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The realization of positive definite matrices via planar

networks and mixing-type sub-cluster algebras

Diana Ahmad1 YANG Yi-chao2

Abstract. As an improvement of the combinatorial realization of totally positive matrices via

the essential positive weightings of certain planar network by S. Fomin and A. Zelevinsky [7], in

this paper, we give a test method of positive definite matrices via the planar networks and the

so-called mixing-type sub-cluster algebras respectively, introduced here originally.

This work firstly gives a combinatorial realization of all matrices through planar network, and

then sets up a test method for positive definite matrices by LDU -decompositions and the hori-

zontal weightings of all lines in their planar networks. On the other hand, mainly the relationship

is built between positive definite matrices and mixing-type sub-cluster algebras.

§1 Introduction

The totally positive matrices and totally nonnegative matrices are very important classes of

matrices, which were firstly studied by I. J. Schoenberg in [12], connecting total nonnegativity

with variation diminishing property. Then for a given totally positive matrix, F. R. Gantmacher

and M. G. Krein determined its distinct positive eigenvalues in [8]. The great progress was

achieved by S. Fomin and A. Zelevinsky [7] in which they discussed the parametrization of all

nonnegative matrices and the tests of a matrix for total positivity. In fact they established

a combinatorial approach for testing total positivity and total nonnegativity based on two

structures, the planar network and the double wiring diagram. One of their most important

results is that every double wiring diagram gives rise to a total positivity criterion: an n × n

matrix is totally positive if and only if its all n2 chamber minors are positive. Later on S. Fomin

and A. Zelevinsky introduced the concept of cluster algebra [6]. In the light of this important

innovation, the criterion of total positivity could be realized by the extended cluster of the

cluster algebra with the initial seed corresponding to a double wiring diagram.
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Now a natural question is to discuss problems of partial positivity (partial nonnegativity).

Indeed, A. Browsowsky and S. Chepuri studied one case of partial positivity (partial nonneg-

ativity), that is, k-positivity (respectively. k-nonnegativity) and gave related results in the

language of cluster subalgebra [3]. In this paper, we will discuss another case of partial positivi-

ty, that is, the positive definite matrices from the viewpoint of mixing-type sub-cluster algebras.

We will also present new criterion of a matrix to be positive definite using the tools of planar

networks and double wiring diagrams.

This paper is arranged as follows: Section 2 is devoted to some concepts and results. Section

3 is the characterization of positive definite matrices via planar networks and Section 4 is

the characterization of positive definite matrices via mixing-type sub-cluster algebras, while

Theorem 4.4 shows the positive definite tests depending on double wiring diagrams.

§2 Preliminaries on some concepts and results

2.1 Totally positive matrices and positive definite matrices

A square matrix over the complex field C is said to be totally positive if all its minors are

positive real numbers.

An n × n Hermitian matrix M is said to be positive definite if z∗Mz is always a positive

real number for any 0 ̸= z ∈ Cn, where z∗ = z̄⊤. The class of positive definite matrices plays

an important role since it is closely related to positive-definite symmetric bilinear forms and

inner product vector spaces.

It is well-known that a Hermitian matrix M is positive definite if and only if all leading

principal minors of M are positive. Hence if a totally positive matrix M is Hermitian, then it

is obviously positive definite. Therefore whether a Hermitian matrix is positive definite or not

can be considered as a generalization of the problem about total positivity.

2.2 The matrices associated to planar networks

Recall that the so called planar network is a combinatorial method S. Fomin and A. Zelevin-

sky used in [7], to realize the totally positive matrices.

A planar network (Γ, ω) is an acyclic directed planar graph Γ whose edges e are assigned

scalar weights ω(e). We always assume the edges of Γ to be directed from left to right. Assume

each network has n sources and n sinks located at the left and right sides in the picture

respectively, and numbered bottom-to-top.

Now we associate to every planar network (Γ, ω) a matrix x(Γ, ω), called the weight matrix,

more precisely, x(Γ, ω) is an n× n matrix whose (i, j)-entry is the sum of weights of all paths

from the source i to the sink j, where the weight of a (directed) path in Γ is the product of

weights of all edges in this path. For examples, Figure 1 includes two planar networks.
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Figure 1

The corresponding weight matrix of the planar network on the left of Figure 1 is written as d dh dhi

bd bdh+ e bdhi+ eg + ei

abd abdh+ ae+ ce abdhi+ (a+ c)e(g + i) + f

.

In order to calculate minors of the weight matrix, the following lemma is useful, where

∆I,J(x) denotes the minor of a matrix x with the row set I and the column set J and the

weight of a collection of directed paths in Γ is defined to be the product of their weights.

Lemma 2.1. (Lemma 1, [7]) A minor ∆I,J(x) of the weight matrix of a planar network is

equal to the sum of weights of all collections of vertex-disjoint paths that connect the sources

labeled by I with the sinks labeled by J .

Remark 2.2. For the planar network in the above example, or more generally the planar

network (Γ, ω) of the form “\\−−//”, the leading principal minors of the weight matrix x(Γ, ω)

can be calculated by Lemma 2.1 as

∆1,1 =

t1∏
i=1

ω1i,∆12,12 =

t1∏
i=1

ω1i

t2∏
i=1

ω2i, · · · ,∆12···n,12···n =

t1∏
i=1

ω1i

t2∏
i=1

ω2i · · ·
tn∏
i=1

ωni (1)

where the horizontal weightings ωk1, ωk2, · · · , ωktk appear in Line k for k = 1, 2, · · · , n, re-

spectively. Indeed, the collections of vertex-disjoint paths that connect the sources labeled by

{12 · · · s} with the sinks labeled by {12 · · · s}, 1 ≤ s ≤ n must be horizontal, then the results (1)

follows.

In order to state the one-to-one correspondence between the set of totally positive matrices

and that of all positive weightings of a fixed planar network, we need more notations.

Denote the planar network on the right of Figure 1 as Γ0 and call an edge of Γ0 essential

if it is either slanted or one of the n horizontal edges in the middle of Γ0. Note that Γ0 has

exactly 2 × (1 + 2 + · · · + (n − 1)) + n = n2 essential edges. Moreover, a weighting ω of Γ0 is

called essential if ω(e) ̸= 0 for any essential edge e and ω(e) = 1 for all other edges.

The following theorem in [7] characterizes all totally positive n×n matrices via the essential

positive weightings of the planar networks Γ0.
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Theorem 2.3. (Theorem 5, [7]) The map ω 7→ x(Γ0, ω) restricts to a bijection between the

set of all essential positive weightings of Γ0 and that of all totally positive n× n matrices.

2.3 Cluster algebras

The original motivation of cluster algebras was to give the combinatorial characterizations

of the dual canonical basis of the quantized enveloping algebra and of the total positivity for

algebraic groups. Now, it plays a prominent role in cluster theory and arises in connection

with integrable systems, algebraic Lie theory, Poisson geometry, total positivity, representation

theory, combinatorics and etc.

Throughout this paper, we only restrict our attention to cluster algebras given by the so-

called cluster quivers Q, which are directed (multi-)graphs with no loops and no 2-cycles. Some

vertices of Q are denoted as mutable and the remaining ones are called frozen. The terminology

needed in this paper is collected in the following definition, see [6].

Definition 2.4. (i) Let v be a mutable vertex of a cluster quiver Q. The quiver mutation of

Q at v is an operation that produces another quiver Q′ = µv(Q) via the following three steps:

(1) add a new edge u → w for each pair of edges u → v, v → w in Q, except in the case

when both u,w are frozen.

(2) reverse the direction of all edges adjacent to v.

(3) remove 2-cycles until none remains.

(ii) Let F ⊃ R be any field. We say that a pair t = (Q, z) is a seed in F if Q is a cluster

quiver and z, called the extended cluster, is a set consisting of some algebraically independent

elements of F , as many as the vertices of the quiver Q.

(iii) The elements of z corresponding to the mutable vertices in Q are called cluster variables

and those corresponding to the frozen vertices in Q are called frozen variables.

(iv) The seed mutation µz at a cluster variable z transforms the seed t = (Q, z) into a

new seed t′ = (Q′, z′) = µz(Q, z), where Q′ is the quiver resulted after mutating Q at the vertex

corresponding to z and z′ = z ∪ {z′}\{z}, where the new variable z′ is given by the exchange

relation at z , zz′ =
∏

z←x
x+

∏
z→y

y. One sometimes calls this relation the exchange relation at

v for the vertex v of Q corresponding to z.

(v) Two seeds t = (Q, z) and t′ = (Q′, z′) are said to be mutation-equivalent if one of them

can be obtained from the other after a sequence of seed mutations.

(vi) The cluster algebra A(Q, z) generated by an initial seed t = (Q, z) is defined as the

subring of F generated by the elements of extended clusters which are mutation-equivalent to t.



Diana Ahmad, YANG Yi-chao. The realization of positive definite matrices... 131

§3 Characterization of positive definite matrices via planar networks

3.1 Realization of matrices via generalized elementary Jacobi

matrices

In this section, we first realize all n× n matrices via certain planar networks and then give

a way to test whether a given Hermitian matrix is positive definite or not.

For any n × n matrix M , we attempt to find a planar network (Γ, ω) with weight matrix

x(Γ, ω) = M . For this purpose, we first consider the case of invertible matrices.

Since any invertible matrix can be written as a product of elementary matrices, let us recall

the definition of elementary Jacobi matrices and their connection with the planar networks as

in [7].

Definition 3.1. (i) Let Ei,j be the n × n matrix whose (i, j)-entry is 1 and all other entries

are 0. For i = 1, 2, · · · , n − 1 and t ∈ C, let xi(t) = I + tEi,i+1, xi(t) = I + tEi+1,i. For

i = 1, 2, · · · , n and t ∈ C\{0}, let x i⃝(t) = I + (t− 1)Ei,i.

(ii) The elementary Jacobi matrices are matrices x ∈ GLn(C) that differ from the identity

matrix In in a single entry located either on the main diagonal or immediately above or below

it, more precisely, those matrices are of the forms xi(t), xi(t), x i⃝(t′), ∀t ∈ C, t′ ∈ C\{0}.

Lemma 3.2. (Theorem 12, [7]) The three classes of elementary Jacobi matrices are weight

matrices of the following three “chip”s (See Figure 2 below), respectively. In each “chip”, all

edges but one have weight 1 and the distinguished edge has weight t. Slanted edges connect

horizontal levels i and i+1, counting from the bottom. Additionally, the concatenation of these

“chip”s corresponds to multiplying their weight matrices.

t

xi(t)

1

i

i+1

n

 xi(t)

1

i

i+1

n

t

xi(t)

1

i

i+1

n

t

Figure 2

Therefore, any invertible matrix generated by some elementary Jacobi matrices can be

realized as the weight matrix for a planar network. Then we have the following characterization

for GLn(C).

Proposition 3.3. For any integer n > 1, the general linear group GLn(C) can be generated

by all elementary Jacobi matrices, that is,

GLn(C) = ⟨xi(t), xi(t), x i⃝(t′), t ∈ C, t′ ∈ C\{0}⟩.



132 Appl. Math. J. Chinese Univ. Vol. 35, No. 2

Proof. Clearly, GLn(C) ⊇ ⟨xi(t), xi(t), x i⃝(t′), t ∈ C, t′ ∈ C\{0}⟩.
Since any matrix in GLn can be written as a product of elementary matrices, it suffices to

show that any one of elementary matrices of three types can be generated by some elementary

Jacobi matrices.

The case 1: The type of row multiplication.

Obviously, all elementary matrices of this type have the form x i⃝(t) for t ∈ C\{0}.
The case 2: The type of row addition.

For any 1 ≤ i, j ≤ n, i ̸= j, without loss of generality we only consider the case i < j. We

will use the induction method on the number j − i.

If j − i = 1, then the result is trivial due to xi(t) = I + tEi,i+1.

In general, assume that the conclusion is true for j − i ≤ k, then considering the case for

j − i = k + 1, we have:

I + tEi,i+k+1 = I + Ei+k,i+k+1 + tEi,i+k+1 − Ei+k,i+k+1

= (I + tEi,i+k)(I + Ei+k,i+k+1)(I − tEi,i+k)(I − Ei+k,i+k+1)

due to Ei,jEk,l = δj,kEi,l, where δj,k is the Kronecker symbol. By induction, it means that any

such elementary matrix can be generated by some elementary Jacobi matrices.

The case 3: The type of row switching.

The elementary matrix for exchanging the rows i and j is just equal to the matrix I+Ei,j +

Ej,i − Ei,i − Ej,j , moreover, which can be represented as

I + Ei,j + Ej,i − Ei,i − Ej,j = I + Ej,i − Ei,j − Ei,i − Ej,j − 2Ej,j + 2Ei,j + 2Ej,j

= (I − Ei,j)(I + Ej,i)(I − Ei,j)(I − 2Ej,j).

Then the result follows similarly as in case (2).

Since all elementary Jacobi matrices are invertible, a non-invertible matrix cannot be repre-

sented as their product. So, in order to consider all matrices, we need to generalize the notion

of elementary Jacobi matrices.

Definition 3.4. Define a generalized elementary Jacobi matrix in Mn(C) to be a matrix that

differs from the identity matrix I in a single entry located either on the main diagonal or

immediately above or below it, more precisely, that is one of the form xi(t), xi(t), x i⃝(t) for

t ∈ C.

Proposition 3.5. For any positive integer n, any n×n matrix M over C can be generated by

some generalized elementary Jacobi matrices, that is, Mn(C) = ⟨xi(t), xi(t), x i⃝(t), ∀t ∈ C⟩.

Proof. We know that M = M1

(
Ir

On−r

)
M2, where both M1,M2 are invertible, r is the

rank of M and On−r is the zero matrix of order n− r. The result follows from Proposition 3.3

and

(
Ir

On−r

)
=

n∏
s=r+1

x s⃝(0).

By Lemma 3.2 and Proposition 3.5, we get the following
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Corollary 3.6. For any matrix M , there exists a planar network (Γ, ω) with weight matrix

x(Γ, ω) = M .

3.2 The criterion for positive definite matrices via planar networks

We have already seen by Corollary 3.6, that for any matrix M , there exists a planar net-

work (Γ, ω) such that its weight matrix x(Γ, ω) = M , this correspondence is neither injec-

tive nor surjective in general. Thus, by Lemma 2.1 we can read the leading principal minors

∆{1},{1}, · · · ,∆[1,n],[1,n] directly from the planar network (Γ, ω). From the basic fact that a

Hermitian matrix is positive definite if and only if all of its leading principal minors are posi-

tive, we can obtain an algorithm for checking whether a given matrix M is positive definite or

not, which gives us a new viewpoint to observe positive definite matrices.

Algorithm 3.7. (1) Decompose M = M1M2 · · ·Mt for some generalized elementary Jacobi

matrices M1,M2, · · · ,Mt;

(2) By the correspondences between “chips” and generalized elementary Jacobi matrices,

draw the planar network (Γ, ω) with x(Γ, ω) = M ;

(3) Calculate the leading principal minors directly from (Γ, ω) by the method given in

Lemma 2.1;

(4) Check whether a given matrix M is positive definite or not.

Additionally, by [11], we obtain that for any n × n matrix M , M can be decomposed as

M = U1LU2 or M = L1UL2 with L,L1, L2 being lower triangular matrices and U,U1, U2 being

upper triangular matrices. Thus the planar network has the forms “// \\ //” or “\\ // \\”,
respectively. Furthermore, we have the following

Proposition 3.8. For any n×n invertible matrix M , the following statements are equivalent.

(i) M has a LDU -decomposition, i.e., M = LDU with L a unit lower triangular matrix, U

a unit upper triangular matrix and D a diagonal matrix.

(ii) The corresponding planar network (Γ, ω) of M is of the form “\\ − −//”.

(iii) All the leading principal minors of M are nonsingular.

Proof. Firstly, the equivalence of (i) and (iii) can be found in [9].

(i)=⇒(ii): Let M = LDU be a LDU -decomposition. According to the proof of Proposition

3.3, we have the decompositions L = L1L2 · · ·Lr, U = U1U2 · · ·Us, D = D1D2 · · ·Dt, where

L1, · · · , Lr are in the form xi(γ), U1, · · · , Us are in the form xi(γ) and D1, · · · , Dt are in the

form x i⃝(γ) respectively. Thus the corresponding planar network (Γ, ω) of M is in the form

“\\ − −//”.

(ii)=⇒(iii): Since the corresponding planar network (Γ, ω) of M is in the form “\\ − −//”

and M is invertible, by Remark 2.2 we have

∆12···n,12···n =

t1∏
i=1

ω1i

t2∏
i=1

ω2i · · ·
tn∏
i=1

ωni = det(M) ̸= 0
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where the horizontal weightings ωk1, ωk2, · · · , ωktk appear in Line k for k = 1, 2, · · · , n respec-

tively. Hence all the leading principal minors

∆1,1 =

t1∏
i=1

ω1i,∆12,12 =

t1∏
i=1

ω1i

t2∏
i=1

ω2i, · · · ,∆12···n,12···n =

t1∏
i=1

ω1i

t2∏
i=1

ω2i · · ·
tn∏
i=1

ωni

are nonsingular.

It is easy to see that if an n× n matrix has an LDU -decomposition with

D = diag(d1, d2, · · · , dn), M = LDU , then the leading principal minors ofM are ∆12···k,12···k =

d1d2 · · · dk for k = 1, 2, · · · , n. Moreover , ifM is invertible, then by Proposition 3.8 and Remark

2.2, we have dk =
tk∏
i=1

ωki for all 1 ≤ k ≤ n. We then have the following

Corollary 3.9. An invertible Hermitian matrixM with LDU -decomposition is positive definite

if and only if the weightings dk =
tk∏
i=1

ωki of Line k in the corresponding planar network (Γ, ω)

of M are positive for all 1 ≤ k ≤ n.

We end this section with the following example to illustrate the mentioned algorithm of

checking positive definite matrices.

Example 3.10. Let M =

1 2 4

2 6 8

4 8 18

. We know that M can be decomposed as

M =

1 0 0

2 1 0

0 0 1


1 0 0

0 1 0

4 0 1


1 0 0

0 2 0

0 0 2


1 0 4

0 1 0

0 0 1


1 2 0

0 1 0

0 0 1


= x1(2)x2(−1)x1(−4)x2(1)x1(4)x 2⃝(2)x 3⃝(2)x1(4)x2(1)x1(−4)x2(−1)x1(2)

Next, the corresponding planar network (Γ, ω) is shown as in Figure 3, where the weightings

ω(e) = 1 for all unlabelled edges e.

4

1
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1

42

1 1

2 2

3 3

2
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Figure 3

Finally, we have d1 = 1, d2 = 2, d3 = 2. Now by Corollary 3.9, we know that M is positive

definite.
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§4 Characterization of positive definite matrices via mixing-type

sub-cluster algebras

In [5], S. Fomin showed that total positivity is one of his motivations of studying cluster

algebras. In brief, we take a complex variety X together with a family ∆ of “important” regular

functions on X. The corresponding totally positive variety X>0 is the set of points at which

all of these functions take positive values, that is, X>0 = {x ∈ X : ∆(x) > 0 for all ∆ ∈ ∆}.
If X is the affine space of matrices of a given size, e.g., if X = Mn(C), and ∆ is the set of all

minors, then we recover the classical notation of totally positive matrices.

The question arises naturally is that for any element x ∈ X, should we check all the in-

equalities ∆(x) > 0 for all ∆ ∈ ∆ to test whether x ∈ X>0 or not?

In the above example, there are
(
2n
n

)
− 1 minors in total. However, S. Fomin and A.

Zelevinsky in [7] told us that it is enough to check certain n2 minors in order to make sure that

a given matrix is totally positive. These minors are the chamber minors of the corresponding

double wiring diagram. This is because all the minors of Mn(C) can be represented by rational

functions of these n2 minors with positive coefficients.

4.1 Double wiring diagram and its associated quiver

Recall that the double wiring diagram defined in [7] is a diagram that consists of two fam-

ilies of n piecewise-straight lines (each family is colored with one of two colors), the crucial

requirement is that each pair of lines with the same color intersect exactly once. Moreover, the

lines in a double wiring diagram are numbered separately within each color.

Now we give the definition of chamber and chamber minor of a double wiring diagram as

follows.

Definition 4.1. Let Ω be a double wiring diagram and � be a region of Ω. We then assign to

� a pair of subsets I, J of the set [1, n] = {1, · · · , n} such that each subset indicates the line

numbers of the corresponding color passing below the �. If |I| = |J |, then the region � is called

a chamber and in this case, the minor ∆I,J of an n×n matrix x = (xij) is called the chamber

minor of x.

For example, we show all the chambers of the double wiring diagram in Figure 4 and the

corresponding nine chamber minors (the total number is always n2) are x31, x21, x11, x13,

∆23,12, ∆12,12, ∆12,13, ∆12,23 and ∆123,123 = det(x).

In [4], or more generally in Section 2 of [2], we can associate a quiver Q = Q(Ω) to a double

wiring diagram Ω as follows:

(i) The vertices of Q are the chambers of Ω.

(ii) There is an edge between two chambers c and c′ of Q in the following cases:

(1) They are adjacent chambers in the same row. If the color of the crossing between them

is blue, the edge is directed to the left. Otherwise, it is directed to the right.
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Figure 4

(2) If c′ has left and right boundaries of different color and lies completely above (or below)

c. If the left boundary of c′ is blue, the edge is directed from c to c′. Otherwise, it is directed

from c′ to c.

(3) If the left boundary of c′ is above c and the right boundary of c is below c′ and both

boundaries have the same color. If such common color is blue, the edge is directed from c to

c′; otherwise, it is directed from c′ to c.

(4) If the right boundary of c′ is above c and the left boundary of c is below c′ and both

boundaries have the same color. If such common color is blue, the edge is directed from c′ to

c; otherwise, it is directed from c to c′.

Then according to (i) and (ii), we get a cluster quiver Q from Ω.

The mutable vertices of Q(Ω) are the bounded chambers in Ω . Then the frozen vertices are

the chambers which are unbounded. The following figure on the left shows the quiver associated

to the double wiring diagram in Figure 4, where the vertices surrounded by � are frozen and

the others are mutable.

Figure 5

In [2], A. Berenstein, S. Fomin and A. Zelevinsky showed that the
(
2n
n

)
− 1 minors of

a matrix M correspond to cluster variables or frozen variables in the cluster algebra A(Ω)

generated by the initial seed (Q(Ω), z(Ω)) associated to a double wiring diagram Ω, where z(Ω)
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is the collection of all chamber minors in Ω , thus it is enough to check the positivity of these

n2 chamber minors in z(Ω) to ensure that M is totally positivity.

4.2 Mixing-type sub-cluster algebras and positive definite matrices

In what follows we replace the “totally positive matrices” by other classes of matrices which

share some properties about “partial positivity”, such as positive definite matrix, P -matrix and

so on.

In order to give a similar result for positive definite matrices, we first introduce some no-

tation. Let A = A(Q, z) be the cluster algebra generated by an initial seed t = (Q, z) as in

Definition 2.4. Let Q0 = Q0,m ∪ Q0,f and z = zm ∪ zf , where Q0, Q0,m, Q0,f represents the

vertices, the mutable vertices, the frozen vertices of Q respectively and zm, zf correspond to

the mutable part, the frozen part of z respectively. In the light of the previous notation we

will refer to the initial seed as t = (Q, zm, zf ) . Now we raise the definition of the so-called

mixing-type sub-seed.

Definition 4.2. Keeping our foregoing notation. Let t = (Q, zm, zf ) be a given seed, we assume

I0 ⊆ zm,I1 ⊆ z, with I0 ∩ I1 = ϕ and I1 = I ′1 ∪ I ′′1 for I ′1 = zm ∩ I1 and I ′′1 = zf ∩ I1. Denoting

z′m = zm\(I0 ∪ I ′1), z′f = (zf ∪ I0)\I1 ,z′ = z′f ∪ z′m. Q′ is the subgraph of Q with vertices

corresponding to z′, then the seed tI0,I1 = (Q′, z′m, z′f ) is called (I0, I1) mixing-type sub-seed

or (I0, I1) -type sub-seed of the seed t = (Q, zm, zf ).

In case I1 = ϕ, the sub-seed tI0,ϕ is called a pure sub-seed, and in case I0 = ϕ, the

sub-seed tϕ,I1 is called a partial sub-seed of the seed t.

We now give the definition of the sub-algebra related to a (I0, I1) mixing-type sub-seed.

Definition 4.3. Let A = A(t) be the cluster algebra with the initial seed t = (Q, zm, zf ), and

let tI0,I1 be a (I0, I1) mixing-type sub-seed of the seed t, the cluster algebra AI0,I1 = A(tI0,I1)

with the initial seed tI0,I1 is called a (I0, I1) mixing-type sub-cluster algebra.

Remark 4.4. In general the definition of the mixing-type sub-seed was initially set for seeds

with sign-skew symmetric matrices and the definition of the mixing-type sub-cluster algebra was

considered up to isomorphism between cluster algebras, but we restrict these definitions in a

way that keeps their essence and serves directly the purposes of this paper, for more detailed

information about the general case we refer to [1],[10].

Definition 4.5. Let tI0,I1 = (Q′, z′m, z′f ) be a (I0, I1) mixing-type sub-seed of the seed t =

(Q, zm, zf ). Then an isolated vertex is a vertex from the set z′ which was originally satisfying

one or more of three following cases:

1. a frozen vertex of the set zf only connected to vertices of the set I0.

2. a vertex of the set I0 only connected to vertices of the same set .

3. a vertex of the set z only connected to vertices of the set I1.
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The variables of the extended clusters of the cluster algebra AI0,I1 = A(tI0,I1) corresponding to

isolated vertices are called isolated variables.

Remark 4.6. The isolated variables play no role in the exchange relation that produces new

cluster variables since they are either corresponding to mutable vertices which are not connected

to any other vertices or corresponding to frozen vertices connected, and if connected, only to

other frozen vertices.

Example 4.7. Let A = A(Ω) = A(Q, z), where Ω is the double wiring diagram of Figure

4 and Q = Q(Ω) is the cluster quiver on the left side of Figure 5 and z is the extended

cluster in correspondence with its vertices. Then by choosing I0 = {12, 13; 2, 1}, I1 = ϕ, the

corresponding (I0, ϕ) mixing-type sub-cluster algebra is the cluster algebra AI0,I1 = A(Q′, z′),

where Q′ is the cluster quiver on the right side of Figure5 and z′ is the extended cluster in

correspondence with its vertices .The isolated vertices of the quiver Q′ are {12, 23; 3, 1}.

From this example on the 3× 3 Hermitian matrix M , it is easy to see that in order to test

whether M is positive definite or not, it suffices to check only the positivity of the non isolated

variables of any extended cluster from the mixing-type sub-cluster algebra A(Q′, z′).

In what follows we aim to produce new criterions for positive definite matrices depending

on the a mixing-type sub-cluster algebra of a cluster algebra obtained from a double wiring

diagram.

Definition 4.8. A positive definite test S is a set of minors of a given Hermitian matrix

which guarantees by the positivity of its elements that this matrix is positive definite.

Remark 4.9. We remark that for a matrix M and a positive definite test S, by definition if all

the minors in S of M is positive, then M is a positive definite matrix. However, the converse

is not true, that is, if some minor in S of M is ≤ 0, then M may also be positive definite.

For example, let S = {2, 2; 1, 2; 2, 1; 12, 12} be a positive definite test and M =

(
2 −1

−1 2

)
.

Although M21 = −1 < 0, it is easy to see that M is also positive definite.

Finally, for any n× n Hermitian matrix M we can obtain the following conclusion.

Theorem 4.10. Let n > 0 be an integer. Then one can construct a double wiring diagram Ω

with a cluster algebras A = A(Q(Ω), z) and a subset I0 of Q(Ω)0,m such that the non isolated

variables of any extended cluster of the (I0, ϕ) mixing-type sub-cluster algebra give rise to a

positive definite test for any given n× n Hermitian matrix M .

Proof. Firstly, we construct the double wiring diagram Ω as follows: for each row between two

wires, all the blue crossings are on the left side of the red crossings. Then there are n− 1 such

rows and for each row, there exists a unique chamber with a blue left boundary and a red right

boundary. Thus we get n − 1 such chambers, which correspond by one-to-one to the n − 1

minors ∆1,1,∆12,12, · · · ,∆12···(n−1),12···(n−1).
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Now we choose I0 such that I0 = Q(Ω)0,m\{1, 1; 12, 12; · · · ; 12 · · · (n− 1), 12 · · · (n− 1)}.
Since the intial seed of the (I0, ϕ) mixing-type sub-cluster algebra contains all the leading

principal minors of M as cluster variables (mutable vertices), and by the fact that every variable

in any extended cluster can be expressed as a free subtraction rational function with the non

isolated variables of the initial extended cluster, the result follows.

Remark 4.11. In the proof of the previous theorem, there is only one mutable vertex in each

row of the double wiring diagram of the mixing-type sub-cluster algebra, the thing that ensures

having isolated vertices, hence the number of variables that requested to be positive in the positive

definite test is less than n2 and this the main difference between the total positivity test and the

positive definite test.

§5 Further Remarks as Summary

For any n × n matrix M , on one hand, all its
(
2n
n

)
− 1 minors share the cluster algebra

structure via a double wiring diagram Ω and its associated quiver Q(Ω). Thus in order to

check some “positivity” properties about the minors of M , it suffices to check the “positivity”

of some minors which appears in any extended cluster in the corresponding mixing-type sub-

cluster algebra. On the other hand, for the matrix M , there exists a planar network (Γ,ω) with

weight matrix x(Γ, ω) = M and we can calculate any minor ∆I,J of M for I, J ⊆ [1, n] by

Lemma 2.1. Therefore, we can summarise the results of this paper by the following Figure.

Figure 6
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