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Minimizers of curl prescribed full trace

CHEN Jun

Abstract. This paper concerns the minimization problem of L2 norm of curl of vector fields

prescribed full trace on the boundary of a multiconnected bounded domain. The existence of

the minimizers in H1 are shown by orthogonal decompositions of vector function spaces and a

constructed auxiliary variational problem. And the H2 estimate of the type II divergence-free

part of the minimizers is established by div-curl-gradient type estimates of vector fields.

§1 Introduction

The variational problems involving operator curl are naturally proposed in the mathematical

theory of electromagnetics, liquid crystals, superconductivity and Born-Infeld theory (see for

instance [2,3,6,10,13]), while we were not intended to include all the abundant articles here.

This paper is devoted to the minimization problem of L2 norm of curl of vector fields

prescribed full trace in multiconnected bounded domains, proposed in [9, Problem 4.4],

a(u0) , inf
u∈H1(Ω,R3,u0)

∫
Ω

| curlu|2 dx. (1.1)

where u0 ∈ H1/2(∂Ω,R3), and the admissable space of vector fields

H1(Ω,R3,u0) = {u ∈ H1(Ω,R3) : u = u0 on ∂Ω}.
Our major motivation is to study the effects of boundary condition and topology of the

domain on the existence and regularity of minimizers of functionals involving operator curl.

Let us mention several closely related papers here. For the case where Ω is a simply connected

bounded domain: the existence of minimizers of (1.1) was proved by Pan and Qi [10]; Hölder

continuity of the divergence-free weak solution of several linear (elliptic or parabolic) nonho-

mogeneous systems involving curl were studied well, see for instance [6,7,11,13]; the existence,

uniqueness and regularity of the divergence-free weak solution of a parabolic p-curl system was

studied by Yin etc. [12]; in addition if Ω has no holes either, the existence and interior Hölder
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regularity of critical points (usually not divergence-free) of functionals dominated by the Lp

(p > 1) norm of curl of vector fields under two types of boundary conditions were solved by

the author and Pan [4]. For the case where Ω is a multiconnected bounded domain, Pan [9]

has shown the existence and H2 regularity of minimizers of L2 norm of curl of vector fields

prescribed tangential trace on the boundary.

The main difficulty of problem (1.1) is generated from the concurrence of full trace boundary

condition and the nontrivial topology of the domain. As we know, a natural admissable space

for the L2 norm of curlu is

H(Ω, curl) , {u ∈ L2(Ω,R3) : curlu ∈ L2(Ω,R3)},
whose trace map is continuously extended from the tangential component of the vector field

u ∈ C∞(Ω̄,R3), see for instance [5, P. 204, Theorem 2]. And thus prescribing the full trace

of the vector fields is unusual in a sense that L2 norm of curlu generally cannot control the

normal component of u on the boundary of the domain. Besides, since the topology of the

domain is closely related with the Neumann fields and Dirichlet fields (see subsection 2.1), its

nontriviality would provide a variety of the minimizers of problem (1.1).

The paper is organized as follows. Notations and assumptions on the domain are collected

in subsection 2.1, and decompositions of the spaces of vector fields and preliminary estimates

of the vector fields are given in subsections 2.2 and 2.3. Section 3 is devoted to the existence

and regularity of the minimizers.

§2 Preliminaries

2.1 Notations

Throughout the paper, the bold typeface is applied to indicate vector functions, and the

normal typeface is used for scalars. And we assume that Ω satisfies the following conditions:

(O1) Ω ⊂ R3 is a bounded domain with a Cr(r ≥ 2) boundary ∂Ω of dimension 2, and locally

situated on one side of ∂Ω; ∂Ω has a finite number of connected components denoted

by Γ0, · · · ,Γm, where Γ0 denoting the boundary of the infinite connected components of

R3 \ Ω̄.

(O2) The open set Ω which can be multiply connected, is made simply connected by n regular

cuts: Σ1, · · · ,Σn. The cuts are of dimension 2 and of Cr(r ≥ 2) such that Σi∩Σj = ∅ for

i ̸= j, and nontangential to ∂Ω hence Ω̇ = Ω \ Σ (with Σ = ∪nj=1Σj) is simply connected

and Lipschitz.

According to the above assumption, Ω is simply connected if the first Betti number n = 0,

and has no holes if the second Betti number m = 0. In the following we denote the unit outer

normal vector on ∂Ω by n. Let us mention that the dimensions of the vector spaces of Neumann
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fields and Dirichlet fields

H1(Ω) , {u ∈ L2(Ω,R3) : curlu = 0,divu = 0 in Ω, n · u = 0 on ∂Ω},

H2(Ω) , {u ∈ L2(Ω,R3) : curlu = 0,divu = 0 in Ω, n× u = 0 on ∂Ω},
(2.1)

are closely related to the Betti numbers of the domain Ω, that is,

dimH1(Ω) = n, dimH2(Ω) = m,

see for instance [5,1,9]. For simplicity in the following we also denote Hi(Ω) by Hi, i = 1, 2,

and the orthogonal complement of Hi in L2(Ω,R3) by H⊥
i respectively.

We also denote the tangential component of a vector field u on ∂Ω by uT , that is, uT =

−n× (n× u) on ∂Ω.

Here we collect some notations of the spaces of vector fields:

H1
0 (Ω,R3) = {u ∈ H1(Ω,R3) : u = 0 on ∂Ω},

H1
n(Ω, div0,n · u0) = {u ∈ H 1(Ω,R3,u0) : divu = 0 in Ω, n · u = n · u0 on ∂Ω},

H1
t (Ω, div0,u

0
T ) = {u ∈ H 1(Ω,R3,u0) : divu = 0 in Ω, uT = u0

T on ∂Ω},

H1
n0(Ω,div0) = {u ∈ H 1(Ω,R3,u0) : divu = 0 in Ω, n · u = 0 on ∂Ω},

(2.2)

where u0
T is the tangential component of u0 on ∂Ω.

2.2 Orthogonal decomposition of spaces of vector fields

To remove uncertainty originated from the topology of the domain Ω in the minimization

problem (1.1), we will need a lemma on the orthogonal decomposition of H1(Ω,R3,u0).

Lemma 2.1. The following orthogonal decompositions of H1(Ω,R3,u0) with respect to L2 norm

are established:

H1(Ω,R3,u0) = Oi(Ω,u
0)⊕Hi, i = 1, 2, (2.3)

where Oi(Ω,u
0) , H1(Ω,R3,u0) ∩H⊥

i , i = 1, 2 are both closed subsets in L2(Ω,R3).

Proof. The proofs of the two types of orthogonal decompositions are similar, and we only state

the case where i = 1. Since H1 is a closed linear subspace of L2(Ω,R3), any u ∈ H1(Ω,R3,u0)

can be decomposed uniquely in the form (see for instance [14, P. 82, Theorem 1])

u = (u− h) + h,

where u− h ∈ O1(Ω,u
0), and h ∈ H1 is obtained by

∥u− h∥L2(Ω,R3) = inf
x∈H1

∥u− x∥L2(Ω,R3).

2.3 Some inequalities for vector fields

We will need a variation of the Poincáre inequality in multiconnected domains. Although

the proof is a classical one, we write it down for reader’s convenience:
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Lemma 2.2. Assume that Ω satisfies (O1), (O2), then for any v ∈ H1(Ω,R3) ∩ H⊥
1 it holds

that

∥v∥H1(Ω,R3) ≤ C
(
∥ curlv∥L2(Ω,R3) + ∥divv∥L2(Ω,R3) + ∥n · v∥H1/2(∂Ω)

)
, (2.4)

where C is a positive constant depending only on Ω.

Proof. We argue by contradiction. Were the stated estimate false, there would exist for each

integer m = 1, 2, · · · a function vm ∈ H1(Ω,R3) ∩H⊥
1 satisfying

∥vm∥H1(Ω,R3) > m
(
∥ curlvm∥L2(Ω,R3) + ∥divvm∥L2(Ω,R3) + ∥n · vm∥H1/2(∂Ω)

)
. (2.5)

We renormalize by defining

wm =
vm

∥vm∥H1(Ω,R3)
, m = 1, 2, · · · ,

then

wm ∈ H1(Ω,R3) ∩H⊥
1 , ∥wm∥H1(Ω,R3) = 1.

After passing to a subsequence we may assume thatwm → w0 weakly inH1(Ω,R3) and strongly

in L2(Ω,R3), and thus w0 ∈ H⊥
1 . Moreover, (2.5) implies that as m→ ∞ we have

∥ curlwm∥L2(Ω,R3) → 0, ∥divwm∥L2(Ω,R3) → 0, ∥n ·wm∥H1/2(∂Ω) → 0, (2.6)

which shows w0 ∈ H1. And hence w0 = 0, say,

∥wm∥L2(Ω,R3) → 0. (2.7)

Applying the div-curl-gradient inequality in [5, Corollary 1] to wm ∈ H1(Ω,R3), together

with (2.6) and (2.7) we derive that

1 = ∥wm∥H1(Ω,R3) ≤C
(
∥wm∥L2(Ω,R3) + ∥ curlwm∥L2(Ω,R3) + ∥divwm∥L2(Ω,R3)

+ ∥n ·wm∥H1/2(∂Ω)

)
→ 0, as m→ ∞.

This contradiction establishes the estimate (2.4).

Here we list a similar lemma and omit the proof:

Lemma 2.3. Assume that Ω satisfies (O1), (O2), then for any v ∈ H1(Ω,R3) ∩ H⊥
2 it holds

that

∥v∥H1(Ω,R3) ≤ C
(
∥ curlv∥L2(Ω,R3) + ∥divv∥L2(Ω,R3) + ∥vT∥H1/2(Ω,R3)

)
, (2.8)

where C is a positive constant depending only on Ω.

§3 Main results

3.1 Existence of the minimizers

Following the idea introduced by [9], firstly we study an auxiliary minimization problem in

the orthogonal subspace O1(Ω,u
0) of H1(Ω,R3,u0):

b(u0) , inf
u∈O1(Ω,u0)

∫
Ω

| curlu|2 dx. (3.1)

Denote H̊2(Ω) , {ϕ ∈ H2(Ω) :
∫
Ω
ϕ dx = 0}, and we prove the following lemma.
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Lemma 3.1. Assume that Ω satisfies (O1), (O2), and u0 ∈ H1/2(∂Ω,R3). Then b(u0) is

achieved, and the minimizer u ∈ O1(Ω,u
0) can be decomposed orthogonally into

u = v +∇ϕ, (3.2)

where v ∈ H1
n0(Ω, div0) ∩ H⊥

1 , and ϕ ∈ H̊2(Ω) satisfying ∇ϕ = u0 − v on ∂Ω. Moreover,

choosing a minimizer u∗ ∈ O1(Ω,u
0), the set Mb of all the minimizers of problem (3.1) is

formed as

Mb = {u∗ +∇ζ : ζ ∈ H2(Ω), ∇ζ = 0 on ∂Ω}. (3.3)

Proof. Step 1. Let {uj}∞j=1 be a minimizing sequence of the auxiliary minimization problem

(3.1). We decompose uj ∈ O1(Ω,u
0) as

uj = vj +∇ϕj ,
where vj ∈ H1

n0(Ω, div0) ∩H⊥
1 , and ϕj ∈ H̊2(Ω) is the unique solution of∆ϕj = divuj in Ω,

∂ϕj
∂n

= n · u0 on ∂Ω,

which is obtained by the following minimization problem

inf
ϕ∈H1(Ω)

∫
Ω

|∇ϕ− uj |2 dx. (3.4)

Hence there exists a positive constant C such that

b(u0) + C ≥
∫
Ω

| curluj |2 dx =

∫
Ω

| curlvj |2 dx. (3.5)

Applying Lemma 2.2 to vj , together with (3.5) we derive that

∥vj∥H1(Ω,R3) ≤ C∥ curlvj∥L2(Ω,R3) ≤ C.

So after passing to a subsequence, we may assume that vj → v∗ weakly in H1(Ω,R3) and

weakly in H1/2(∂Ω,R3). And thus

∇ϕj = uj − vj → u0 − v∗ weakly in H1/2(∂Ω,R3). (3.6)

Observing that uniform control of H2 norm of ϕj is absent, we bring in a sequence of

minimization problems

λj , inf
ψ∈Dj

∫
Ω

|∇2ψ|2 dx, j = 1, 2, · · · ,

where Dj = {ψ ∈ H̊2(Ω) : ∇ψ = ∇ϕj on ∂Ω}. For each j, the minimizer exists and is unique,

denoted by ψj , since the functional is an equivalent norm for ψ ∈ Dj and strictly convex.

From (3.6) we know that ∇ψj → u0 − v∗ weakly in H1/2(∂Ω,R3), according to the trace

theorem of H1(Ω,R3) we know that {λj} is bounded. And thus {ψj} is bounded in H2(Ω,R3).

So after passing to a subsequence, we may assume that ψj → ψ∗ weakly in H2(Ω), and ∇ψ∗ =

u0 − v∗ on ∂Ω.

Now set u∗ = v∗ +∇ψ∗, and hence u∗ ∈ O1(Ω,u
0). Moreover,

b(u0) ≤
∫
Ω

| curlu∗|2 dx =

∫
Ω

| curlv∗|2 dx ≤ lim inf
n→∞

∫
Ω

| curlvj |2 dx = b(u0),

that is, b(u0) is achieved.

Step 2. Let u ∈ O1(Ω,u
0) be a minimizer of problem (3.1). The decomposition (3.2) is
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obtained by a similar way as (3.4) in step 1.

Step 3. Let u1,u2 ∈ O1(Ω,u
0) be minimizers of problem (3.1). Then we set

w = 1
2u1 +

1
2u2, so w ∈ O1(Ω,u

0), and using Cauchy’s inequality we derive that

b(u0) ≤
∫
Ω

| curlw|2 dx =
1

4

∫
Ω

(| curlu1|2 + | curlu2|2) dx+
1

2

∫
Ω

curlu1 · curlu2 dx

≤ 1

2

∫
Ω

(| curlu1|2 + | curlu2|2) dx = b(u0).

And hence curlu1 = K curlu2 a.e. in Ω for some constant K > 0. So we have

b(u0) =

∫
Ω

| curlu1|2 dx = K2

∫
Ω

| curlu2|2 dx = K2b(u0),

which tells that K = 1, and curl(u1−u2) = 0 a.e. in Ω. According to the Hodge decomposition

introduced by [5, P. 226, Corollary. 6]), there exists a unique (up to an additive constant)

ζ ∈ H2(Ω) satisfying ∇ζ = 0 on ∂Ω such that u1−u2 = ∇ζ. And thus (3.3) is established.

Remark 3.2. If we consider the auxiliary minimization problem in O2(Ω,u
0) instead of

O1(Ω,u
0) under the same condition of Lemma 3.1, by a similar argument (using Lemma 2.3

and Hodge decomposition of L2(Ω,R3) given in [5, P. 225, (1.61)] instead), the minimizers

exist and each minimizer u ∈ O2(Ω,u
0) can be decomposed orthogonally into

u = v +∇ϕ,
where v ∈ H1

t (Ω, div0,u
0
T ) ∩ H⊥

2 , and ϕ ∈ H2(Ω) ∩ H1
0 (Ω) satisfying ∇ϕ = u0 − v on ∂Ω.

Moreover, choosing a minimizer u∗ ∈ O2(Ω,u
0), the set M′

b of all the minimizers in O2(Ω,u
0)

is formed as

M′
b = {u∗ +∇ζ : ζ ∈ H2

0 (Ω)}. (3.7)

Now we are ready to solve the original minimization problem (1.1):

Theorem 3.3. Assume that Ω satisfies (O1), (O2), and u0 ∈ H1/2(∂Ω,R3). Then a(u0) =

b(u0). Moreover, choosing a minimizer u∗ ∈ O1(Ω,u
0), the set Ma of all the minimizers of

problem (1.1) is formed as

Ma =
{
u∗ + h+∇ξ : h ∈ H1, ξ ∈ H2(Ω), ∇ξ + h = 0 on ∂Ω

}
. (3.8)

Proof. Step 1. Let u ∈ O1(Ω,u
0) be a minimizer of problem (3.1), then it is also a minimizer

of problem (1.1) due to the orthogonal decomposition (2.3) of H1(Ω,u0). And thus a(u0) is

achieved.

Step 2. The Euler-Lagrange equation of the minimizer u ∈ H1(Ω,R3,u0) of (1.1) is deduced

by the conventional method: for any b ∈ H1
0 (Ω,R3) we have∫

Ω

curlu · curlbdx = 0. (3.9)

Step 3. Let u1,u2 are both minimizers of (1.1), and set w = u1 − u2 ∈ H1
0 (Ω,R3). Using
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(3.9) we derive that∫
Ω

| curlu1|2 dx =

∫
Ω

| curlu2 + curlw|2 dx

=

∫
Ω

(| curlu2|2 + 2 curlu2 · curlw + | curlw|2) dx =

∫
Ω

(| curlu2|2 + | curlw|2) dx

=

∫
Ω

(| curlu1|2 + | curlw|2) dx,

which tells that curlw = 0 in Ω. According to the orthogonal decomposition of L2(Ω,R3)

introduced by [5, P. 226, Corollary 6]), there exists a unique orthogonal decomposition

w = h+∇ξ,
where h ∈ H1, and ξ ∈ H2(Ω) unique to within an additive constant. Moreover, since w = 0

on ∂Ω, the decomposition (3.8) of the minimizers is established.

Remark 3.4. By a similar argument as Theorem 3.3 (using Hodge decomposition of L2(Ω,R3)

given in [5, P. 225, (1.61)] instead), choosing a minimizer u∗ ∈ O2(Ω,u
0), the set Ma of all

the minimizers of problem (1.1) can be formed alternatively as

Ma =
{
u∗ + h+∇ξ : h ∈ H2, ξ ∈ H2(Ω) ∩H1

0 (Ω),∇ξ + h = 0 on ∂Ω
}
. (3.10)

Remark 3.5. (i) From Lemma 3.1 and Theorem 3.3 we know that each minimizer

u ∈ H1(Ω,R3,u0) of problem (1.1) can be decomposed orthogonally into

u = v +∇η + h, (3.11)

where v ∈ H1
n0(Ω,div0) ∩ H⊥

1 , η ∈ H2(Ω) unique within an additive constant satisfying ∇η =

u0 − (v + h) on ∂Ω, and h ∈ H1.

(ii) Due to Remark 3.2 and Remark 3.4, an alternative choice of orthogonal decomposition

of each minimizer u ∈ H1(Ω,R3,u0) of problem (1.1) is formed as

u = v +∇η + h, (3.12)

where v ∈ H1
t (Ω, div0,u

0
T ) ∩H⊥

2 , η ∈ H2(Ω) ∩H1
0 (Ω) satisfies ∇η = u0 − (v + h) on ∂Ω, and

h ∈ H2.

For convenience (3.11) and (3.12) are called as type I and type II decomposition of the

minimizers of problem (1.1) respectively. Let us mention that for each type all the minimizers

own the same divergence-free part v.

3.2 Estimates of the minimizers

In this subsection we use the type II decomposition to improve the estimate of minimizers

of problem (1.1). Since curlu is dominated by curlv, and v ∈ H1
t (Ω, div0,u

0
T ) ∩H⊥

2 is a weak

solution of {
curl2 H = 0, divH = 0 in Ω,

HT = u0
T on ∂Ω,

(3.13)

derived from (3.9) and (3.12), so it is natural to obtain the following theorem.
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Theorem 3.6. Assume that Ω satisfies (O1), (O2), and u0 ∈ H1/2(∂Ω,R3). Let P be the

projection of the minimizers u of problem (1.1) into the orthogonal subspace

H1
t (Ω, div0,u

0
T ) ∩H⊥

2 . Then

∥P(u)∥H1(Ω,R3) ≤ C∥u0
T ∥H1/2(∂Ω,R3), (3.14)

where C is a positive constant depending only on Ω. Furthermore, if r ≥ 3 and u0 ∈ H3/2(Ω,R3),

then P(u) ∈ H2(Ω,R3), and there exists a positive constant C depending only on Ω such that

∥P(u)∥H2(Ω,R3) ≤ C∥u0
T ∥H3/2(∂Ω,R3). (3.15)

Proof. Step 1. Let u ∈ H1(Ω,u0) be a minimizer of problem (1.1), and let L be the mapping

from H1/2(∂Ω,R3) onto H1
t (Ω, div0,u

0
T ) ∩ H⊥

2 such that L(u0
T ) = v, where v = P(u). So we

have L(λu0
T ) = λL(u0

T ) for any λ ∈ R.
To prove (3.14), we only need to show that for any u0 ∈ H1/2(∂Ω,R3) it holds that

∥L(u0
T )∥H1(Ω,R3) ≤ C∥u0

T ∥H1/2(∂Ω,R3), (3.16)

where C > 0 is a constant depending only on Ω. Suppose (3.16) is not true. For each integer

m = 1, 2, · · · there exists a vector field u0
m ∈ H1/2(∂Ω,R3) such that

∥L(u0
m,T )∥H1(Ω,R3) > m∥u0

m,T ∥H1/2(∂Ω,R3).

Set w0
m = u0

m/∥L(u0
m,T )∥H1(Ω,R3), then ∥vm∥H1(Ω,R3) = ∥L(w0

m,T )∥H1(Ω,R3) = 1 and

1 = ∥L(w0
m,T )∥H1(Ω,R3) > m∥w0

m,T ∥H1/2(∂Ω,R3).

And thus as m→ ∞ we have

∥vm,T ∥H1/2(∂Ω,R3) = ∥w0
m,T ∥H1/2(∂Ω,R3) → 0. (3.17)

Moreover, according to the trace theorem of H1(Ω,R3), for each w0
m,T ∈ H1/2(∂Ω,R3) there

exists a wm ∈ H1(Ω,R3) such that wm = w0
m,T on ∂Ω and

∥wm∥H1(Ω,R3) ≤ C∥w0
m,T ∥H1/2(∂Ω,R3), (3.18)

where C is a positive constant independent of w0
m,T . Since vm ∈ H1

t (Ω, div0,w
0
m,T ) ∩H⊥

2

is the divergence-free part of a minimizer um of problem (1.1) in H1(Ω,R3,w0
m), it holds that

∥ curlvm∥L2(Ω,R3) = ∥ curlum∥L2(Ω,R3) ≤ ∥ curlwm∥L2(Ω,R3) ≤
√
2∥wm∥H1(Ω,R3). (3.19)

Applying Lemma 2.3 to vm ∈ H1
t (Ω, div0,w

0
m,T )∩H⊥

2 , and using (3.17)–(3.19) we obtain that

1 = ∥vm∥H1(Ω,R3) ≤ C(Ω)(∥ curlvm∥L2(Ω,R3) + ∥vm,T ∥H1/2(∂Ω,R3)) → 0, as m→ ∞,

which is a contradiction. And hence (3.16) is established.

Step 2. The proof of (3.15) is similar as step 7 of the proof of [9, Theorem 1.3], so we omit

it here.

From Remark 3.5, Theorem 3.6 and the regularity result on H2 shown in [5, P. 222, Proposi-

ton 3], we know that each minimizer of problem (1.1) is composed of a “good” regularity part

and a “bad” regularity part in gradient form.

Corollary 3.7. Assume that Ω satisfies (O1), (O2) with r ≥ 3, and u0 ∈ H3/2(∂Ω,R3). Let

u be a minimizer of problem (1.1). Then we have the following orthogonal decomposition

u = A+∇η, (3.20)
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where A ∈ H2
t (Ω,div0,u

0
T ), and η ∈ H2(Ω) ∩H1

0 (Ω) satisfies ∇η = u0 − (v + h) on ∂Ω.
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