
Appl. Math. J. Chinese Univ.
2020, 35(2): 141-156

Parallel-batch scheduling with deterioration and rejection

on a single machine

LI Da-wei LU Xi-wen∗

Abstract. The single machine parallel-batch scheduling with deteriorating jobs and rejection

is considered in this paper. A job is either rejected, in which a rejection penalty should be paid,

or accepted and processed on the machine. Each job’s processing time is an increasing linear

function of its starting time. The machine can process any number of jobs simultaneously as a

batch. The processing time of a batch is equal to the largest processing time of the jobs in the

batch. The objectives are to minimize the makespan and the total weighted completion time,

respectively, under the condition that the total rejection penalty cannot exceed a given upper

bound Q. We show that both problems are NP -complete and present dynamic programming

algorithms and fully polynomial time approximation schemes (FPTASs) for the considered

problems.

§1 Introduction

In traditional scheduling problems, it is often assumed that each machine can process at most

one job at a time, the processing time of a given job is fixed and all the jobs have to be processed

on the machine. However, some jobs may be processed together as a batch in the real world. The

motivation for batching jobs is a gain in efficiency: it may be cheaper or faster to process jobs in a

batch than to process them individually. Examples can be found in chemical, food and mineral

processing, wafer fabrication process, etc. Furthermore, the actual processing time of a job

grows when it is scheduled for processing later since the machine efficiency deteriorates over time

due to machine usage and aging, which more accurately reflects real-life production. Examples

can be found in steel production, fire fighting, financial problems, military problems, etc, where

any delay in processing a task increases its completion time. Furthermore, in many practical

cases, the scheduler has to reject or outsource some jobs with the larger processing times that

Received: 2018-07-11. Revised: 2020-01-15.
MR Subject Classification: 90B35, 90C39.
Keywords: parallel-batch scheduling, rejection, deterioration, FPTAS, NP -complete.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-020-3624-2.
Supported by the National Natural Science Foundation of China (11871213, 71431004).
*Corresponding author.

142 Appl. Math. J. Chinese Univ. Vol. 35, No. 2

bring the relatively smaller profits. Examples can be found in make-to-order production systems

with limited production capacity and tight delivery requirements.

Parallel-batch scheduling problems have been extensively investigated for many years. The

bounded version is motivated by the burn-in operations in semiconductor manufacturing. The

original model of the bounded parallel-batch scheduling problem was introduced by Lee et al.

in [8]. Brucker et al. [2] provided a systematic complexity analysis of parallel-batch scheduling

problems on a single machine with respect to various regular objective functions. Lu et al. [11]

considered the bound single machine parallel-batch scheduling problem with release dates and

rejection to minimize the sum of makespan of the accepted jobs and the total rejection penalty.

They gave a 2-approximation algorithm and a polynomial-time approximation algorithm for

the general problem. Liu et al. [10] proposed two heuristics for the problem of scheduling

jobs with release dates on parallel-batch processing machines to minimize the makespan and

analyzed their worst-case performance ratios. For more papers on this topic, the reader can

refer to Zhang et al. [23], Gao and Yuan [6] and so on.

Scheduling problems with time-dependent processing times have received more attention in

recent years. Cheng et al. [3] presented a survey on scheduling problems with time-dependent

processing times. Cheng and Sun [4] considered several single machine scheduling problems

in which the processing time of a job is a linear function of its starting time and jobs can be

rejected by paying penalties. The objectives are to minimize the makespan, the total weighted

completion time and the maximum lateness/tardiness plus the total penalty of the rejected jobs.

They showed that all these problems are NP-hard and designed algorithms based on dynamic

programming. More works on scheduling problems with deteriorating jobs can be seen in Pei

et al. [14], Yin et al. [21] and so on.

Scheduling problems with rejection are quite interesting both on practical and theoretical

research. Researchers have paid a great deal of attention to them over the last decade. Bartal

et al. [1] first introduced the notion of rejection. They considered the problem of minimiz-

ing the sum of makespan and total rejection penalty on identical parallel machines. Zhang et

al. [22] investigated the single machine scheduling problem with release dates and rejection.

The objective is to minimize the sum of makespan of the accepted jobs and the total rejection

penalty of the rejected jobs. Lu et al. [12] considered the single-machine scheduling problem

with rejection. The objective is to minimize the sum of the makespan of the accepted jobs and

the total rejection penalty of the rejected jobs. They presented a polynomial-time algorithm

for the off-line problem. Furthermore, they gave two on-line algorithms with the best-possible

competitive ratio for the on-line problem, respectively. Shabtay et al. [17] provided a compre-

hensive survey for most existing off-line scheduling problems with rejection. For more off-line

models and results on this topic, the reader can refer to Shabtay and Oran [18], Thevenin et

al. [19], Zhang et al. [24] and so on.

Research on classical batch scheduling which is relevant to our model has been conducted

by different researchers. Qi et al. [15] considered the unbounded parallel-batch scheduling

problem with deteriorating jobs on a single machine. They gave polynomial time algorithms

LI Da-wei, LU Xi-wen. Parallel-batch scheduling with deterioration and rejection... 143

for minimizing maximum cost, the number of tardy jobs, and the total weighted completion

time and proved the NP-hardness for minimizing the weighted number of tardy jobs. Li et

al. [9] studied the problem of scheduling n deteriorating jobs with release dates on a single

batching machine to minimize the makespan. Both the bounded and unbounded issues have

been investigated. For the unbounded model, they gave a dynamic programming algorithm in

O(n log n) time and for the bounded model they showed that the problem is binary NP -hard

even if there are only two distinct release dates. Several algorithms were proposed for both

unbounded and bounded models. He et al. [5] considered the single machine parallel-batch

scheduling with rejection. Two bi-criteria problems were considered and several algorithms

were proposed for both unbounded and bounded models. Kong et al. [7] studied the bounded

parallel-batch scheduling problem considering job rejection, deteriorating jobs, setup time, and

non-identical job sizes. The objective is to minimize the sum of the makespan of the accepted

jobs and the total rejection penalty of the rejected jobs. When the jobs have the identical size,

They gave an dynamic programming algorithms. When the jobs have non-identical size, they

presented a hybrid algorithm to obtain satisfactory solutions within reasonable time. Zou and

Miao [25] studied parallel-batch scheduling of deteriorating jobs with release dates and rejection

on a single machine, the objective is to minimize the sum of makespan of the accepted jobs and

total rejection penalty of the rejected jobs. They gave two dynamic programming algorithms

and an FPTAS. In this paper, we mainly study two constrained versions:

1. Minimize the makespan under the condition that the total rejection cost no more than a

given upper bound Q.

2. Minimize the total weighted completion time under the condition that the total rejection

cost does not exceed a given upper bound Q.

The remainder of this paper is organized as follows. In Section 2, we give a formal description

of the considered problems and the relevant notations. In Section 3, for the problem to minimize

the makespan subject to an upper bound on the total rejection penalty, we first show that it

is NP -complete, then give a dynamic programming algorithm and a fully polynomial time

approximation scheme (FPTAS). In Section 4, for problem to minimize the total weighted

completion time subject to an upper bound on the total rejection penalty, we also first show

that it is NP -complete, and then give a dynamic programming algorithm and an FPTAS. In

Section 5, we summarize the results and give some topics for future research.

§2 Problem Formulation and Notation

The scheduling problem considered in this paper can be described as follows. Given a set

of independent and non-preemptively deteriorating jobs J = {J1, J2, · · · , Jn}. Job Jj is to be

scheduled and processed on a single batching machine or rejected by paying a rejection penalty.

Each job Jj (j = 1, 2, · · · , n) is associated with a deteriorating rate bj , a weight wj , a rejection

penalty ej and a release date rj . The processing time pj of job Jj is an increasing linear function

of its starting time, given by pj = bjt, where t ≥ rj is the starting time of job Jj . The batching

144 Appl. Math. J. Chinese Univ. Vol. 35, No. 2

machine can process up to b jobs simultaneously. The processing time of a batch is equal to

the largest processing time of the jobs in the batch. Whenever a set of jobs are processed

on the machine in batch mode, the jobs in the batch have to start at the same time and can

only be taken off the machine when the longest job in the set has completed its processing.

This type of batching is referred to as parallel-batch or p-batch. Let A and R be the set of

accepted jobs and the set of rejected jobs, respectively. A schedule σ can be simply denoted

by a sequence of batches σ = (B1, B2, · · · , Bh), where each batch Bk (k = 1, 2, · · · , h) is a set

of jobs. Let S(Bk, σ), C(Bk, σ), b(Bk) = max{bj : Jj ∈ Bk}, r(Bk) = max{rj : Jj ∈ Bk} and

p(Bk) = max{pj : Jj ∈ Bk} be the starting time, the completion time, the deteriorating rate,

the release date and the processing time of a batch Bk in a schedule σ, respectively. Note that

the completion time of job Jj ∈ Bk in σ is Cj(σ) = C(Bk, σ). Unless ambiguity would result,

we simplify S(Bk, σ), C(Bk, σ) and Cj(σ) to S(Bk), C(Bk) and Cj , respectively.

In this paper, we study the unbounded parallel-batch scheduling with deteriorating jobs

and rejection. The considered problems can be denoted as 1|rej, p − batch, pj = bjt, rj , b =

∞,
∑

Jj∈R ej ≤ Q|F , where F ∈ {Cmax,
∑

Jj∈A wjCj}. We study the computational complex-

ities of these problems and present dynamic programming algorithms and FPTASs for the

considered problems.

§3 Scheduling to Minimize the Makespan

3.1 NP -completeness

For 1|p − batch, pj = bjt, rj , b = ∞|Cmax, Li et al. [9] showed that there exists an optimal

batch processing order σ = (B1, B2, · · · , Bh) such that if two jobs Ji and Jj belong to distinct

batches with Ji ∈ Bx, Jj ∈ By, and x < y, then bi > bj . Thus we can get the following lemma.

Lemma 3.1. For the problem 1|rej, p − batch, pj = bjt, rj , b = ∞,
∑

Jj∈R ej ≤ Q|Cmax, there

exists an optimal schedule π = (B∗
1 , B

∗
2 , · · · , B∗

h) with min{bk : Jk ∈ B∗
i } ≥ max{bk : Jk ∈ B∗

j }
for any i < j.

In this subsection we will show that 1|rej, p−batch, pj = bjt, rj , b = ∞,
∑

Jj∈R ej ≤ Q|Cmax

is computationally intractable by performing a reduction from the following strongly NP -

complete Product Partition problem (Ng et al. [13]).

Product Partition: Given a set of t positive integers a1, a2, · · · , at, is there a subset

X ⊆ M := {1, 2, · · · , t} such that
∏

i∈X ai =
∏

i∈M\X ai?

Theorem 3.1. 1|rej, p− batch, pj = bjt, rj , b = ∞,
∑

Jj∈R ej ≤ Q|Cmax is NP -complete.

Proof. The decision version of the scheduling problem is clearly NP . Given an arbitrary in-

stance I of Product Partition, in the instance I we can omit j ∈ M with aj = 1 since it will

not affect the product of any subset. Thus we can assume that aj ≥ 2 for every j ∈ M . In

addition, we can assume that
∏t

i=1 ai = B2 and B is an integer. Otherwise it can immediate-

ly be answered that there is no solution to the instance. We construct an instance I ′ of the

scheduling problem as follows:

LI Da-wei, LU Xi-wen. Parallel-batch scheduling with deterioration and rejection... 145

• n = 2t jobs.

• For each i with 1 ≤ i ≤ t, we define two jobs J2i−1 and J2i with

r2i−1 = B(i−1)(2t−i+2), b2i−1 = B2(t−i+1) − 1, e2i−1 = lnB + 1,

r2i = B(i−1)(2t−i+2), b2i = B2(t−i+1)ai − 1, e2i = ln ai.

• The upper bound is defined by Q = lnB.

• The threshold value is defined by Y = Bt(t+1)+1.

• The decision asks whether there is a schedule π such that Cmax ≤ Y under the constraint

that
∑

Jj∈R ej ≤ Q.

It can be observed that the above construction can be done in polynomial time. Assume

first that there exists a subset X such that
∏

i∈X ai =
∏

i∈M\X ai for the instance I. We can

construct a schedule for instance I ′ such that Cmax ≤ Y and
∑

Jj∈R ej ≤ Q by the following

way: If i ∈ X, we assign jobs J2i−1 and J2i as a batch Bi. If i /∈ X, i.e., i ∈ M\X, we assign

job J2i−1 as a batch Bi and reject job J2i for i = 1, 2, · · · , t. Then process the batches in the

order of B1, B2, · · · , Bt. It is not hard to verify that Cmax = max
1≤i≤t

{r(Bi)
∏t

j=i(1 + b(Bj))} =

Bt(t+1)+1 = Y and
∑

Jj∈R ej =
∑

i/∈X ei = ln(
∏

i/∈X ai) = lnB = Q.

Conversely, suppose that there exists a schedule π for instance I ′ such that Cmax ≤ Y =

Bt(t+1)+1 and
∑

Jj∈R ej ≤ Q = lnB. Based on Lemma 3.1, we can assume that schedule π

satisfies Lemma 3.1. We will show that there is a subset X such that
∏

i∈X ai =
∏

i∈M\X ai

for instance I. Denote by A and R the sets of accepted jobs and rejected jobs, respectively. We

have the following claims.

Claim 1: Job J2i−1 ∈ A for each 1 ≤ i ≤ t.

In fact, if there exists some job J2i−1 ∈ R with 1 ≤ i ≤ t, then we have
∑

Jj∈R ej ≥ e2i−1 =

lnB + 1 > Q. A contradiction yields. Thus, we have J2i−1 ∈ A for each 1 ≤ i ≤ t.

Claim 2: For each pair i and j with 1 ≤ i < j ≤ t, J2i−1 and J2j−1 cannot be contained in

the same batch.

If Claim 2 is wrong, we can assume that J2i−1 and J2j−1 is the last pair of jobs containing in

a same batch for 1 ≤ i < j, i.e., jobs J2j+1, J2j+3, · · · , J2t−1 are contained in different batches.

Then we have

Cmax ≥ max{r2j−1 + p2i−1, r2j+1}+
∑t

i=j+1 p2i−1

= max{B(j−1)(2t−j+2)B2(t−i+1), Bj(2t−j+1)}B(t−j)(t−j+1)

≥ B(j−1)(2t−j+2)+2(t−i+1)+(t−j)(t−j+1)

≥ B(j−1)(t+1)+(t−j+1)(t−1)+2(t−j+1)+2

= Bt(t+1)+2 > Y.

(1)

A contradiction yields. The penultimate inequality can be justified by i < j, i.e., i ≤ j − 1.

Claim 3: The number of batches in the schedule π is exactly t.

Let the number of batches in the schedule π be h. By Claim 2, we can know that h ≥ t. If

h > t, there exists at least a job Jl ∈ A for 2(i− 1) < l < 2i+ 1 such that Jl ∈ Bt+1. Then we

146 Appl. Math. J. Chinese Univ. Vol. 35, No. 2

have Cmax ≥
∏h

k=1(1+ b(Bk)) ≥
∏t

k=1(1+ b2k−1)(1+ bl) > Bt(t+1)B2(t−i+1) > Bt(t+1)+2 > Y .

A contradiction yields.

Claim 4: If J2i ∈ A, then we have J2i ∈ Bi.

Assuming to the contrary that if there exists a job J2i ∈ A such that J2i /∈ Bi. According

to Claims 1-3, we can know that J2i−1 ∈ Bi for 1 ≤ i ≤ t. If J2i ∈ A, combining with Lemma

3.1, we can get that J2i ∈ Bk for 1 ≤ k ≤ i.

If i > k, we have

Cmax ≥ max{r2i + p2k−1, r2k+1}+
t∑

i=k+1

p2i−1

≥ max{B(i−1)(2t−i+2)B2(t−k+1), Bk(2t−k+1)}
t∏

i=k+1

(1 + b2i−1)

≥ B(i−1)(2t−i+2)B2(t−k+1)B(t−k)(t−k+1)

≥ Bk(2t−k+1)+2(t−k+1)+(t−k)(t−k+1)

= Bt2+3t−2k+2

≥ Bt(t+1)+4

> Y

a contradiction.

By Claims 2 and 4, we have Bi = {J2i−1, J2i} if J2i ∈ A, and Bi = {J2i−1} if J2i ∈ R. Let

X = {i : J2i ∈ A}. We are ready to show that X is a solution of instance I.

Since
∑

Jj∈R ej ≤ Q = lnB, we have
∏

i/∈X ai ≤ B. If
∏

i/∈X ai < B then we have Cmax =

max
1≤i≤t

{r(Bi)
∏t

j=i(1 + b(Bj))} = Bt(t+1)
∏

i∈X ai > Bt(t+1)+1 = Y . A contradiction yields.

Hence, we have
∏

i∈X ai = B, and X is the required subset of instance I. Hence, Theorem 3.1

is true.

3.2 Dynamic Programming Algorithm

Based on the above Lemma 3.1, we can only consider the schedules in which the accepted

jobs are processed in non-increasing order of the deteriorating rates. Assume first that jobs

have been indexed such that b1 ≥ b2 ≥ · · · ≥ bn, then we present a dynamic programming

algorithm for 1|rej, p− batch, pj = bjt, rj , b = ∞,
∑

Jj∈R ej ≤ Q|Cmax.

Let function A(j, k, t) be the minimum total rejection penalty when the jobs in consideration

are J1, J2, · · · , Jj , where k is the smallest index of the jobs in the last batch, t is the makespan

of the accepted jobs among J1, J2, · · · , Jj and job Jj is accepted.

Let function R(j, k, t) be the minimum total rejection penalty when the jobs in consideration

are J1, J2, · · · , Jj , where k is the smallest index of the jobs in the last batch, t is the makespan

of the accepted jobs among J1, J2, · · · , Jj and job Jj is rejected.

In what follows we describe the recursion formulas for A(j, k, t) and R(j, k, t), we distinguish

the following four cases for Jj−1 and Jj .

LI Da-wei, LU Xi-wen. Parallel-batch scheduling with deterioration and rejection... 147

Case 1. Jj−1 and Jj are rejected. In the corresponding schedule for J1, J2, · · · , Jj−1, the

smallest index of the jobs in the last batch is k and the makespan of the accepted jobs is

t. Since job Jj is rejected, we have R(j, k, t) = R(j − 1, k, t) + ej .

Case 2. Jj−1 is accepted and Jj is rejected. In the corresponding schedule for J1, J2, · · · , Jj−1,

the smallest index of the jobs in the last batch is k and the makespan of the accepted

jobs is t. Since job Jj is rejected, we have R(j, k, t) = A(j − 1, k, t) + ej .

Case 3. Job Jj is accepted and processed in the current batch, i.e., k < j. In the corresponding

schedule for J1, J2, · · · , Jj−1, if the completion time of the last batch is t′, rk(1 + bk) ≤
t′ ≤ t, then the starting time of the last batch is t′

1+bk
. Since Jj is accepted and processed

with the jobs in the last batch, the smallest index of the jobs in the last batch is still k

and the starting time of the last batch is max{ t′

1+bk
, rj}. Then we have that

A(j, k, t) = min

{
min{A(j − 1, k, t′) : rk(1 + bk) ≤ t′ ≤ t},
min{R(j − 1, k, t′) : rk(1 + bk) ≤ t′ ≤ t},

where t = max{ t′

1+bk
, rj}(1 + bk) = max{t′, rj(1 + bk)}.

Case 4. Job Jj is accepted and processed in a new batch, i.e., k = j. In the corresponding

schedule for J1, J2, · · · , Jj−1, if the smallest index of the jobs in the last batch Bq is k′,

and the completion time of batch Bq is t′′. The release date of job Jj must be larger than

the starting time of batch Bq; otherwise, job Jj can be included in batch Bq. Therefore,

we have rj > t′′

1+bk′
, or t′′ < rj(1 + bk′). Since job Jj is accepted and processed in a new

batch, the starting time of the last batch is max{t′′, rj} and the smallest index of the jobs

in the last batch is j. Then we have

A(j, k, t) = min

{
min{A(j − 1, k′, t′′) : 1 ≤ k′ ≤ j − 1, rk′(1 + bk′) ≤ t′′ ≤ rj(1 + bk′)},
min{R(j − 1, k′, t′′) : 0 ≤ k′ ≤ j − 2, rk′(1 + bk′) ≤ t′′ ≤ rj(1 + bk′)},

where t = max{t′′, rj}(1 + bj).

Combining the above four cases, we design the following dynamic programming algorithm

DP1.

Dynamic programming algorithm DP1

The initial conditions:

A(1, k, t) =

{
0, if k = 1, t = r1(1 + b1);

+∞, otherwise.

R(1, k, t) =

{
e1, if k = 0, t = 0;

+∞, otherwise.

The recursive function:

If k < j, then

148 Appl. Math. J. Chinese Univ. Vol. 35, No. 2

A(j, k, t) = min

{
min{A(j − 1, k, t′) : rk(1 + bk) ≤ t′ ≤ t},
min{R(j − 1, k, t′) : rk(1 + bk) ≤ t′ ≤ t},

where t = max{ t′

1+bk
, rj}(1 + bk) = max{t′, rj(1 + bk)}.

If k = j, then

A(j, k, t) = min

{
min{A(j − 1, k′, t′′) : 1 ≤ k′ ≤ j − 1, rk′(1 + bk′) ≤ t′′ ≤ rj(1 + bk′)},
min{R(j − 1, k′, t′′) : 0 ≤ k′ ≤ j − 2, rk′(1 + bk′) ≤ t′′ ≤ rj(1 + bk′)},

where t = max{t′′, rj}(1 + bj).

Furthermore,

R(j, k, t) = min{R(j − 1, k, t) + ej , A(j − 1, k, t) + ej}
The optimal value is given by

min{t : 0 ≤ k ≤ n, 0 ≤ t ≤ rmax

∏n
j=1(1 + bj),min{A(n, k, t), R(n, k, t)} ≤ Q}.

Theorem 3.2. Algorithm DP1 solves problem 1|rej, p− batch, pj = bjt, rj , b = ∞,
∑

Jj∈R ej ≤
Q|Cmax in O((nrmax

∏n
j=1(1 + bj))

2) time.

Proof. The correctness of algorithm DP1 is guaranteed by the above discussion. The recursive

function has at most O(n2rmax

∏n
j=1(1+ bj)) states. If the job is accepted and processed in the

current batch, i.e., j > k, each iteration costs O(rmax

∏n
j=1(1+ bj)) time. If the job is accepted

and processed in a new batch, i.e., k = j, each iteration costs O(nrmax

∏n
j=1(1 + bj)) time;

otherwise, each iteration costs a constant time. Hence, the total running time is bounded by

O((nrmax

∏n
j=1(1 + bj))

2).

3.3 Fully Polynomial Time Approximation Scheme

An algorithm A is a (1 + ρ)-approximation algorithm for a minimization problem if it

produces a solution that is at most of (1+ρ) times the optimal solution. A family of algorithms

{Aϵ : ϵ > 0} is called a fully polynomial time approximation scheme (FPTAS), if for each

ϵ > 0, the algorithm Aϵ is a (1+ ϵ)-approximation algorithm running in polynomial time in the

input size and 1/ϵ.

An FPTAS can be designed by rounding the input data of the instance or iteratively thin-

ning out the state space of the dynamic program. A general technique for getting an FPTAS

from a dynamic program was developed by Woeginger in [20]. In this subsection, we present an

FPTAS by considering the modified deteriorating rates and the modified release dates of the

scheduled jobs which involves a geometric rounding technique developed by Sengupta in [16].

And the rounding technique is stated as follows:

For any ϵ′ > 0 and x ≥ 1, if (1 + ϵ′)k−1 < x < (1 + ϵ′)k, then we define ⌈x⌉ϵ′ = (1 + ϵ′)k,

⌊x⌋ϵ′ = (1 + ϵ′)k−1. If x is an exact power of (1 + ϵ′), then ⌈x⌉ϵ′ = ⌊x⌋ϵ′ = x. Note that

⌈x⌉ϵ′ ≤ (1 + ϵ′)x for any x ≥ 1.

For any ϵ > 0, let ϵ′ = ϵ
2(n+1) , we define the modified deteriorating rates and the modified

release dates as b′j = ⌈1+bj⌉ϵ′ −1, r′j = ⌈rj⌉ϵ′ . Let Lj and Rj denote the exponent of 1+b′j and

r′j , respectively, i.e., 1 + b′j = (1 + ϵ′)Lj , r′j = (1 + ϵ′)Rj , then Lj =
log⌈1+bj⌉ϵ′
log(1+ϵ′) = O(

n log(1+bj)
ϵ),

Rj =
log⌈rj⌉ϵ′
log(1+ϵ′) = O(

n log rj
ϵ).

LI Da-wei, LU Xi-wen. Parallel-batch scheduling with deterioration and rejection... 149

Lemma 3.2. For any 0 < ϵ ≤ 2, the optimal objective function value for problem 1|rej, p −
batch, pj = bjt, rj , b = ∞,

∑
Jj∈R ej ≤ Q|Cmax with the modified deteriorating rates b′j and the

modified release dates r′j is at most of (1 + ϵ) times the optimal objective function value for

problem 1|rej, p− batch, pj = bjt, rj , b = ∞,
∑

Jj∈R ej ≤ Q|Cmax.

Proof. Assume that σ = (B1, B2, · · · , Bh) is an optimal batch processing order of the accepted

jobs for problem 1|rej, p− batch, pj = bjt, rj , b = ∞,
∑

Jj∈R ej ≤ Q|Cmax. Correspondingly, let

σ′ = (B′
1, B

′
2, · · · , B′

h) be a batch processing order of the accepted jobs for problem 1|rej, p −
batch, pj = bjt, rj , b = ∞,

∑
Jj∈R ej ≤ Q|Cmax with the modified deteriorating rates b′j and the

modified release dates r′j , where the jobs in Bi and B′
i have the same index. Then we have that

C ′
max = max

1≤i≤m
{r′(B′

i)
∏h

j=i(1 + b′(B′
j))}

≤ (1 + ϵ′) max
1≤i≤m

{r(Bi)
∏h

j=i(1 + b′(B′
j))}

≤ (1 + ϵ′)n+1 max
1≤i≤m

{r(Bi)
∏h

j=i(1 + b(Bj))}

≤ (1 + ϵ)C∗
max,

(2)

where C ′
max is the objective function value of schedule σ′ and C∗

max is the objective function

value of schedule σ.

Consequently, C ′∗
max ≤ C ′

max ≤ (1+ ϵ)C∗
max, where C

′∗
max is the optimal value of the problem

1|rej, p − batch, pj = bjt, rj , b = ∞,
∑

Jj∈R ej ≤ Q|Cmax with the modified deteriorating rates

b′j and the modified release dates r′j .

Based on algorithmDP1, we can design a dynamic program for problem 1|rej, p−batch, p′j =

b′jt, r
′
j , b = ∞,

∑
Jj∈R ej ≤ Q|Cmax. Since the deteriorating rate and the release date for any

jobs are of the form (1+ϵ′)h, so wan can get that the makespan is the form of (1+ϵ′)l and store

the exponent l instead of the actual value t in the state of algorithm DP1. It’s easily know

that the maximum makespan CMAX can be obtained if all the jobs are accepted and scheduled

consecutively each job as a batch after all the jobs arrive, i.e., CMAX = r′max

∏n
j=1(1 + b′j) =

(1+ ϵ′)Rmax+
∑n

j=1 Lj . Thus, it is easy to see that l range from −1 to L, where L is the smallest

integer such that (1 + ϵ′)L ≥ (1 + ϵ′)Rmax+
∑n

j=1 Lj . Hence, L = O(
n log(

∏n
j=1(1+bj)rmax)

ϵ).

According to the above analysis and algorithm DP1, we can get the following conclusion.

Theorem 3.3. The algorithm above can solve the problem 1|rej, p − batch, pj = bjt, rj , b =

∞,
∑

Jj∈R ej ≤ Q|Cmax with the modified deteriorating rates and the modified release dates in

O(n2L2) = O(n
4

ϵ2 log2(
∏n

j=1(1 + bj)rmax)) time.

Proof. The correctness of algorithm is guaranteed by the above discussion. Based on the

above analysis and Theorem 3.2, the algorithm can be run in O(n2L2) time, where L =

O(
n log(

∏n
j=1(1+bj)rmax)

ϵ).

Combining Lemma 3.2 and Theorem 3.3, we can easily get the following conclusion.

Theorem 3.4. The algorithm above is an FPTAS for problem 1|rej, p−batch, pj = bjt, rj , b =

∞,
∑

Jj∈R ej ≤ Q|Cmax.

150 Appl. Math. J. Chinese Univ. Vol. 35, No. 2

Proof. Let π′∗ be an optimal schedule for problem 1|rej, p−batch, pj = b′jt, r
′
j , b = ∞,

∑
Jj∈R ej ≤

Q|Cmax. Replace b
′
j and r′j with bj and rj , j = 1, 2, · · · , n respectively, we can get a new sched-

ule π. Based on Lemma 3.2, we have Cmax ≤ C ′∗
max ≤ (1 + ϵ)C∗

max, where C ′∗
max is the value of

the optimal schedule π′∗ for problem 1|rej, p − batch, pj = b′jt, r
′
j , b = ∞,

∑
Jj∈R ej ≤ Q|Cmax,

Cmax is the corresponding objective function value of the origin problem under the schedule π

and C∗
max is the optimal value of the origin problem. Combining with Theorem 3.3, we know

the algorithm is an FPTAS.

§4 Scheduling to Minimize the Total Weighted Completion Time

4.1 NP -completeness

When rejection is not allowed, Qi et al. [15] showed that the non-decreasing order of bj is

optimal for problem 1|p− batch, pj = bjt, rj = t0, b = ∞|
∑

wjCj , which leads to the following

lemma.

Lemma 4.1. For problem 1|rej, p−batch, pj = bjt, rj = t0, b = ∞,
∑

Jj∈R ej ≤ Q|
∑

Jj∈A wjCj,

there exists an optimal schedule π = (B∗
1 , B

∗
2 , · · · , B∗

h) with max{bk : Jk ∈ B∗
i } < min{bk : Jk ∈

B∗
j } for any i < j.

Now we will show that the problem 1|rej, p − batch, pj = bjt, rj = t0, b = ∞,
∑

Jj∈R ej ≤
Q|

∑
Jj∈A wjCj is NP -complete by reducing the Product Partition problem to our problem in

polynomial time. Without loss of generality, we can assume that the parameter t > 4 which is

defined in Product Partition problem.

Theorem 4.1. 1|rej, p − batch, pj = bjt, rj = t0, b = ∞,
∑

Jj∈R ej ≤ Q|
∑

Jj∈A wjCj is NP -

complete.

Proof. We show the result by reducing the Product Partition problem, which is strongly NP -

complete [13], to our problem in polynomial time.

The decision version of the scheduling problem is clearly NP. Given an arbitrary instance I

of Product Partition, we construct an instance I ′ of the scheduling problem as follows:

• n = 2t+ 1 jobs, t0 = 1.

• For each i with 1 ≤ i ≤ t, we define two jobs J2i−1 and J2i with

b2i−1 = B4i − 1, w2i−1 = B2t(t+1)−2i(i+1), e2i−1 = lnB + 1.

b2i = B4iai − 1, w2i = B2t(t+1)−2i(i+1), e2i = ln ai.

• For j = 2t+ 1, we only have one job J2t+1 with

b2t+1 = B4(t+1) − 1, w2t+1 = B−2−4t, e2t+1 = lnB + 1.

• The upper bound is defined by Q = lnB.

• The threshold value is defined by Y = (2t+B2)B2t(t+1)+1.

LI Da-wei, LU Xi-wen. Parallel-batch scheduling with deterioration and rejection... 151

• The decision asks whether there is a schedule π such that
∑

Jj∈A wjCj ≤ Y under the

constraint that
∑

Jj∈R ej ≤ Q.

It can be observed that the above construction can be done in polynomial time. Assume first

that there exists a subset X such that
∏

i∈X ai =
∏

i∈M\X ai for instance I. We can construct

a schedule for instance I ′ such that
∑

Jj∈A wjCj ≤ Y and
∑

Jj∈R ej ≤ Q by the following way:

If i ∈ X, we assign jobs J2i−1 and J2i as a batch Bi. If i /∈ X, i.e., i ∈ M\X, we assign job

J2i−1 as a batch Bi and reject job J2i for i = 1, 2, · · · , t. We also assign the job J2t+1 as a batch

Bt+1. Then process the batches in the order of B1, B2, · · · , Bt+1. It is not hard to verify that∑
Jj∈A wjCj =

∑t+1
i=1

∑
Jj∈Bi

wj

∏i
k=1(1 + b(Bk))

≤ 2B2t(t+1)
∑

j∈X(
∏

i∈X,i≤j

ai) +B2t(t+1)
∑

j /∈X(
∏

i∈X∪{0},i<j

ai)

+B2t(t+1)+3

≤ (2t+B2)B2t(t+1)+1 = Y

(3)

where a0 = 1, and
∑

Jj∈R ej =
∑

i/∈X ei = ln(
∏

i/∈X ai) = lnB = Q.

Conversely, suppose that there exists a schedule π for instance I ′ such that
∑

Jj∈A wjCj ≤ Y

and
∑

Jj∈R ej ≤ Q. Based on Lemma 4.1, we can assume that schedule π satisfies Lemma 4.1.

We will show that there is a subset X such that
∏

i∈X ai =
∏

i∈M\X ai for instance I. Denote

by A and R the sets of accepted jobs and rejected jobs, respectively. We have the following

claims.

Claim 5: Job J2i−1 ∈ A for each 1 ≤ i ≤ t+ 1.

In fact, if there exists some job J2i−1 ∈ R with 1 ≤ i ≤ t + 1, then we have
∑

Jj∈R ej ≥
e2i−1 = lnB + 1 > Q. A contradiction yields. Thus, we have J2i−1 ∈ A for each 1 ≤ i ≤ t+ 1.

Claim 6: For each pair i and j with 1 ≤ i < j ≤ t + 1, J2i−1 and J2j−1 cannot be contained

in the same batch.

If Claim 6 is wrong, we can assume that job J2i−1 and J2j−1 is the first pair of jobs containing

in a same batch, 1 ≤ i < j, i.e., jobs J1, J3, · · · , J2i−3 are contained in different batches. Then

we have
∑

Jj∈A wjCj ≥ w2i−1C2i−1 > Y . A contradiction yields.

Claim 7: The number of batches in the schedule π is exactly t+ 1.

Let the number of batches in the schedule π be h. By Claim 6, we can know that h ≥ t+1.

If h > t + 1, by Lemma 4.1, we can get that J2t+1 ∈ Bh. Then we have
∑

Jj∈A wjCj ≥
w2t+1C2t+1 ≥ B−2−4t

∏t+1
i=1(1 + b2i−1)(1 + bk) ≥ B2t(t+1)+6 > Y . A contradiction yields.

Claim 8: If J2i ∈ A, then we have J2i ∈ Bi.

Assume to the contrary that there exists a job J2i ∈ A such that J2i /∈ Bi. According to

Claims 5-7, we can know that J2i−1 ∈ Bi for 1 ≤ i ≤ t+ 1. If J2i ∈ A, combining with Lemma

4.1, we can get that J2i ∈ Bk for i ≤ k ≤ t+ 1.

If i < k, we have

∑
Jj∈A wjCj > w2iC2i ≥ B2t(t+1)−2i(i+1)B2k(k+1) ≥ B2t(t+1)+4(i+1) > Y

a contradiction.

152 Appl. Math. J. Chinese Univ. Vol. 35, No. 2

By Claims 6 and 8, we have Bi = {J2i−1, J2i} if J2i ∈ A, and Bi = {J2i−1} if J2i ∈ R. Let

X = {i : J2i ∈ A}. We are ready to show that X is a solution of the instance I.

Since
∑

Jj∈R ej ≤ Q = lnB, we have
∏

i/∈X ai ≤ B. If
∏

i/∈X ai < B then we have∑
Jj∈A wjCj > w2t+1C2t+1 ≥ B2t(t+1)+1(B2 + B) > B2t(t+1)+1(B2 + 2t) = Y . A contra-

diction yields. The last inequality can be justified by t > 4. Hence we have
∏

i∈X ai = B, and

X is the required subset of instance I. Hence, Theorem 4.1 is true.

4.2 Dynamic Programming Algorithm

In this subsection, we will give a dynamic programming algorithm for 1|rej, p− batch, pj =

bjt, rj = t0, b = ∞,
∑

Jj∈R ej ≤ Q|
∑

Jj∈A wjCj . Based on the above Lemma 4.1, we sort the

jobs such that b1 ≤ b2 ≤ · · · ≤ bn.

Let function A(j, k,W) be the minimum total rejection penalty when the jobs in consid-

eration are Jj , Jj+1, · · · , Jn, where k is the largest index of jobs in the first batch, W is the

objective function value and job Jj is accepted.

Let function R(j, k,W) be the minimum total rejection penalty when the jobs in consid-

eration are Jj , Jj+1, · · · , Jn, where k is the largest index of jobs in the first batch, W is the

objective function value and job Jj is rejected.

In what follows we describe the recursion formulas for A(j, k,W) and R(j, k,W), we distin-

guish the following four cases for Jj+1 and Jj .

Case 1. If Jj+1 and Jj are rejected, we have R(j, k,W) = R(j + 1, k,W) + ej .

Case 2. If Jj+1 is accepted and Jj is rejected, we have R(j, k,W) = A(j + 1, k,W) + ej .

Case 3. Job Jj is accepted and processed in the current batch, i.e., k > j. In the corresponding

schedule for Jj+1, Jj+2, · · · , Jn, the largest index of jobs in the first batch is k and the

objective function value is W − wjt0(1 + bk). The contribution of Jj to the objective

function value is wjt0(1 + bk), so we have

A(j, k,W) = min{A(j + 1, k,W − wjt0(1 + bk)), R(j + 1, k,W − wjt0(1 + bk))}.

Case 4. Job Jj is accepted and processed in a new batch, i.e., k = j. In the corresponding

schedule for Jj+1, Jj+2, · · · , Jn, if the largest index of jobs in the first batch is k′ , after Jj is

added to this schedule, the completion time of the accepted jobs among Jj+1, Jj+2, · · · , Jn
becomes (1 + bj) times their original value and the contribution of Jj to the objective

function is wjt0(1 + bj). Then we have

A(j, k,W) = min

 min
j+1≤k′≤n

{A(j + 1, k′,
W−wjt0(1+bj)

1+bj
)}

min
j+2≤k′≤n+1

{R(j + 1, k′,
W−wjt0(1+bj)

1+bj
)}

.

Combining the above four cases, we design the following dynamic programming algorithm

DP2.

LI Da-wei, LU Xi-wen. Parallel-batch scheduling with deterioration and rejection... 153

Dynamic programming algorithm DP2

The initial conditions:

A(n, k,W) =

{
0, if k = n,W = wnt0(1 + bn);

+∞, otherwise.

R(n, k,W) =

{
en, if k = n+ 1,W = 0;

+∞, otherwise.

The recursive function:

If k = j, then we have

A(j, k,W) = min

 min
j+1≤k′≤n

{A(j + 1, k′,
W−wjt0(1+bj)

1+bj
)};

min
j+2≤k′≤n+1

{R(j + 1, k′,
W−wjt0(1+bj)

1+bj
)}.

If k > j, then we have

A(j, k,W) = min{A(j + 1, k,W − wjt0(1 + bk)), R(j + 1, k,W − wjt0(1 + bk))}.
Furthermore,

R(j, k,W) = min{A(j + 1, k,W) + ej , R(j + 1, k,W) + ej}.
The optimal value is given by

min{W : 1 ≤ k ≤ n+ 1,W ≤ nwmaxt0
∏n

j=1(1 + bj),min{A(1, k,W), R(1, k,W)} ≤ Q}.

Theorem 4.2. Algorithm DP2 solves problem 1|rej, p− batch, pj = bjt, rj = t0, b = ∞,∑
Jj∈R ej ≤ Q|

∑
Jj∈A wjCj in O(n3wmax

∏n
j=1(1 + bj)) time.

Proof. The correctness of the algorithm DP2 is guaranteed by the above discussion. The

recursive function has at most O(n3wmax

∏n
j=1(1 + bj)) states. If the job is accepted and

processed in a new batch, i.e., k = j, each iteration costs O(n) time; otherwise, each iteration

costs a constant time. Hence, the total running time is bounded by O(n3wmax

∏n
j=1(1+bj)).

4.3 Fully Polynomial Time Approximation Scheme

In this subsection, we present an FPTAS for 1|rej, p − batch, pj = bjt, rj = t0, b =

∞,
∑

Jj∈R ej ≤ Q|
∑

Jj∈A wjCj by trimming the state space, which means that for any state

(j, k,W), we need to stretch wj such that W is in the form of t0(1+ ϵ′)l for l ≥ −1, and for any

ϵ > 0, ϵ′ = ϵ
2n . For example, for a schedule σ = (Ji1 , Ji2 , · · · , Jik), if

∑j−1
h=1 w

′
ih
Cih + wijCij ∈

(t0(1 + ϵ′)a−1, t0(1 + ϵ′)a], then we stretch wij such that
∑j−1

h=1 w
′
ih
Cih +w′

ij
Cij = t0(1 + ϵ′)a ≤

(1 + ϵ′)(
∑j−1

h=1 w
′
ih
Cih +wijCij) for j = 1, 2, · · · , k. We call such schedules ϵ′-aligned schedules.

Similarly with the method in Section 3.3, we can present a dynamic programming algorithm

for 1|rej, p − batch, pj = bjt, rj = t0, b = ∞,
∑

Jj∈R ej ≤ Q|
∑

Jj∈A wjCj in any ϵ′-aligned

schedules by algorithm DP2. For convenience, we sort the jobs such that b1 ≤ b2 ≤ · · · ≤ bn,

and define

ϕi =

{
(1 + ϵ′)i, if i ̸= −1;

0, if i = −1.
(4)

Since the objective value is form of t0(1 + ϵ′)l in any ϵ′-aligned schedules, we can store the

exponent l instead of the actual value W in the state of algorithm DP2. It’s easily know that

the maximum makespan CMAX can be obtained if all the jobs are accepted and scheduled

154 Appl. Math. J. Chinese Univ. Vol. 35, No. 2

consecutively each job as a batch, i.e., CMAX = t0
∏n

j=1(1 + bj). Then, the objective function

value is
∑n

j=1 w
′
jCj ≤

∑n
j=1 w

′
jCMAX ≤ (1 + ϵ′)n

∑n
j=1 wjCMAX ≤ (1 + ϵ′)nnwmaxCMAX .

Thus, it is easy to see that l range from −1 to L, where L is the smallest integer such that

(1 + ϵ′)L ≥ nwmax(1 + ϵ′)n
∏n

j=1(1 + bj). Hence, L = O(
n log(nwmax

∏n
j=1(1+bj))

ϵ).

According to the above analysis and algorithm DP2, we can get the following conclusion

Theorem 4.3. The algorithm above yields an FPTAS for 1|rej, p−batch, pj = bjt, rj = t0, b =

∞,
∑

Jj∈R ej ≤ Q|
∑

Jj∈A wjCj, which runs in O(n
3

ϵ log(nwmax

∏n
j=1(1 + bj)).

Proof. Assume that σ = (B1, B2, · · · , Bh) is a batch processing order of the accepted jobs for

1|rej, p − batch, pj = bjt, rj = t0, b = ∞,
∑

Jj∈R ej ≤ Q|
∑

Jj∈A wjCj . Let W ′
j be the total

weighted completion time of the accepted jobs among Jj , Jj+1, · · · , Jn for 1|rej, p− batch, pj =

bjt, rj = t0, b = ∞,
∑

Jj∈R ej ≤ Q|
∑

Jj∈A wjCj in schedule σ when we restrict our attention to

ϵ′-aligned schedule only and similarly for 1|rej, p− batch, pj = bjt, rj = t0, b = ∞,
∑

Jj∈R ej ≤
Q|

∑
Jj∈A wjCj with the original value in schedule σ we use Wj .

We can prove that W ′
j ≤ (1 + ϵ′)n−j+1Wj in an ϵ′-aligned schedule by induction on j when

we considered the jobs among Jj , Jj+1, · · · , Jn. When j = n, if Jn is rejected, the conclusion is

obviously true; if Jn is accepted, we can easily get thatW ′
n = w′

nCn ≤ (1+ϵ′)wnCn = (1+ϵ′)Wn.

Let us now assume that the conclusion holds for j; that is, the objective function value W ′
j ≤

(1+ ϵ′)n−j+1Wj in an ϵ′-aligned schedule. We need to show the conclusion also holds for j− 1;

that is, the objective function value W ′
j−1 ≤ (1+ ϵ′)n−j+2Wj−1 in an ϵ′-aligned schedule. If job

Jj−1 is rejected, the conclusion is obviously true; if job Jj−1 is accepted, there exists a positive

integer l such that wj−1Cj−1 +W ′
j ≤ wj−1Cj−1 + (1 + ϵ′)n−j+1Wj ∈ (t0ϕl−1, t0ϕl]. Then we

can get that the objective function value is

W ′
j−1 = t0ϕl ≤ (1 + ϵ′)(wj−1Cj−1 + (1 + ϵ′)n−j+1Wj)

≤ (1 + ϵ′)n−j+2(wj−1Cj−1 +Wj)

= (1 + ϵ′)n−j+2Wj−1

in an ϵ′-aligned schedule. Hence, by induction hypothesis, we can get that W ′
1 ≤ (1+ ϵ′)nW1 ≤

(1 + ϵ)W1.

Combining the above analysis and Theorem 4.2, the total running time of the algorithm is

bounded by O(n2L) = O(n
3

ϵ log(nwmax

∏n
j=1(1 + bj)).

§5 Conclusions

In this paper, we study the unbounded parallel-batch scheduling problems with deteriorating

jobs and rejection on a single machine. The objectives are to minimize the makespan and the

total weighted completion time, respectively, subject to an upper bound on the total rejection

penalty. In these problems jobs are processed in batches and the actual processing time of a

job is a linear function of its starting time. We show that both problems are NP -complete and

present dynamic programming algorithms and FPTASs for the considered problems. Some

similar algorithms can be obtained for the problems to minimize the total rejection penalty

LI Da-wei, LU Xi-wen. Parallel-batch scheduling with deterioration and rejection... 155

subject to an upper bound on the makespan or the total weighted completion time. For the

problem to minimize the maximum tardiness subject to an upper bound on the total rejection

penalty, we can also prove it is NP -complete by the Product Partition problem. Due to the

space constraints, we don’t give the algorithms and the proof ofNP -complete for these problems

in this paper.

For future research, it is interesting to focus on scheduling problems with jobs of more

general deteriorating types. The problems with the bounded model is another worthy topic for

future research. Furthermore, it would be interesting to extend our models to different machine

environments, e.g., parallel machines or the flow shop settings.

References

[1] Y Bartal, S Leonardi, A Spaccamela, J Sgall, L Stougie. Multi-processor scheduling with

rejection, Siam Journal on Discrete Mathematics, 2000, 13(1): 64-78.

[2] P Brucker, A Gladky, H Hoogeveen, M Y Kovalyov, C N Potts, T Tautenhahn, S van de

Velde. Scheduling a batching machine, Journal of Scheduling, 1998, 1(1): 31-54.

[3] T C E Cheng, Q Ding, B M T Lin. A concise survey of scheduling with time-dependent

processing times, European Journal of Operational Research, 2004, 152(1): 1-13.

[4] Y S Cheng, S J Sun. Scheduling linear deteriorating jobs with rejection on a single machine,

European Journal of Operational Research, 2009, 194(1): 18-27.

[5] C He, Y T Leung, K Lee, M L Pinedo. Scheduling a single machine with parallel batching

to minimize makespan and total rejection cost, Discrete Applied Mathematics, 2016, 204(C):

150-163.

[6] Y Gao, J J Yuan. Unbounded parallel-batch scheduling under agreeable release and processing

to minimize total weighted number of tardy jobs, Journal of Combinatorial Optimization, 2019,

38(3): 698-711.

[7] M Kong, X B Liu, J Pei, Z P Zhou, P M Pardalos. Parallel-batching scheduling of deteriorating

jobs with non-identical sizes and rejection on a single machine, Optimization Letters, 2019, 1-15.

[8] C Y Lee, R Uzsoy, L A Martin-Vega. Efficient algorithms for scheduling semi-conductor burn-in

operations, Operations Research, 1992, 40(4): 764-775.

[9] S S Li, C T Ng, T C E Cheng, J J Yuan. Parallel-batch scheduling of deteriorating jobs

with release dates to minimize the makespan, European Journal of Operational Research, 2011,

210(3): 482-488.

[10] L L Liu, C T Ng, T C E Cheng. Scheduling jobs with release dates on parallel batch processing

machines to minimize the makespan, Optimization Letters, 2014, 8(1): 307-318.

[11] L F Lu, T C E Cheng, J J Yuan, L Q Zhang. Bounded single-machine parallel-batch scheduling

with release dates and rejection, Computers and Operations Research, 2009, 36(10): 2748-2751.

[12] L F Lu, C T Ng, L Q Zhang. Optimal algorithms for single-machine scheduling with rejection to

minimize the makespan, International Journal of Production Economics, 2011, 130(2): 153-158.

156 Appl. Math. J. Chinese Univ. Vol. 35, No. 2

[13] C T Ng, M S Barketau, T C E Cheng, M Y Kovalyov. Product Partition and related problems

of scheduling and systems reliability: Computational complexity and approximation, European

Journal of Operational Research, 2010, 207(2): 601-604.

[14] J Pei, X B Liu, P M Pardalos, W J Fan, S L Yang. Scheduling deteriorating jobs on a single

serial-batching machine with multiple job types and sequence-dependent setup times, Annals of

Operations Research, 2017, 249(1-2): 175-195.

[15] X L Qi, S G Zhou, J J Yuan. Single machine parallel-batch scheduling with deteriorating jobs,

Theoretical Computer Science, 2009, 410(8): 830-836.

[16] S Sengupta. Algorithms and approximation schemes for minimum lateness/tardiness scheduling

with rejection, Lecture Notes in Computer Science, 2003, 2748: 79-90.

[17] D Shabtay, N Gaspar, M Kaspi. A survey on off-line scheduling with rejection, Journal of

Scheduling, 2013, 16(1): 3-28.

[18] D Shabtay, D Oran. Proportionate flow-shop scheduling with rejection, Journal of the Opera-

tional Research Society, 2016, 67(5): 752-769.

[19] S Thevenin, N Zufferey, M Widmer. Metaheuristics for a scheduling problem with rejection and

tardiness penalties, Journal of Scheduling, 2015, 18(1): 89-105.

[20] G J Woeginger. When does a dynamic programming formulation guarantee the existence of a

fully polynomial time approximation scheme (FPTAS), Informs Journal on Computing, 2000,

12(1): 57-74.

[21] Y Q Yin, Y Wang, T C E Cheng, W Q Liu, J H Li. Parallel-machine scheduling of deterio-

rating jobs with potential machine disruptions, Omega, 2017, 69: 17-28.

[22] L Q Zhang, L F Lu, J J Yuan. Single machine scheduling with release dates and rejection,

European Journal of Operational Research, 2009, 198(2): 975-978.

[23] L Q Zhang, L F Lu, C T Ng. The unbounded parallel batch scheduling with rejection, Journal

of the Operational Research Society, 2012, 63(3): 293-298.

[24] X Z Zhang, D C Xu, D L Du, C C Wu. Approximation algorithms for precedence constrained

identical machine scheduling with rejection, Journal of Combinatorial Optimization, 2018, 35(1):

318-330.

[25] J Zou, C X Miao. Parallel batch scheduling of deteriorating jobs with release dates and rejection,

Scientific World Journal, 2014, 2014: 1-7.

School of Science, East China University of Science and Technology, Shanghai 200237, China.

Email: xwlu@ecust.edu.cn

