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On the convergence for PNQD sequences with general

moment conditions

XIAO Juan1 QIU De-hua2,∗

Abstract. Let {X,Xn, n ≥ 1} be a sequence of identically distributed pairwise negative quad-

rant dependent (PNQD) random variables and {an, n ≥ 1} be a sequence of positive constants

with an = f(n) and f(θk)/f(θk−1) ≥ β for all large positive integers k, where 1 < θ ≤ β and

f(x) > 0 (x ≥ 1) is a non-decreasing function on [b,+∞) for some b ≥ 1. In this paper, we ob-

tain the strong law of large numbers and complete convergence for the sequence {X,Xn, n ≥ 1},
which are equivalent to the general moment condition

∑∞
n=1 P (|X| > an) < ∞. Our results

extend and improve the related known works in Baum and Katz [1], Chen at al. [3], and Sung

[14].

§1 Introduction

Two random variables X and Y are said to be negative quadrant dependent (NQD) if

P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y), ∀x, y ∈ (−∞,∞).

A sequence of random variables {Xn, n ≥ 1} is said to be pairwise negative quadrant de-

pendent (PNQD) if every two random variables in the sequence is NQD. This definition was

introduced by Lehmann [8]. Obviously, PNQD sequence includes many dependent random vari-

ables sequences, such as extended negatively dependent (END) random sequence and pairwise

independent random sequence are the most special case.

It is more important for PNQD random variables since they have wide applications in

mathematics and mechanic models, percolation theory, and reliability theory. For these reasons

many authors have more and more interest in the study of PNQD and have established a series

of useful results. Please refer to [2], [9-10], [12], [15-20], and so on.

Complete convergence is one of the most important problems in probability theory. The

concept was introduced by Hsu and Robbins [6]. From then on, many authors have devoted
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their study to complete convergence, One can refer to [1], [3-5], [7], [13-14], [16-18], [20], and so

forth.

It is also interesting to find the more generalized moment conditions such that the complete

convergence holds. In fact, Gut and Stadtmüller [5] and Lanzinger [7] extended the Baum-Katz

theorem under higher order moment conditions, Sung [14] obtained the complete convergence

for pairwise independent random variables under some generalized moment conditions, Chen

et al. [4] obtained an extension of the Baum-Katz theorem to i.i.d. random variables with

general moment conditions, and so on. It is worth pointing out that Chen et al. [3] obtained

the following result:

Theorem A. Let {X,Xn, n ≥ 1} be a sequence of identically distributed PNQD random

variables with partial sums Sn =
∑n

k=1 Xk, n ≥ 1, and {an, n ≥ 1} a sequence of real numbers

with 0 < an/n ↑. Then the following statements are equivalent:
∞∑

n=1

P (|X| > an) < ∞, (1.1)

∞∑
n=1

n−1P ( max
1≤m≤n

|Sm −mEXI(|X| ≤ an)| > εan) < ∞, ∀ ε > 0, (1.2)

a−1
n

n∑
k=1

(Xk − EXkI(|Xk| ≤ ak)) → 0 a.s. (1.3)

The goal of this paper is to extend and improve Theorem A to identically distributed PNQD

random variables under the generalized condition (1.4).

In the following, let N = {1, 2, 3, · · · } and f(x) > 0 (x ≥ 1) be a non-decreasing function on

[b,+∞), where b ≥ 1, an = f(n), n ∈ N.
Now we state the main results. Some lemmas and the proofs of the main results will be

detailed in the next section.

Theorem 1.1. Let 1 < θ ≤ β and {X,Xn, n ∈ N} be a sequence of identically distributed

PNQD random variables with partial sums Sn =
∑n

k=1 Xk, n ∈ N. If there exists some positive

integer number M0 such that

f(θk)/f(θk−1) ≥ β, ∀k ≥ [M0,∞) ∩ N. (1.4)

Then (1.1) ∼ (1.3) are equivalent.

Corollary 1.2. Let {X,Xn, n ∈ N} be a sequence of identically distributed PNQD random

variables with partial sums Sn =
∑n

k=1 Xk, n ∈ N, and {an, n ∈ N} a sequence of real numbers

with 0 < an/n ↑ ∞. Then (1.1) and the following statements are equivalent:

a−1
n Sn → 0 a.s.

a−1
n

n∑
i=1

|Xi| → 0 a.s.

∞∑
n=1

n−1P

(
max

1≤m≤n
|Sm| > εan

)
< ∞, ∀ ε > 0.
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Remark 1.1. When 0 < an/n ↑, let f(x) = an, x ∈ [n, n+1), n ≥ 1, and θ = β = 2, then (1.4)

holds. Therefore, Theorem A is obtained by Theorem 1.1.

Remark 1.2. Let f(x) = 2n−1, x ∈ [2n−1, 2n), n ∈ N. Thus, f(x) is a non-decreasing function

on [1,∞). Obviously, the condition an/n ↑ does not hold, hence, the results of Theorem A

can’t be obtained. But, Let θ = 2, β = θ, then, (1.4) holds and the results of Theorem A are

obtained by Theorem 1.1.

Remark 1.3. When Corollary 1.2 is compared with Theorem 2.5 of Sung [14], the condition

a2n/an = O(1) in Theorem 2.5 is removed.

Throughout this paper, the symbol C denotes a positive constant which is not necessarily

the same one in each appearance, I(A) denotes the indicator function of the event A, [x] denotes

the integer part of x.

§2 Lemmas and Proofs

In this section, we prove the main results. To do this, the following lemmas are needed.

Lemma 2.1. Let θ > 1 and X be a random variable. Then (1.1) is equivalent to
∞∑
j=1

θjP (|X| > a[θj ]) < ∞. (2.1)

Proof. Without loss of generality, we assume that f(x) is a non-decreasing function on [1,∞).

First we prove that (1.1)⇒(2.1). Since θ > 1, there exists a positive integer M1 such that

θn+1 − θn > 4 for all n ≥ M1, so that we have
∞∑

n=1

P (|X| > an) ≥
∞∑

j=M1+1

∑
n∈[θj−1,θj)

∩
N

P (|X| > an)

≥ 2−1(θ − 1)θ−1
∞∑

j=M1+1

θjP (|X| > a[θj ]). (2.2)

Hence (2.1) holds.

The proof that (2.1)⇒(1.1) is essentially the same as that given in (2.2),∑
n∈[θM1 ,∞)

∩
N

P (|X| > an) ≤
∞∑

j=M1+1

θjP (|X| > a[θj−1]) = θ
∞∑

j=M1

θjP (|X| > a[θj ]).

Therefore, (1.1) holds by (2.1).

Lemma 2.2. Let 1 < θ ≤ β, 0 < δ < 1, X be a random variable, and (1.1) and (1.4) hold, then

sup
n≥1

n

an
E|X|I(|X| ≤ an) < ∞, (2.3)

and

lim
n→∞

n

an
E|X|I(a[nδ] < |X| ≤ an) = 0. (2.4)

Proof. For any j > k ≥ M0, by (1.4) and f(x) is a non-decreasing function on [1,∞), we have

a[θk]

a[θj ]

=
f([θk])

f([θj ])
≤ f(θk)

f(θj−1)
≤ β−(j−k−1). (2.5)
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For j ≥ M0 + 2, we have by 1 < θ ≤ β and (2.5) that

θj

a[θj ]

E|X|I(|X| ≤ a[θj ]) =
θj

a[θj ]

(
j∑

k=M0+1

E|X|I(a[θk−1] < |X| ≤ a[θk]) + E|X|I(|X| ≤ a[θM0 ]

)

≤ θj

a[θj ]

(
j∑

k=M0+1

a[θk]EI(a[θk−1] < |X| ≤ a[θk]) + a[θM0 ]

)

≤ β

j∑
k=M0

(
θ

β

)j−k

θkEI(a[θk−1] < |X| ≤ a[θk]) + βθM0

(
θ

β

)j−M0

≤ βθ

∞∑
k=1

θkP (|X| > a[θk]) + βθM0 . (2.6)

For any n ∈ [θM0+2,∞) ∩ N, there exists a corresponding positive integer number j such that

θj ≤ n < θj+1. Hence, we have
n

an
E|X|I(|X| ≤ an) =

n

an

{
E|X|I(|X| ≤ a[θj ]) + E|X|I(a[θj ] < |X| ≤ an)

}
≤ θj+1

a[θj ]
E|X|I(|X| ≤ a[θj ]) + θj+1P (|X| > a[θj ]).

Thus, (2.3) holds by (2.6) and Lemma 2.1. For any j large enough such that [jδ] ≥ M0 +2, by

1 < θ ≤ β and similar to the proof of (2.6), we have that

θj

a[θj ]

E|X|I(a[θ[jδ]] < |X| ≤ a[θj ]) ≤ β

j∑
k=[jδ]+1

θkP (|X| > a[θk−1]).

Hence, for any positive integer number n such that θj ≤ n < θj+1 for some j ∈ N and

[jδ] ≥ M0 + 2, we have that
n

an
E|X|I(a[nδ] < |X| ≤ an) =

n

an

{
E|X|I(a[nδ] < X ≤ a[θj ]) + E|X|I(a[θj ] < |X| ≤ an)

}
≤ θj+1

a[θj ]
E|X|I(a[θ[jδ]] < |X| ≤ a[θj ]) + θj+1P (|X| > a[θj ]).

Therefore, (2.4) holds by Lemma 2.1.

Lemma 2.3. Let 1 < θ ≤ β and X be a random variable. If (1.1) and (1.4) hold, then
∞∑

n=1

a−2
n E|X|2I(|X| ≤ an) < ∞. (2.7)
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Proof. By 1 < θ ≤ β, (2.3) and similar to the proof of Lemma 2.1, we have∑
n∈[θM0 ,∞)

∩
N

a−2
n E|X|2I(|X| ≤ an) ≤ C

∞∑
j=M0+1

θj · (a[θj−1])
−2E|X|2I(|X| ≤ a[θj ])

≤ C

∞∑
j=M0+1

θj

{
j∑

k=M0+1

(
a[θk]

a[θj−1]

)2

EI(a[θk−1] < |X| ≤ a[θk]) +

(
a[θM0 ]

a[θj−1]

)2
}

≤ C

∞∑
j=M0+1

θj

{
j∑

k=M0+1

β−2(j−k−2)P (|X| > a[θk−1]) + β−2(j−M0−2)

}

≤ C

∞∑
k=M0+1

β2kP (|X| > a[θk−1])

∞∑
j=k

(
θ

β2

)j

+ C

∞∑
j=M0+1

(
θ

β2

)j

≤ C
∞∑

k=M0+1

θkP (|X| > a[θk−1]) + C.

Hence, (2.7) holds by Lemma 2.1.

Lemma 2.4. Let 1 < θ ≤ β, 0 < δ < 1/2. If (1.4) holds, then
∞∑

n=1

a−2
n (log n)2

(
a[nδ]

)2
< ∞. (2.8)

Proof. By positive series convergence criterion and (2.5), we have∑
n∈[θ[M0/δ],∞)

∩
N

a−2
n (log n)2

(
a[nδ]

)2
=

∞∑
j=[M0/δ]+1

∑
n∈[θj−1,θj)

∩
N

a−2
n (log n)2

(
a[nδ]

)2
≤ (θ − 1)(log θ)2

∞∑
j=[M0/δ]+1

θj−1j2
(

a[θδj ]

a[θj−1])

)2

≤ (θ − 1)(log θ)2β4
∞∑

j=[M0/δ]+1

j2θj−1β−2(1−δ)j < ∞.

Therefore, (2.8) holds.

Lemma 2.5. [2]. Let {Xn, n ∈ N} be a sequence of PNQD random variables with V ar(Xn) <

∞ (n ∈ N), and {bn, n ∈ N} a sequence of real numbers with 0 < bn ↑ ∞. If

sup
n≥1

1

bn

n∑
j=1

E|Xj − EXj | < ∞ and
∞∑

n=1

1

b2n
V ar(Xn) < ∞,

then

lim
n→∞

1

bn

n∑
j=1

(Xj − EXj) = 0, a.s..

Proof of Theorem 1.1. Firstly, we prove that (1.1)⇒(1.2). Set

Xnk = −anI(Xk < −an) +XkI(|Xk| ≤ an) + anI(Xk > an), 1 ≤ k ≤ n, n ∈ N.

Then EXnk = −anP (X < −an) +EXI(|X| ≤ an) + anP (X > an). By (1.1) and 0 < an ↑, we
have

a−1
n · n |−anP (X < −an) + anP (X > an)| ≤ nP (|X| > an) → 0
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as n → ∞. Therefore, to prove (1.2), it is enough to show that
∞∑

n=1

n−1P ( max
1≤m≤n

|
m∑

k=1

(Xk − EXnk)| > εan) < ∞, ∀ ε > 0. (2.9)

Note that

( max
1≤m≤n

|
m∑

k=1

(Xk − EXnk)| > εan)

⊂
n∪

k=1

(|Xk| > an)
∪

( max
1≤m≤n

|
m∑

k=1

(Xnk − EXnk)| > εan).

Hence by (1.1), to prove (2.9), it is enough to prove that for all ε > 0,
∞∑

n=1

n−1P ( max
1≤m≤n

|
m∑

k=1

(Xnk − EXnk)| > εan) < ∞. (2.10)

For any fixed δ ∈ (0, 1/2), set

X
(1)
nk = −a[nδ]I(Xk < −a[nδ]) +XkI(|Xk| ≤ a[nδ]) + a[nδ]I(Xk > a[nδ]),

X
(2)
nk = (Xk − a[nδ])I(a[nδ] < Xk ≤ an) + (an − a[nδ])I(Xk > an),

X
(3)
nk = (Xk + a[nδ])I(−an ≤ Xk < −a[nδ])− (an − a[nδ])I(Xk < −an).

Then Xnk = X
(1)
nk +X

(2)
nk +X

(3)
nk , and {X(1)

nk , 1 ≤ k ≤ n}, {X(2)
nk , 1 ≤ k ≤ n}, {X(3)

nk , 1 ≤ k ≤ n}
are all PNQD by Lemma 1.1 of Wu [17] for every n ≥ 2. Hence to prove (2.10), it is enough to

prove that for all ε > 0 and i = 1, 2, 3,

Ii =
∞∑

n=1

n−1P ( max
1≤m≤n

|
m∑

k=1

(X
(i)
nk − EX

(i)
nk)| > εan) < ∞.

By the Markov inequality and Lemma 1.2 of Wu [17] and Lemma 2.4,

I1 ≤ C

∞∑
n=1

n−1 · a−2
n E max

1≤m≤n
|

m∑
k=1

(X
(1)
nk − EX

(1)
nk )|

2

≤ C
∞∑

n=1

n−1 · a−2
n (log n)2

n∑
k=1

E|X(1)
nk |

2

≤ C
∞∑

n=1

(log n)2a−2
n (a[nδ])

2 < ∞.

From the definition of X
(2)
nk , Lemma 2.2 and (1.1), we have

a−1
n max

1≤m≤n
|

m∑
k=1

EX
(2)
nk | = a−1

n

n∑
k=1

X
(2)
nk

= a−1
n · nE

{
(X − a[nδ])I(a[nδ] < X ≤ an) + (an − a[nδ])I(X > an)

}
≤ a−1

n · n
{
E|X|I(a[nδ] < |X| ≤ an) + anP (|X| > an)

}
→ 0, n → ∞.

Therefore, to prove I2 < ∞, it is enough to prove that for all ε > 0

I ′2 =
∞∑

n=1

n−1P (|
n∑

k=1

(X
(2)
nk − EX

(2)
nk )| > εan) < ∞.
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By the Markov inequality, Lemma 1.2 of Wu [17], (1.1) and Lemma 2.3,

I ′2 ≤ C
∞∑

n=1

n−1 · a−2
n E|

n∑
k=1

(X
(2)
nk − EX

(2)
nk )|

2

≤ C
∞∑

n=1

n−1 · a−2
n

(
n∑

k=1

E|X(2)
nk |

2

)

≤ C

∞∑
n=1

a−2
n

{
E|X|2I(|X| ≤ an) + a2nP (|X| > an)

}
< ∞.

By the same argument as I2 < ∞, we have I3 < ∞. Thus, (1.2) holds.

Secondly, we prove that (1.2)⇒ (1.1). Let {X ′, X ′
n, n ∈ N} be an independent copy of

{X,Xn, n ∈ N}, then {X ′, X ′
n, n ∈ N} and {X−X ′, Xn−X ′

n, n ∈ N} are sequences of identically
distributed PNQD random variables by Theorem 1 of Su and Wang [13], respectively. By (1.2),

∞∑
n=1

n−1P

(
max

1≤m≤n

∣∣∣∣∣
m∑

k=1

X ′
k −mEXI(|X| ≤ an)

∣∣∣∣∣ > εan

)
< ∞, ∀ ε > 0.

Hence
∞∑

n=1

n−1P

(
max

1≤m≤n

∣∣∣∣∣
m∑

k=1

(Xk −X ′
k)

∣∣∣∣∣ > εan

)
< ∞, ∀ ε > 0.

Note that for all 1 ≤ k ≤ n, n ∈ N,

|Xk −X ′
k| =

∣∣∣∣∣∣
k∑

j=1

(Xj −X ′
j)−

k−1∑
j=1

(Xj −X ′
j)

∣∣∣∣∣∣ ≤ 2 max
1≤m≤n

∣∣∣∣∣
m∑

k=1

(Xk −X ′
k)

∣∣∣∣∣ .
Thus

∞∑
n=1

n−1P

(
max

1≤k≤n
|Xk −X ′

k| > εan

)
< ∞, ∀ ε > 0. (2.11)

Since
[θj+1]∑

m=[θj ]+1

m−1P ( max
1≤k≤m

|Xk −X ′
k| > εam) ≥

[θj+1]∑
m=[θj ]+1

1

[θj+1]
P ( max

1≤k≤[θj ]
|Xk −X ′

k| > εa[θj+1])

≥ CP ( max
1≤k≤[θj ]

|Xk −X ′
k| > εa[θj+1]).

Therefore, we have by (2.11) that

lim
j→∞

P ( max
1≤k≤[θj ]

|Xk −X ′
k| > εa[θj+1]) = 0.

Hence, by Lemma 1.4 of Wu [17], we have for j large enough that

[θj ]P (|X −X ′| > εa[θj+1]) =

[θj ]∑
k=1

P (|Xk −X ′
k| > εa[θj+1])

≤ CP ( max
1≤k≤[θj ]

|Xk −X ′
k| > εa[θj+1]). (2.12)

By (2.11) and (2.12), we have
∞∑
j=1

θjP (|X −X ′| > εa[θj ]) < ∞, ∀ ε > 0.
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Therefore, by Lemma 2.1, we have
∞∑

n=1

P (|X −X ′| > εan) < ∞, ∀ ε > 0. (2.13)

Note that 0 < an ↑ ∞, by the weak symmetrization inequality (see Loève [17]), we have for n

large enough that

P (|X| > an) = P (|X −med(X) +med(X)| > an)

≤ P (|X −med(X)| > an/2) ≤ 2P (|X −X ′| > an/2).

Hence, (1.1) holds by (2.13).

Thirdly, we prove that (1.1)⇒(1.3). Let Yn = −anI(Xn < −an) + XnI(|Xn| ≤ an) +

anI(Xn > an) for n ∈ N. Then we have by Lemma 2.2 and (1.1) that

sup
n≥1

1

an

n∑
j=1

E|Yj−EYj | ≤ sup
n≥1

2

an

n∑
j=1

E|Yj | ≤ sup
n≥1

2n

an
{E|X|I(|X| ≤ an) + anP (|X| > an)} < ∞.

We also have by Lemma 2.3 and (1.1) that
∞∑

n=1

a−2
n V ar(Yn) ≤

∞∑
n=1

a−2
n E(Yn)

2 ≤
∞∑

n=1

a−2
n EX2I(|X| ≤ an) +

∞∑
n=1

P (|X| > an) < ∞.

Therefore, by Lemma 2.5,

1

an

n∑
j=1

(Yj − EYj) → 0 a.s.. (2.14)

By Lemma 1.3 of Wu [17], (1.1) implies

1

an

n∑
j=1

|Xj |I(|Xj | > aj) → 0 a.s.. (2.15)

By the Kronecker Lemma (see Loève [17]) and (1.1), we have

1

an

n∑
j=1

ajP (|Xj | > aj) → 0 a.s.. (2.16)

Thus, (1.3) holds by (2.14)∼(2.16).

Finally, we prove that (1.3)⇒ (1.1). The proof of (1.3)⇒ (1.1) is similar to that in Theorem

2.3 of Sung [14], and so we omit it.

Proof of Corollary 1.2. By Lemma 2.4 of Sung [14] and Theorem 1.1 and the same method

as in Theorem 2.3 of Sung [14], Corollary 1.2 is obtained.
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