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A new two-part test based on density ratio model for

zero-inflated continuous distributions

LU Ya-hui1 LIU Ai-yi2 JIANG Meng-jie1 JIANG Tao1,3,∗

Abstract. In this paper, we consider testing the hypothesis concerning the means of two in-

dependent semicontinuous distributions whose observations are zero-inflated, characterized by

a sizable number of zeros and positive observations from a continuous distribution. The contin-

uous parts of the two semicontinuous distributions are assumed to follow a density ratio model.

A new two-part test is developed for this kind of data. The proposed test takes the sum of

one test for equality of proportions of zero values and one conditional test for the continuous

distribution. The test is proved to follow a χ2 distribution with two degrees of freedom. Sim-

ulation studies show that the proposed test controls the type I error rates at the desired level,

and is competitive to, and most of the time more powerful than two popular tests. A real data

example from a dietary intervention study is used to illustrate the usefulness of the proposed

test.

§1 Introduction

In many research fields, data from a semicontinuous distribution are commonly encountered,

i.e., with a clump of observations at zero and positive continuous data. For example, in a dietary

intake study, some food components are eaten daily by almost every study participant, while

others are consumed episodically, so that the food intake record data are characterized by many

zeros for the latter food components[8]; in meteorology study, the clump of zero observations

may correspond to the the number of zero rainfall measurements recorded over several years[13];

in household expenditure study, some households spend nothing on a certain commodity during

the period of investigation.

A random variable that follows a semicontinuous distribution can be defined as a response

variable y = (x, d), where d = 1 if y is observed (or positive), and 0 if it is zero (or missing or
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below the limits of detection) and x is the response if d = 1 and is undefined (or 0) if d = 0.

We define the probability distribution function in the ith group as

fi (x, d) =
[
pi

1−d{(1− pi)hi (x)}d
]
.

This is the (conditional) distribution of x (the continuous response) multiplied by the (binomial)

probability of d (the indicator of a 0, nonresponse outcome) in the ith population. For a two-

sample test, the null hypothesis is H0 : (p1 = p2) ∩ (µ1 = µ2) where µi represents the location

parameter of hi (x). Thus, we can test equality of the proportion of zeros and mean equality of

the distributions of non-zeros.

In many literatures, two-part tests have been widely used to compare two samples from the

non-standard mixture distribution. For example, Lachenbruch[10,11] comprehensively studied

two-part tests for two populations. The two-part model tests are defined as V 2 = B2+T 2 where

B is the usual binomial test and T can be the t-test (TBT) or the Wilcoxon test (TBW). The

two-part tests use a χ2 test with two degrees of freedom based on the sum of one test for equality

of proportions of zero values and one conditional test for the continuous responses. For large

samples, it was shown that B and T are independent under the assumptions of independent

errors of the binomial and continuous parts of the distribution. It is also easy to see that the

statistic V 2 has a χ2 distribution with two degrees of freedom[10,11]. The two-part tests and

their extensions have been successfully implemented in various applications[2,17,18]. Further

ideas and comparisons of some existing one- and two-part procedures may be found in[5, 7, 20].

The existing TBT and TBW tests are either inefficient when no parametric assumptions are

made for the positive components or are not robust when the parametric models are assumed.

It is therefore desirable to borrow efficiency across similar populations to improve power of

the test. At the same time, we also hope that a test is robust to deviations from the model

assumptions. The semiparametric density ratio model (DRM) of Anderson[1], which gained

popularity after Qin and Zhang[15], is a natural tool to use here. Therefore, under DRM, we

propose a new semiparametric hypothesis testing method on the difference of two population

means for the continuous responses with a clump of zero.

Some semiparametric statistical methods were recently developed under DRM, and these

methods are usually more robust than parametric methods and more effective than nonpara-

metric methods. The DRM is flexible and includes many parametric distribution families, such

as the log-normal and gamma distributions, as special cases. In the literature, the DRM has

been recognized as a powerful semiparametric tool in many statistical problems. For example,

Qin and Zhang[15] and Zhang[19] showed the close relationship between the DRM and logistic

regression models, and they further developed procedures to assess the goodness of fit of the lo-

gistic regression models based on case-control data. Qin[16] and Zou et al.[21] applied the DRM

to a semiparametric mixture model. Fokianos et al.[6] and Cai et al.[4] considered hypothesis

testing problems under the DRM without excess zero observations. Therefore, for a two-sample

with excess zeros test, the null hypothesis is H0 : (p1 = p2) ∩ (µ1 = µ2), we propose a new

two-part model test (TBSE) by defined B as the usual binomial test for equality of proportions

and T as a semiparametric hypothesis test under a semiparametric density ratio model for the

continuous responses.
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The rest of the article is arranged as follows. In Section 2, we describe the mathematical

formulation of the testing problem, and describe test statistics including binomial test and

Wilcoxon test. In Section 3, we introduce the proposed semiparametric hypothesis testing

method based on DRM, and propose a two-part semiparametric Wald test statistic under the

null hypothesis. We further provide the asymptotic properties of the proposed ststistic. In

Section 4, we conduct simulation studies to evaluate the type I error and power of the proposed

TBSE against the TBT and TBW methods. Real data from a dietary intervention study (the

CHEF trial) are used to illustrate the methods in Section 5, and some concluding remarks are

given in Sections 6. For the convenience of presentation, all proofs are given in the Appendix.

§2 Mathematical Formulation and Methodology

Consider a two-sample problem with m samples drawn from experimental Group 1 and n

samples drawn from experimental Group 2. Let x1, x2, . . . , xm be independent, identically-

distributed bivariate observations of X = (Z,D) from Group 1. x = (z, d) denotes an observed

value of X, where z is a non-negative real number and d is an indicator variable with the value

d = 1 if z > 0 and d = 0 if z = 0. Then, the probability distribution of X is h (x, d) =[
p1

1−d{(1− p1) g (z, µ1)}d
]
, where g (z, µ1) is a parametric density with mean µ1. Similarly,

let y1, y2, . . . , yn be independent, identically-distributed bivariate observations of Y = (W,E)

from Group 2 where W is a non-negative random variable and E is a random indicator variable

with values E = 1 if W > 0 and 0 otherwise. Then the density of Y at W = w,E = e is

h (y, e) =
[
p2

1−e{(1− p2) f (w, µ2)}e
]
, where f(w, µ2) is a parametric density with mean µ2.

2.1 Binomial test

The binomial test statistic is

B =
|p̂1 − p̂2|√

p̂c (1− p̂c)
(

1
m0

+ 1
n0

) ,
where p̂1 = m0

m , p̂2 = n0

n , p̂c = m0+n0

m+n , and m0 and n0 are the numbers of zero value observed

in Groups 1 and 2, respectively.

2.2 Wilcoxon test

The Wilcoxon test statistic is

U = mcnc +
mc (mc + 1)

2
−R

where mc and nc are the numbers of observations in the continuous component of Groups 1

and 2 respectively, and R is the sum of the ranks in Group 1. We normalize with continuity

correction this statistic to T = |U−µ|−0.5
σ where µ = mcnc

2 and σ =
√

mcnc(mc+nc+1)
12 .

Under the setup of two-part model tests V 2 = B2+T 2, we use a binomial test for the equality

of proportions of zero values (B), and a standard t test (TBT) or Wilcoxon test (TBW) for
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the positive continuous responses (T ). Because B and T are independent and asymptotically

normal, the sum of the squared statistics V 2 asymptotically follows a χ2
2 distribution[10,11].

§3 A Semiparametric Hypothesis Testing Method

We focus, in the presence of zero-inflated continuous data, on testing the hypothesis con-

cerning the difference of two population means. For the two-part model tests, T is generally

the standard t test or the non-parametric Wilcoxon test. In recent years, there have been some

reports on the establishment of semiparametric statistical analysis methods under the DRM,

which are usually more robust than parametric methods and more effective than non-parametric

methods. Therefore we propose here a two-part model test based on binomial test and semi-

parametric hypothesis test. Specifically, the binomial test is used to test the probability value

of the occurrence of zero value, and a hypothesis test is proposed to test the mean difference

of positive continous value parts under the semiparametric DRM. Namely, B is the binomial

test and T is the semiparametric test. This method is mainly based on the semiparametric

estimation of the mean difference of positive value parts of the two populations.

3.1 The density ratio model

Let us first introduce some notation. Let m0 and mc denote the (random) numbers of zero

values and positive observations for Group 1. Let n0 and nc denote the (random) numbers of

zero and positive observations for Group 2. Define l0 = m0 + n0 and lc = mc + nc as the total

numbers of zero and positive values, respectively, and let l = l0 + lc denote the total sample

size. Without loss of generality, we use the first mc observations xc = {xc1, xc2, . . . , xcmc}
to denote the positive observations in the Group 1, and use the first nc observations yc =

{yc1, yc2, . . . , ycnc} to denote the positive observations in the Group 2.

Let µ1 and µ2 respectively be the mean of nonzero value of the Group 1 and Group 2. In

this section, the main goal is to develop a test statistic for the positive values mean hypothesis

H0
′ : µ1 = µ2.

The most commonly used method is two sample t test. It assumes that the two data groups

are from the two normal distributions, and assumes that the overall variance of each group is

equal or unequal. However, in real applications we often encounter data that do not follow

normal distributions, and thus the traditional two sample t test may not be efficient. Denote

µ̂1 and µ̂2 as the sample mean of xc and yc, and denote S2
xc

and S2
yc

as the sample variance of

xc and yc. Then a nonparametric test statistic is

Λ̂ =
µ̂1 − µ̂2√
S2
xc

mc
+

S2
yc

nc

,

where the asymptotic normal distribution of Λ̂ can be used to test the hypothesis.

Next we develop a semiparametric testing method based on the DRM for the null hypothesis

H0
′ : µ1 = µ2.

Let G and F respectively be the distribution functions of xc and yc, and denote g (x) and

f (x) as the corresponding density functions. We propose to model the distributions of the
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nonzero values by the DRM to exploit information from all available samples. The DRM

postulates that

f (x) = exp
{
α+ βTγ (x)

}
g (x) (1)

for a non-trivial, pre-specified, basis function γ (x) of dimension p, and unknown parameters

α and β. Without specifying the baseline density g (x), we propose a test based on the DRM

defined in (1) that does not depend on the form of g (x) and hence is robust to the assumptions

on g (x). As for how to choose function γ (x), Fokianos[6] and Kay and Little[9] provided a good

reference.

3.2 The main method

Let {T1, . . . , Tlc} denote the combined sample data {xc1, xc2, . . . , xcmc ; yc1, yc2, . . . , ycnc},
and denote lc = mc + nc the total nonzero sample sizes. Under the DRM (1), the likelihood

function is written as

L (α,β, G) =

mc∏
i=1

dG (xci)

nc∏
j=1

exp
{
α+ βTγ (ycj)

}
dG (ycj)

=

lc∏
i=1

πi

nc∏
j=1

exp
{
α+ βTγ (ycj)

}
, (2)

where πi = dG (Ti) is a jump of probability, and the sum is 1.

We have the following natural constrains:
lc∑
i=1

πi = 1, πi ≥ 0,

lc∑
i=1

πi

{
exp

(
α+ βTγ (Ti)

)
− 1
}
= 0.

Following similar profiling procedures, using the Lagrangian multipliers as in Qin and Zhang[15],

the maximum likelihood function (2) of (α,β) is gained at the point

π̃i =
1

mc

1

1 + ρ exp
(
α̃+ β̃

T
γ (Ti)

) ,
where ρ = nc/mc,

(
α̃, β̃

)
is the maximum semiparametric likelihood estimator of (α,β), with(

α̃, β̃
)
solving

∂l (α,β)

∂α
= nc −

lc∑
i=1

ρ exp
(
α̃+ β̃

T
γ (Ti)

)
1 + ρ exp

(
α̃+ β̃

T
γ (Ti)

) = 0,

∂l (α,β)

∂β
=

nc∑
j=1

γ (ycj)−
lc∑
i=1

ρ exp
(
α̃+ β̃

T
γ (Ti)

)
1 + ρ exp

(
α̃+ β̃

T
γ (Ti)

)γ (Ti) = 0.

Here l (α,β) is the empirical log-likelihood function of (2) associated with the positive obser-
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vation

l (α,β) =

nc∑
j=1

[
α+ βTγ (ycj)

]
− lc logmc

−
lc∑
i=1

log
[
1+ρ exp

(
α+ βTγ (Ti)

)]
. (3)

Under the DRM (1), we get the maximum semiparameter likelihood estimator of the G(t)

and F (t)

G̃ (t) =

lc∑
i=1

πiI (Ti ≤ t)

=
1

mc

lc∑
i=1

1

1 + ρ exp
(
α̃+ β̃

T
γ (Ti)

)I (Ti ≤ t),

F̃ (t) =

lc∑
i=1

πi exp
(
α̃+ β̃

T
γ (Ti)

)
I (Ti ≤ t)

=
1

mc

lc∑
i=1

exp
(
α̃+ β̃

T
γ (Ti)

)
1 + ρ exp

(
α̃+ β̃

T
γ (Ti)

)I (Ti ≤ t).

Then we can obtain the maximum likelihood estimator of the mean difference of the continuous

part of two populations µ1 − µ2 =
∫
tdG −

∫
tdF by substituting the estimator of G (t) and

F (t)

µ̃1 − µ̃2 =
1

mc

lc∑
i=1

1− exp
(
α̃+ β̃

T
γ (Ti)

)
1 + ρ exp

(
α̃+ β̃

T
γ (Ti)

)Ti. (4)

In what follows, we study the asymptotic distribution of the semiparametric estimators

(4). Suppose that the true value of (α,β) is (α0,β0), and the asymptotic result relies on the

condition that ρ = nc/mc remains the same when lc = mc+nc → ∞. In addition, the following

notations are introduced for the convenience of the presentation

ω (t) = exp
(
α0 + βT

0 γ (t)
)
, A0 =

∫ ∞

−∞

ω (y)

1 + ρω (y)
dG (y),

A1 =

∫ ∞

−∞

ω (y)

1 + ρω (y)
γ (y) dG (y),

A2 =

∫ ∞

−∞

ω (y)

1 + ρω (y)
γ (y) {γ (y)}T dG (y),

A =

(
A0 AT

1

A1 A2

)
,S =

ρ

1 + ρ
A, B0 =

∫ ∞

−∞

ω (y) y

1 + ρω (y)
dG (y),

B1 =

∫ ∞

−∞

ω (y) y

1 + ρω (y)
γ (y) dG (y), B2 =

∫ ∞

−∞

ω (y) y2

1 + ρω (y)
dG (y).

The following theorem establishes the asymptotic normality of µ̃1 − µ̃2. A proof of the

theorem is given in the appendix A.
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Theorem 3.1. If DRM (1) holds and A−1 exists, then we have√
lc (µ̃1 − µ̃2 − (µ1 − µ2)) → N

(
0, σ2

semi

)
,

where

σ2
semi =(1 + ρ)

{∫ ∞

−∞
u2dG (u)−

[∫ ∞

−∞
udG (u)

]2}

+
1 + ρ

ρ

{∫ ∞

−∞
u2dF (u)−

[∫ ∞

−∞
udF (u)

]2}

− (1 + ρ)
3

ρ

{
B2 −

(
B0,B

T
1

)
A−1

(
B0

B1

)}
.

The consistent estimates of σ2
semi and σ̃2

semi can be constructed by substituting
(
α̃, β̃

)
in

the maximum semiparameter likelihood estimator. Then σ̃2
semi can be written as

σ̃2
semi =(1 + ρ)


lc∑
i=1

Ti
2π̃i −

[
lc∑
i=1

Tiπ̃i

]2+
1 + ρ

ρ


lc∑
i=1

Ti
2ω̃ (Ti) π̃i −

[
lc∑
i=1

Tiω̃ (Ti) π̃i

]2
− (1 + ρ)

3

ρ

{
B̃2 −

(
B̃0, B̃

T

1

)
Ã

−1

(
B̃0

B̃1

)}
,

where

ω̃ (t) = exp
(
α̃+ β̃

T
γ (t)

)
, Ã0 =

lc∑
i=1

ω̃ (Ti)

1 + ρω̃ (Ti)
π̃i,

Ã1 =

lc∑
i=1

ω̃ (Ti)

1 + ρω̃ (Ti)
γ (Ti) π̃i, Ã2 =

lc∑
i=1

ω̃ (Ti)

1 + ρω̃ (Ti)
γ (Ti) {γ (Ti)}T π̃i,

Ã =

(
Ã0 Ã

T

1

Ã1 Ã2

)
, B̃0 =

lc∑
i=1

ω̃ (Ti)Ti

1 + ρω̃ (Ti)
π̃i,

B̃1 =

lc∑
i=1

ω̃ (Ti)Ti

1 + ρω̃ (Ti)
γ (Ti) π̃i, B̃2 =

lc∑
i=1

ω̃ (Ti)Ti
2

1 + ρω̃ (Ti)
π̃i.

Under the condition DRM (1), the semiparametric Wald test for testing null hypothesis

H0
′ : µ1 = µ2 is defined as

Λ̃ =

√
lc (µ̃1 − µ̃2)

σ̃2
semi

∼ N (0, 1) . (5)

Clearly, we have Λ̃2 → χ2
1 as n → ∞, where χ2

1 denotes a chi-squared random variable with 1

degree of freedom.

Suppose we have two groups of samples from zero-inflated continuous data and condition

(1) is satisfied for the positive value observations. Under the null hypothesis H0 : (p1 = p2) ∩
(µ1 = µ2) , we present a new two-part semiparametric test statistic V 2 = B2 + Λ̃2, referred

to as TBSE, where B is the usual binomial test for equality of zero value proportions and Λ̃

is the proposed semiparametric test under a semiparametric DRM for the positive continuous

responses. Like TBT and TBW tests, we can obviously see that V 2 = B2 + Λ̃2 → χ2
2, where

χ2
2 denotes a chi-squared random variable with 2 degree of freedom.
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Table 1: Parameter settings for simulation studies. In the first column, each LN1 − LN8 and each GAM1 − GAM8

and each EXP1 − EXP7 denote mixture models whose nonnegative part follows LN(ai, bi) and GAM(ai, bi) and
EXP (ai), respectively, for i = 1, 2. The last two columns are the means and the variances corresponding to the
nonnegative part of each model.

model (p1, p2) (a1, a2) (b1, b2) (µ1, µ2) (σ2
1 , σ

2
2)

LN1 (0.2,0.2) (0.0,0.0) (1.0,1.0) (1.65,1.65) (4.67,4.67)
LN2 (0.5,0.5) (0.0,0.0) (1.0,1.0) (1.65,1.65) (4.67,4.67)
LN3 (0.2,0.2) (0.0,0.25) (1.0,0.5) (1.65,1.65) (4.67,1.76)
LN4 (0.5,0.5) (0.0,0.25) (1.0,0.5) (1.65,1.65) (4.67,1.76)

LN5 (0.4,0.3) (0.0,0.0) (1.0,1.0) (1.65,1.65) (4.67,4.67)
LN6 (0.4,0.3) (0.0,0.25) (1.0,0.5) (1.65,1.65) (4.67,1.76)
LN7 (0.4,0.4) (0.0,0.5) (1.0,2.25) (1.65,5.08) (4.67,218.9)
LN8 (0.4,0.3) (0.0,0.5) (1.0,2.25) (1.65,5.08) (4.67,218.9)

GAM1 (0.2,0.2) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0)
GAM2 (0.5,0.5) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0)
GAM3 (0.2,0.2) (1.0,2.0) (1.0,0.5) (1.0,1.0) (1.0,0.5)
GAM4 (0.5,0.5) (1.0,2.0) (1.0,0.5) (1.0,1.0) (1.0,0.5)

GAM5 (0.4,0.3) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0)
GAM6 (0.4,0.3) (1.0,2.0) (1.0,0.5) (1.0,1.0) (1.0,0.5)
GAM7 (0.4,0.4) (1.0,1.0) (1.0,0.5) (1.0,0.5) (1.0,0.25)
GAM8 (0.4,0.3) (1.0,1.0) (1.0,0.5) (1.0,0.5) (1.0,0.25)

EXP1 (0.2,0.2) (1.0,1.0) – (1.0,1.0) (1.0,1.0)
EXP2 (0.5,0.5) (1.0,1.0) – (1.0,1.0) (1.0,1.0)
EXP3 (0.2,0.2) (0.5,0.5) – (2.0,2.0) (4.0,4.0)
EXP4 (0.5,0.5) (0.5,0.5) – (2.0,2.0) (4.0,4.0)

EXP5 (0.4,0.3) (1.0,1.0) – (1.0,1.0) (1.0,1.0)
EXP6 (0.4,0.4) (1.0,0.5) – (1.0,2.0) (1.0,4.0)
EXP7 (0.4,0.3) (1.0,0.5) – (1.0,2.0) (1.0,4.0)

§4 Simulation Studies

In this section, we assess the finite-sample performance of the proposed TBSE test through

simulation. To verify the proposed test method, we further compare the proposed method with

two existing methods:

• the two-part t test (TBT) V 2 = B2 + T 2 where B is the usual binomial test and T is the

t-test;

• the two-part Wilcoxon test (TBW) V 2 = B2 + T 2 where B is the usual binomial test and

T is the Wilcoxon test.

We generate two-sample random observations, given that pi
,s ̸= 0 or 1, from (1) with

f(x) and g(x) being log-normal, gamma, or all exponential distribution. In the following,

we use LN(ai, bi) to denote a log-normal distribution with mean ai and variance bi (i.e., the

mean and variance of the associated normal random variable) and GAM(ai, bi) to denote a

gamma distribution with shape parameter ai and scale parameter bi, and EXP (ai) to denote

an exponential distribution with rate ai. The parameters set-up under the null (LN1 − LN4,

GAM1−GAM4 and EXP1−EXP4) and alternative (LN5−LN8, GAM5−GAM8 and EXP5−
EXP7) models are given in Table 1. We consider the case with equal sample sizes by setting

ni to be 25, 50 or 100 for i = 1, 2; and also consider the case with unequal sample sizes that

(n1, n2) = (50, 100).
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Table 2: Type I error rates (%) for testing H0 at significance level 0.05 when data are generated from a log-normal

mixture model with parameter settings giving in Table 1. The TBSE test is under γ(x) = {log(x), log2(x)}T .

model (m,n) TBT TBW TBSE

LN1 (25,25) 2.72 2.77 2.77
(50,50) 3.11 3.17 3.02
(50,100) 4.20 3.78 3.74
(100,100) 3.64 4.04 3.46

LN2 (25,25) 3.37 2.52 3.62
(50,50) 3.54 3.53 3.34
(50,100) 4.17 3.51 3.79
(100,100) 3.74 3.93 3.65

LN3 (25,25) 4.26 8.04 4.32
(50,50) 4.17 15.57 4.21
(50,100) 6.23 22.27 5.65
(100,100) 4.66 31.30 4.81

LN4 (25,25) 5.53 5.91 5.06
(50,50) 4.95 10.75 4.97
(50,100) 6.94 14.46 6.16
(100,100) 5.51 20.68 5.48

Table 3: Type I error rates (%) for testing H0 at significance level 0.05 when data are generated from a gamma

mixture model with parameter settings giving in Table 1. The TBSE test is under γ(x) = {x, log(x)}T .

model (m,n) TBT TBW TBSE

GAM1 (25,25) 3.11 2.69 3.49
(50,50) 3.50 3.20 3.65
(50,100) 4.14 3.75 4.25
(100,100) 3.65 3.59 3.75

GAM2 (25,25) 4.08 2.96 4.75
(50,50) 3.80 3.66 4.16
(50,100) 4.28 3.52 4.43
(100,100) 4.42 4.22 4.56

GAM3 (25,25) 3.84 5.30 4.18
(50,50) 3.99 8.98 4.11
(50,100) 4.95 12.61 5.00
(100,100) 4.10 14.92 4.23

GAM4 (25,25) 4.56 4.54 5.22
(50,50) 4.53 6.77 4.92
(50,100) 5.55 9.79 5.69
(100,100) 4.64 11.62 4.88

For all tests, the type I error rates and power at the 5% significance level are calculated

based on 10000 repetitions. In the simulation, we only present the results of TBSE test under

the correctly specified basis function γ(x). That is, TBSE test under γ(x) = {log(x), log2(x)}T

for the LN models; and under γ(x) = {x, log(x)}T for the GAM models, and under γ(x) = x

for the EXP models. For more choices of γ(x), interested readers may refer to Fokianos[6] and

Kay and Little[9].
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Table 4: Type I error rates (%) for testing H0 at significance level 0.05 when data are generated from an exponential
mixture model with parameter settings giving in Table 1. The TBSE test is under γ(x) = {x}.

model (m,n) TBT TBW TBSE

EXP1 (25,25) 3.25 3.02 3.67
(50,50) 3.62 3.46 3.77
(50,100) 4.05 3.52 4.11
(100,100) 3.76 3.80 3.82

EXP2 (25,25) 4.14 3.29 4.65
(50,50) 3.95 3.49 4.31
(50,100) 4.42 3.82 4.51
(100,100) 4.19 4.05 4.42

EXP3 (25,25) 3.35 2.91 3.71
(50,50) 3.61 3.33 3.75
(50,100) 4.18 3.76 4.16
(100,100) 3.87 3.84 3.92

EXP4 (25,25) 4.28 3.11 4.91
(50,50) 4.20 3.64 4.52
(50,100) 4.55 4.10 4.58
(100,100) 4.19 3.78 4.40

4.1 Type I error

The simulated type I error rates for the three selected representative tests are summarized

in Tables 2-4. A two-part test is a two-degree of freedom test based on a test statistic for the

equality of the proportions of zero counts and a conditional χ2 test statistic for the positive

part. From the results of Tables 2-4, we can see that in general both TBSE and TBT are able

to control the type I error rates at the designed level of 5%. In the presence of heterogeneity

(unequal variances, corresponding to LN3, LN4, GAM3 and GAM4), however, the two tests

may have slightly inflated type I error rates.

The same cannot be said about the TBW test. When the two samples have equal variances,

the TBW test performs well in controlling the type I error rates. But when the two samples

have unequal variances, the TBW test may possess much higher type error rates, mostly un-

acceptable. Hence, when heterogeneity exits between the two samples, it is inappropriate and

often misleading to compare the powers of TBW with that of TBT or TBSE due to the largely

inflated type I error rates. Comparison of powers of tests is appropriate only if the tests have

the same control of type I error rates.

Table 5: Scenarios categorized according to the alternative model settings in Table 1.

Scenarios I Scenarios II Scenarios III

LN5, LN6 LN7 LN8

GAM5, GAM6 GAM7 GAM8

EXP5 EXP6 EXP7
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Table 6: Simulated testing powers (%) of rejecting H0 at significance level 0.05 when data are generated from a
log-normal mixture model with parameter setting in Table 1.

model (m,n) TBT TBW TBSE

LN5 (25,25) 6.11 5.76 6.20
(50,50) 10.69 10.68 10.39
(50,100) 15.47 14.43 15.17
(100,100) 20.73 20.53 20.41

LN6 (25,25) 8.17 10.67 8.43
(50,50) 12.13 22.14 12.26
(50,100) 17.61 30.89 17.17
(100,100) 21.26 43.63 21.29

LN7 (25,25) 11.54 10.86 12.79
(50,50) 28.67 21.94 30.02
(50,100) 60.01 26.46 60.35
(100,100) 62.76 41.97 64.80

LN8 (25,25) 18.82 13.96 19.68
(50,50) 44.48 31.01 45.78
(50,100) 73.73 41.40 74.52
(100,100) 81.68 61.82 83.00

Table 7: Simulated testing powers (%) of rejecting H0 at significance level 0.05 when data are generated from a
gamma mixture model with parameter setting in Table 1.

model (m,n) TBT TBW TBSE

GAM5 (25,25) 6.31 5.73 6.83
(50,50) 10.41 9.74 10.66
(50,100) 14.92 14.25 15.14
(100,100) 20.67 20.55 20.87

GAM6 (25,25) 7.00 7.83 7.51
(50,50) 11.38 16.22 11.66
(50,100) 15.65 22.34 15.86
(100,100) 21.21 32.43 21.36

GAM7 (25,25) 28.45 21.81 31.29
(50,50) 59.17 47.44 61.07
(50,100) 65.14 61.49 67.59
(100,100) 91.27 81.53 91.69

GAM8 (25,25) 32.82 27.55 35.87
(50,50) 68.73 58.83 70.09
(50,100) 76.85 73.36 78.56
(100,100) 96.10 90.69 96.21

4.2 Testing power

Powers of the three tests were simulated under the selected alternatives LN5-LN8, GAM5-

GAM8, and EXP5-EXP7. For clarity and to aid the discussion, we categorize the alternative

model specifications into a 2 × 3 table given in Table 5. For the columns, the specifications

can be divided into scenarios in which: the means of the positive components are held constant

(Scenario I), the zero value proportions are held constant (Scenario II), or the zero values

proportions and the means of the positive components are all different (Scenario III). Especially,

Scenario I could be divided into two settings: the variances of the positive components are

equal (LN5, GAM5 and EXP5), the variances of the positive components are unequal (LN6
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Table 8: Simulated testing powers (%) of rejecting H0 at significance level 0.05 when data are generated from an
exponential mixture model with parameter setting in Table 1.

model (m,n) TBT TBW TBSE

EXP5 (25,25) 6.30 5.66 6.84
(50,50) 10.65 10.24 10.94
(50,100) 14.82 13.91 14.89
(100,100) 20.63 20.77 20.73

EXP6 (25,25) 27.81 21.00 30.72
(50,50) 58.45 47.13 60.29
(50,100) 81.19 61.71 81.39
(100,100) 91.38 81.49 91.79

EXP7 (25,25) 37.04 27.88 39.33
(50,50) 71.04 59.27 72.20
(50,100) 88.70 74.37 89.03
(100,100) 95.35 90.43 96.44

and GAM6).

The simulated testing powers for the three tests at the 5% significance level are summarized

in Tables 6-8. Together with the simulation results, we make the following comments and

discussion.

1. (Homogeneity) When the two samples have equal variances (LN5, GAM5, EXP5-EXP7),

the three tests have comparable type I error rates, and hence their powers can be compared.

For the lognormal (LN5) and gamma (GAM5) models, the powers of the three tests are very

close to each other and hence the three tests are almost equally efficient. For the exponential

model (EXP5-EXP7), the proposed test TBSE performs slightly better than the TBT; both

tests have substantially higher power than the TBW test.

2. (Heterogeneity) When the two samples have unequal variances (LN6-LN8, GAM6-

GAM8), the TBW test, as mentioned earlier, has much inflated type I error rates and does

not warrant a comparison with the other two tests (although for convenience the powers of

TBW are also provided in the tables). Furthermore, the proposed test TBSE appears to out-

perform the TBT test in all cases.

In general, we have observed that the two-part semiparametric TBSE test is robust on the

assumption of the positive components distribution, and the rejection rates are very close to

the nominal level when sample sizes n is relatively large. In addition, the TBSE test has about

the same of higher power than the other tests based on the correctly specified basis functions

under the premise that the type I error rates are controlled. Hence in practice we recommend

the proposed TBSE to compare two independent zero-inflated continuous samples.

§5 Application: The CHEF trial data

In the section, we further illustrate the proposed two-part semiparametric test (TBSE) with

the CHEF study. The study is an 18-month randomized trial to evaluate the efficacy of a

family-based behavioral intervention that integrated motivational interviewing, active learning,

and applied problem-solving to increase intake of whole plant foods (fruits, vegetables, whole
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grains, legumes, nuts, and seeds) among youth with type 1 diabetes[14]. At the CHEF study, a

total of 136 children were enrolled into the study with 66 randomized to the intervention group

and the remaining to the control group. Families in the intervention condition received sessions

on healthy eating, with a focus on increasing intake of whole plant foods. Sessions subsequently

applied intervention content to each meal time and other eating contexts. Participants in

the control condition received no additional dietary advice beyond that provided as part of

the standard type 1 diabetes care. Dietary data were collected at 6 time points, including a

baseline, during the 18-month study duration based on 3-day diet records. Details of the study

design, randomization procedures and treatment conditions can be found in [14] .

Table 9: The percents of zero values, mean and variance of non-zeros, and the p-values of Shapiro-Wilk normality
test for each variable of each cluster.

Variable pr(Xij = 0) E(Xij > 0) V ar(Xij > 0) p-values

Control

TF 0.19 0.47 0.14 4.00 × 10−4

WF 0.25 0.38 0.15 1.25 × 10−5

DOL 0.28 0.18 0.05 1.44 × 10−8

WG 0.04 1.13 0.68 7.00 × 10−4

Intervention

TF 0.16 0.39 0.08 1.00 × 10−3

WF 0.34 0.27 0.03 0.02
DOL 0.26 0.15 0.04 5.17 × 10−9

WG 0.07 0.85 0.49 1.82 × 10−5

Dietary records were collected at baseline prior to the start of intervention from the study

participants. Among the twelve food variables, eight are daily consumed foods whose intakes

are continuous. The remaining four, total fruit (TF), whole fruit (WF), Dark Green/Orange

Vegetables & Legumes (DOL), and whole grain (WG), are characterized by excess zero values

due to episodical consumption of the foods. At 18-month follow-up, our aim is to investigate

whether the efficacy of a family-based behavioral intervention to the four semicontinuous vari-

ables between control group and intervention group. In addition to the continuous positive

measurements, there are substantial proportions of zero values. Some summary statistics are

showed in Table 9.

Table 10: AIC for the positive value of each variable for five commonly used basis functions γ(x).

γ(x) x log(x) {x, log(x)}T {log(x), log2(x)}T {x, log(x), log2(x)}T

TF 138.96 139.00 140.84 140.87 139.42
WF 118.30 120.78 118.17 121.27 118.28
DOL 123.89 123.29 122.87 122.80 124.79
WG 159.17 159.48 159.11 158.98 160.94

Since the distribution of control group and intervention group data are unknown, the

Shapiro-Wilk normality test is performed on the positive values of each group. According

to the p-values in table 9, the positive values of control group and intervention group do not

follow normal distribution, so t test becomes inefficient and is not recommended to be used

for the positive measurements. As discussed in Section 4, we use the proposed TBSE test to
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Table 11: TBSE test statistics and corresponding p-values of each variable under basis function γ(x).

Variable γ(x) Test statistics p-value

TF x 4.85 0.0887

WF {x, log(x)}T 8.91 0.0116

DOL {log(x), log2(x)}T 2.83 0.2426

WG {log(x), log2(x)}T 1.33 0.5153

discover if the mean measurements differ between the control and intervention group. Therefore

we need to select a basis function γ(x) in a DRM that provides a reasonable fit to the four

semicontinuous variables, respectively. We apply the AIC to select a basis function in the DRM

for the positive data in this example[6]. The results are given in the Table 10. It can be seen

that the DRM with γ(x) = x for TF variable, with γ(x) = {x, log(x)}T for WF variable, with

γ(x) = {log(x), log2(x)}T for DOL and WG variable provide the best fit for the data; these

functions respectively have the smallest AIC among the five commonly used basis functions,

and hence they are recommended in this example.

The results of Shapiro-Wilk normality test performed on the four variables indicate that the

TBT test cannot be used to the example, and the TBW test exceeded the 0.05 level when the

homoscedastic variances assumption are difficult to justify for multiple groups of the positive

components as discussed in Section 4. Subsequently we applied the proposed TBSE test for the

efficacy of the family-based behavioral intervention to the four semicontinuous variables of the

intervention group in comparison to the control group. The observed test statistics and their

corresponding p-values are reported at 5% significance level in Table 11.

From the results in Table 11, we see that there is a significant difference for the WF variable

between control group and intervention group. But there does not seem to be a significant

difference for the remaining variables between control group and intervention group. Therefore,

the family-based behavioral intervention demonstrated efficacy for the WF variable, but the

intervention may be noneffective to the TF, DOL and WG variables. A natural follow-up

concern is to detect an improvement family-based behavioral intervention to the CHEF study.

§6 Concluding remarks

In this paper, we discussed the problem of making statistical inferences on the means of two

group samples with excess zero observations. Under the semiparametrics framework developed

by Fokianos[6], we proposed a TBSE statistic and derived its limiting distribution based on the

two-part tests. Simulation studies showed that the proposed TBSE test has desired type I error

control and is powerful to detect departures from the null hypothesis. Also the TBSE test is

made computationally fast by using logistic regression routines available in standard statistical

softwares. In addition, we use the TBSE test to a real dietary data for testing the effectiveness

of a family-based behavioral intervention on increasing intake of diabetes-friendly foods, and

the results illustrate the advantages of the proposed method.

As an important area of application, it is interesting to further consider the model selection
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problem for DRM, and to employ TBSE test to deal with zero-inflated count data. We first

adapt the idea of the hurdle model for zero-inflated count data, which models the zero and

positive counts separately[3,12]. That is, g(x) is the probability mass function for the positive

counts in DRM (1). Note that the commonly used zero-truncated Poisson and zero-truncated

negative binomial distributions both satisfy the DRM condition (1). As discussed in Bedrick

et al.[3], testing homogeneity under the mixture structures of the zero-inflated Poisson and the

Poisson-hurdle model is equivalent. A similar conclusion also applies to the negative binomial

distribution. Hence, testing the homogeneity in the zero-inflated count data under our setup

is equivalent to testing the null hypothesis H0 : (p1 = p2) ∩ (µ1 = µ2). In the case, the TBSE

test developed in Section 3 may be directly applied.

The DRM is a useful semiparametric tool for the comparison of independent samples. How-

ever, its application relies heavily on the basis function γ(x). In practice proper transforma-

tions such as logarithm are often applied to the original scale to better approximate the model.

Kay and Little[9] discussed the forms of γ(x) applicable to common probability distributions.

For example, the basis function γ(x) can be set to {log(x), log2(x)}T for log-normal distribu-

tions, {x, log(x)}T for gamma distributions, and x for exponential distributions. However, as

Fokianos[6] pointed out, misspecification of the basis function could lead to biased estimators

and loss of efficiency. In practice, we suggest consider a few competing choices of basis function

and use Akaike’s information criterion (AIC) to select the best one; see Fokianos[6].

Appendix A. Proof of Theorem 3.1.

Based on the Taylor expansion to µ̃1 − µ̃2, and combining with the consistency of α̃ and β̃

in Qin and Zhang[15], we have

µ̃1 − µ̃2 =
1

mc

lc∑
i=1

1− ω(Ti)

1 + ρω(Ti)
Ti −

1 + ρ
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(
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(1 + ρω(Ti))
2 ,
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T (Ti)Ti
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2

)(
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)
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(
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)
.

By direct operations, we can get
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}
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Therefore, from the law of large numbers and the asymptotic expression
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1
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)
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−1/2) discussed in Qin and Zhang[15], we have

µ̃1 − µ̃2 =
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We obtained E (µ̃1 − µ̃2) = µ1−µ2 by simple calculation, which shows that µ̃1−µ̃2 is asymp-

totically unbiased. To derive the variance of
√
lc (µ̃1 − µ̃2) , we denote ∆ = 1

mc

lc∑
i=1

1−ω(Ti)
1+ρω(Ti)

Ti
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and split the variance into three parts,
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And through a little bit of derivation, we get
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So the variance is

V ar
(√

lc (µ̃1 − µ̃2)
)
= V1 + V2 + V3 = σ2

semi.

It thus follows from the central limit theorem that√
lc (µ̃1 − µ̃2 − (µ1 − µ2)) → N

(
0, σ2

semi

)
.

The proof is completed.�
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