q Q
SC/(u+1)2|VU\2q_2+C.
Q

The proof is complete. O



ZHOU Shuang-shuang, et al. Boundedness in a fully parabolic quasilinear repulsion... 249

In addition, we need a direct consequence of Young’s inequality:
Lemma 3.3 Let B,y >0 with 8+ v < 1. Then for all € > 0, there exists ¢ > 0 such that
a’b’ <e(a+b)+c foralla,b>0.

Proof of Theorem 1. Throughout this proof, denote by C; positive constants depending on
some of o, N, |Q|, K, K31, K3, ug and vg, ¢ = 1,...,14. By adding (13) to (16), we know

e[
1)/ ’V|V1}\q’2
Q

- 1 K ptm
1/ |V (u+1)"%
gCl/(u+1)p+2“_m_2|V1}|2+C’1/(u+1)2|Vv\2q_2—|—Cl. (21)
Q )

p+m
8N(1—a+m)—(4N-8)
N, N2y —atm)—(N=2)

Let ¢ > qp := max{8 }. The condition 0 < a —m < N+2 with N > 3

implies
2(1—a+m)

2
N¢g—N+2)+1—— —
N3 (Ngq +2) + m

2 2 —
(Ng—N+2)+1- = q—8 =

N "7 N +2) 8N
q(N —2)

" m}. (22)

> max{3 —m,

Take p € (po(q),p1(g)) with

2 — 8 2
= 1% (Ng-N+2)+1-— —
21 —a+m) 2

Obviously, po(q),p1(q) — +00 as ¢ — +oo. By the Holder inequality,

N2 R
/(u—|— 1)pr2e=m=2yy|2 < (/(u—i— 1)%(””0‘7’”72)) " (/ |V’U|N)W. (23)
Q Q Q
Noticing
2 < 2 N (p+2 2) < 2N
p—i—m_p—l—mN—Qp @ N -2
due to N >3 and a« —m € (0, 1), we obtain by the Gagliardo-Nirenberg inequality that

(/Q(u+1)

2(p+2a—m—2)
pt+m
_2 N _ 2a—m—2
Lptm ~N—3 (P+2a—m )(Q)

N-—
5 (p+H2a—m— 2)) N +m

2pt2a-—m=2) (p+20¢ m— 2)(1 a)

p+7n

pim P
SCQHV(U‘*‘UP L) H(“+ 1) Lt (q)
ol )
LPp+m (Q)
m | 2pt2e-m=2) ,
<Oy ([Vl+ )2 L ), Y

with

N 1
B (- ) o)
' 1-5+5p+m) o




Appl. Math. J. Chinese Univ. Vol. 35, No. 2

250

% < 2N By the Gagliardo-Nirenberg

Qo
IN

On the other hand, N > 3 and ¢ > qg imply

inequality, we obtain

2

([ 19 = o)

2

La ()

< Ca([ TVl 2 9ol 75+ 1))

< CS(HVNUWH;(Q) +1) (25)
with
Na(5 - x)
b:= 17§+% €(0,1)

Similarly, by the Holder inequality,

- 1) o552 o
/Q(u+1)2|w2 2g(/0(u+1)) (/Q|V| )) . (26)

< % due to ¢ > g9 and p > % — m. Again by the Gagliardo-

q
Notice p+m < 2p+m)

Nirenberg inequality,
8
T L T s
(fr o) =le+0™ 17

e 2 [N L [ORSV  LEN
L (+m) (Q) L (Q)

+1) (27)

< 06(|\V(u+1)

p+m
L2 (Q

< Cr([Vu+1)"

with
B %(erp)(l - %)

TN Nt
On the other hand, we have by the Gagliardo—Nirenberg inequality for ¢ > g that

8 —
([T = ol
La=8 (Q)

22
=2(1— d)+|||Vv\qH g )
La(Q)

€ (0,1).

< G (| 9191 e 19017

< cg(y|V|W|q|\L2ﬁ2) +1),

with
(
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Combining (23)—(28), we know by using Young’s inequality that
Q

< Cho /’V u+1) p+m /’v|vv|q
m ’Y
+ Ol [ [Vt 1) / V19ele)” + O, (29)
Q
where
+2a0—m—2 1
51-1—’71:%@4-4?
p+m q
N —m-—9—N=2 N 2
:2(p+2a mn N)Jr ?( _W> €(0,1)
1- 5+ %(p+m) 1- 548
and
2 -1
frtm=——ct+i=d
p+m q
E<2_§) N q—8
N q_l_i
2 q 2( ) € (0,1)

1—7+ Sp+m) 1- 5+ 5
due to the choice of p. Therefore, by Lemma 3.3 with (29), we obtain

C’l/(u—i—1)p+2a_’”_2\Vv|2+Cl/(u+1)2|Vv|2q_2
Q Q

p— DK ptm
erm 1/|V + 1)

(30)

Substituting (30) into (21) yields

%(/(u+1)p+ q/ Vo)

2p(p — 1)K,
(p+m)?

|V (u+ 1) 55 ><Ci (31)
Q

Now letting y(t) := [,(u+1)? + %fQ |Vv|?4, we have from (31) by the Gagliardo-Nirenberg
inequality that

dt ( )+ Cl3y ( ) < 014 for all t € (O,Tmax)

with some h > 0. Hence, an ODE comparison argument yields the boundedness of y(t) for all
t € (0, Tiax)- This concludes

[u( D)[Lr (@) < C and [[Vo(, )| L2a(0) < C- (32)
Finally, we can use the well-known Moser-Alikakos iteration technique (see Lemma A.1 of
[10]) to arrive at
u(-, )| o) £ C forall t € (0, Thax)-
This completes the proof by Lemma 2.1. O



252

1]

2]

3]

[9]

[10]

[11]

[12]

Appl. Math. J. Chinese Univ. Vol. 35, No. 2

References
T Cieslak, P Laurencot, C Morales-Rodrigo. Global existence and convergence to steadystates
in a chemorepulsion system, Banach Center Publ, Polish Acad Sci, 2008, 81: 105-117.

M A Herrero, J L L Veldzquez. A blow-up mechanism for a chemotaxis model, Ann Sc Norm
Super Pisa CI Sci, 1997, 24: 633-683.

T Hillen, K Painter. A users guide to PDE models for chemotazxis, J Math Biol, 2009, 58:
183-217.

D Horstmann, G Wang. Blow-up in a chemotazxis model without symmetry assumptions, Euro-
pean J Appl Math, 2001, 12: 159-177.

Y Tao, M Winkler. A chemotazis-haptotazis model: the roles of nonlinear diffusion and logistic
source, SIAM J Math Anal, 2011, 43: 685-704.

S Ishida, K Seki, T Yokota. Boundedness in quasilinear Keller-Segel systems of parabolic-
parabolic type on non-convex bounded domains, J Differ Equations, 2014, 256: 2993-3010.

W Jéger, S Luckhaus. On explosions of solutions to a system of partial differential equations
modelling chemotazis, Trans Amer Math Soc, 1992, 329: 819-824.

E F Keller, L A Segel. Initiation of slime mold aggregation viewed as an instability, J Theoret
Biol, 1970, 26: 399-415.

Y Tao. Global dynamics in a higher-dimensional repulsion chemotazxis model with nonlinear
sensitivity, Discrete Cont Dyn Syst B, 2013, 18(10): 2705-2722.

Y Tao, M Winkler. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with
subcritical sensitivity, J Differ Equations, 2012, 252: 692-715.

M Winkler. Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel sys-
tem, J Math Pures Appl, 2013, 99: 748-767.

Q Zhang, Y Li. Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic
source, 7 Angew Math Phys, 2015, 66: 2473-2484.

'School of Science, Hunan City University, Yiyang 413000, China.

Email: sg_zss@163.com

2School of Mathematics, Dongbei University of Finance and Economics, Dalian 116024, China.

Email: gongting@dufe.edu.cn

3School of Sciences, Nanchang Institute of Technology, Nanchang 330099, China.

Email: jgyang2007@yeah.net



