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Propagation of traveling wave solutions for nonlinear

evolution equation through the implementation of the

extended modified direct algebraic method

David Yaro1 Aly Seadawy2,3 LU Dian-chen4

Abstract. In this work, different kinds of traveling wave solutions and uncategorized soliton

wave solutions are obtained in a three dimensional (3-D) nonlinear evolution equations (NEEs)

through the implementation of the modified extended direct algebraic method. Bright-singular

and dark-singular combo solitons, Jacobi’s elliptic functions, Weierstrass elliptic functions, con-

stant wave solutions and so on are attained beside their existing conditions. Physical interpre-

tation of the solutions to the 3-D modified KdV-Zakharov-Kuznetsov equation are also given.

§1 Introduction

Recently, some researchers have devoted themselves to the study of the exact solutions of

several nonlinear evolution equations (NEEs), that play a critical part in explaining the charac-

teristics of problems in areas of applied mathematics and mathematical physics. The nonlinear

3-D modified Korteweg-de Vries-Zakharov-Kuznetsov (mKdV-ZK) equation is a significant e-

quation that has several physical occurrences also waves in nonlinear LC circuit through the

mutual inductance between adjacent inductors, ion acoustic waves in plasma physics, fluid dy-

namics, nonlinear optic etc.[1, 2]. Attaining the exact and numerical solutions for NEEs shows

a vital part in the research of physical occurrences and has progressively turned into criti-

cal and important responsibility. In contrast, the soliton and solitary wave solution of NEEs

problems can help people understand these occurrences better than numerical solutions. Thus,

the research of the soliton and solitary wave solutions of the NEEs plays a vital part in the

learning of these physical occurrences, and various influential methods have been established to

help find the exact solutions, for instance, the homotopy perturbation scheme, Bäcklund trans-

formation, extended
(

G′(ϕ)
G(ϕ)

)
-expansion system, generalized algebraic scheme, Hirota’s bilinear

scheme, direct algebraic method, Jacobi elliptic function expansion scheme, inverse scattering
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scheme, Painlevé scheme, homogeneous balance scheme, etc. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15] are all well-organized algorithms for finding soliton and solitary wave solutions of an

excessive number of NEEs [16, 17, 18, 19, 20, 21]. Many other references on exact solutions to

PDEs as Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and

its reduction [22]; Backlund transformation, multiple wave solutions and lump solutions to a

(3 + 1)-dimensional nonlinear evolution equation [23]; Constructing lump solutions to a gen-

eralized Kadomtsev-Petviashvili-Boussinesq equation [24]; Resonant behavior of multiple wave

solutions to a Hirota bilinear equation [25]; Rational solutions to an extended Kadomtsev-

Petviashvili-like equation with symbolic computation [26]; A note on rational solutions to a

Hirota-Satsuma-like equation [27]. Many researchers consider exact travelling wave solutions

to a nonlinear wave equation by reducing the PDE into an integrable ODE. Such an idea was

systematically studied in the transformed rational function method theory and all one needs to

do is to choose an integrable ODE. In most cases, one uses the Riccati equation as in the ex-

pansion method [28]. Recently, various studies show the remarkable richness of lump solutions

(see, e.g., [29]) and a search for lump solutions to a combined fourth-order nonlinear PDE in

(2+1)-dimensions, reference [30] for details on lumps in (2+1)-dimensions; and reference [31] for

lumps in in (3+1)-dimensions and their interaction solutions with homoclinic and heteroclitic

solutions (see, [32] for (2+1)-dimensional nonlinear dispersive wave equations).

Based on the motivation from the literature, this work implements the modified extended

direct algebraic method to attain soliton and additional solutions of the leading nonlinear

mKdV-ZK equation. Consequently, novel and uncategorized wave solutions have been attained.

The following subsections provide a brief detail about the main equation and overview of the

method.

1.1 The main equation

The main mKdV-ZK equation in three dimensional form states [33] as

∂q1
∂ι

+ eq21
∂q1
∂ζ

+ d
∂3q1
∂ζ3

+ f
∂

∂ζ

(
∂2q1
∂τ2

+
∂2q1
∂η2

)
= 0, (1)

where, d, e, and f are given by

d =
1

D
, e =

E

D
, f =

G

D
, D = 2

∑
γ

σ2
pγ(V − Uγ0)(

(V − Uγ0)2 − ψ2
Tγ

)2 ,
G = 1 +

∑
γ

σ2
pγ(V − Uγ0)

4

Ω2
γ

(
(V − Uγ0)2 − ψ2

Tγ

)2 ,
E =

∑
γ

σ2
pγr

2
γ

(
15(V − Uγ0)

4 + F1(V − Uγ0)
2ψ2

Tγ + F2ψ
4
Tγ

)
2m2

(
(V − Uγ0)2 − ψ2

Tγ

)5 −
∑
δ

rδ
2Λ2

Gδλ
2T 2

δ

,

where the plasma frequencies σ2
pγ , the Debye lengths Λ2

Gδ and the thermal velocities ψTγ for

the species γ are defined as σ2
pγ =

Nγr
2
γ

ϵ0m
, Λ2

Gδ =
ϵ0λTδ
Nδr2δ

and ψ2
Tγ =

νγpγ
Nγm

, respectively.
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1.2 A summary of the method

We assume that the given nonlinear evolution equation of q(ι, τ, η, ζ) is in the form

H(q, qζ , qι, qτ , qη, qζζ , qιι, qζζ , . . . ) = 0, (2)

where H is the polynomial in its parameters. The nature of the method can be given in the

subsequent stages [34, 35, 35]:

Stage 1: To obtain the solutions of Eq.(2) take q1(ι, τ, η, ζ) = q(ϕ), ϕ = λι+ µτ + ρη− σζ and

convert Eq.(2) to ODE:

R(q, q′, q′′, q′′′, . . . ) = 0, (3)

where ′ (prime) represent the derivative w.r.t ϕ.

Stage 2: By introducing the solution q(ϕ) of Eq.(3) in a limited series way given by [36]

q(ϕ) =
n∑

j=−n

bjΨ
j(ϕ), (4)

where bj (real constants with bn ̸= 0) and n (nonnegative integer) to be calculated. Ψ(ϕ)

represents the solution of the following equation

Ψ′(ϕ) =
√
h0 + h1Ψ(ϕ) + h2Ψ2(ϕ) + h3Ψ3(ϕ) + h4Ψ4(ϕ) + h5Ψ5(ϕ) + h6Ψ6(ϕ), (5)

where hj are constants.

Stage 3:The value n is attained by applying the principle of homogeneous balance on Eq.(3).

Stage 4: By [37], using Mathematica to solve the system and based on the value of the

parameters hj we can attain the solutions of Eq.(1).

The organization of this work is as follows. In Section 1, the introduction of the work is

given. The method is implemented in Section 2 to construct more or less new exact soliton,

period, Jacobi elliptic function and constant wave solution of the three- dimensional mKdV-ZK

model and the physical explanation of the results. The conclusion of the work is finally stated

in Section 3.

§2 Implementation of the procedure to the 3-D mKdV-ZK equation

By assuming the transformational wave solution as

q1(ι, τ, η, ζ) = q(ϕ) =
n∑

j=−n

bjΨ
j(ϕ), ϕ = λι+ µτ + ρη − σζ. (6)

By putting Eq.(6) in Eq.(1) leads to

−σq′ + eλq2q′ + (dλ3 + fλ(µ2 + ρ2))q′′′ = 0. (7)

Now, balancing q′′′ (highest order derivative) and q2q′ (nonlinear term), we attain n = 1 and

the solution to Eq.(7) is considered as

q(ϕ) =
b−1

Ψ
+ d0 + d1Ψ. (8)

Now, Eq.(5) and (8) are substituted into Eq.(7) and applying [?], then Eq.(1) solutions can be

stated as follows:
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Case 1: h0 = h1 = h3 = f5 = f6 = 0

b−1 = 0, b0 = 0, b1 = ±
i
√
6h4(dλ2 + fµ2 + fρ2)√

e
, λ = λ, µ = µ,

ρ = ρ, σ = λh2
(
dλ2 + fµ2 + fρ2

)
.

In this case, the following solutions of Eq.(1) are obtained:

(1): When h2 > 0 and h4 < 0, we get

q1,1(ϕ) = ±
i
√
−6h2(dλ2 + fµ2 + fρ2)√

e
sech

(√
h2ϕ

)
. (9)

(2): When h2 < 0 in addition to h4 > 0, we get double triangular periodic solutions

q1,2(ϕ) = ±
i
√
−6h2(dλ2 + fµ2 + fρ2)√

e
sec
(√

−h2ϕ
)
, (10)

and

q1,3(ϕ) = ±
i
√
−6h2(dλ2 + fµ2 + fρ2)√

e
csc
(√

−h2ϕ
)
. (11)

Case 2: h1 = h3 = h5 = h6 = 0, h0 =
h22
4h4

(a): b−1 = ±
ih2

√
3
2 (dλ

2 + fµ2 + fρ2)
√
eh4

, b0 = 0, b1 = 0, λ = λ, µ = µ,

ρ = ρ, σ = h2λ
(
dλ2 + fµ2 + fρ2

)
.

(b): b−1 = ±
ih2

√
3
2 (dλ

2 + fµ2 + fρ2)
√
eh4

, b0 = 0, b1 = ±
i
√
6h4(dλ2 + fµ2 + fρ2)√

e
,

λ = λ, µ = µ, ρ = ρ, σ = −2h2λ
(
dλ2 + fµ2 + fρ2

)
.

(c): b−1 = ±
ih2

√
3
2 (dλ

2 + fµ2 + fρ2)
√
eh4

, b0 = 0, b1 = ±
i
√

6h4(dλ2 + fµ2 + fρ2)√
e

,

λ = λ, µ = µ, ρ = ρ, σ = 4h2λ
(
dλ2 + fµ2 + fρ2

)
.

(d): b−1 = 0, b0 = 0, b1 = ±
i
√
6h4(dλ2 + fµ2 + fρ2)√

e
, λ = λ, µ = µ,

ρ = ρ, σ = h2λ
(
dλ2 + fµ2 + fρ2

)
.

In this case, the solutions of (a),(b),(c) and (d) are in the following form:

(1): When h2 > 0 and h4 > 0, we get

q2,1(ϕ) = b−1

√
2h4
h2

cot

(√
h2
2
ϕ

)
+ b0 + b1

√
h2
2h4

tan

(√
h2
2
ϕ

)
. (12)

(2): When h2 < 0 and h4 > 0, we get solution of Eq.(1) as

q2,2(ϕ) = b−1

√
−2h4
h2

coth

(√
h2
2
ϕ

)
+ b0 + b1

√
−h2
2h4

tanh

(√
h2
2
ϕ

)
. (13)
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Case 3: h3 = h4 = h5 = h6 = 0,

b−1 = ±
i
√
6h0(dλ2 + fµ2 + fρ2)√

e
, b0 = ±

ih1

√
3
2 (dλ

2 + fµ2 + fρ2)

2
√
eh0

, b1 = 0,

λ = λ, µ = µ, ρ = ρ, σ =
λ
(
8h0h2 − 3h21

) (
dλ2 + fµ2 + fρ2

)
8h0

.

This case has solution in the following form, where h0 ̸= 0, h1 ̸= 0 in addition to h2 > 0

q3,1(ϕ) = ±
ih1

√
3
2 (dλ

2 + fµ2 + fρ2)

2
√
eh0

±
4ih2

√
6h0(dλ2 + fµ2 + fρ2)

√
e
(
exp(

√
h2ϕ)− 2h1 + (h21 − 4h0h2)exp(−

√
h2ϕ)

) .
(14)

Case 4: h0 = h1 = h2 = h5 = h6 = 0,

b−1 = 0, b0 = ±
ih3

√
3
2 (dλ

2 + fµ2 + fρ2)

2
√
eh4

, b1 = ±
i
√
6h4(dλ2 + fµ2 + fρ2)√

e
,

λ = λ, µ = µ, ρ = ρ, σ = −
3h23λ

(
dλ2 + fµ2 + fρ2

)
8h4

.

The solution of this case is in the form

q4,1(ϕ) = ±
ih3

√
3
2 (dλ

2 + fµ2 + fρ2)

2
√
eh4

±
4ih3

√
6h4(dλ2 + fµ2 + fρ2)√
e(h23ϕ

2 − 4h4)
, h4 > 0. (15)

Case 5: h1 = h3 = h5 = h6 = 0,

(a): b−1 = ±
i
√

6h0(dλ2 + fµ2 + fρ2)√
e

, b0 = 0, b1 = 0, λ = λ, µ = µ,

ρ = ρ, σ = h2λ
(
dλ2 + fµ2 + fρ2

)
.

(b): b−1 = ±
i
√
6h0(dλ2 + fµ2 + fρ2)√

e
, b0 = 0, b1 = ±

i
√
6h4(dλ2 + fµ2 + fρ2)√

e
,

λ = λ, µ = µ, ρ = ρ, σ = λ
(
h2 − 6

√
h0h4

) (
dλ2 + f

(
µ2 + ρ2

))
.

(c): b−1 = ±
i
√

6h0(dλ2 + fµ2 + fρ2)√
e

, b0 = 0, b1 = ±
i
√

6h4(dλ2 + fµ2 + fρ2)√
e

,

λ = λ, µ = µ, ρ = ρ, σ = λ
(
6
√
h0
√
h4 + h2

) (
dλ2 + f

(
µ2 + ρ2

))
.

(d): b−1 = 0, b0 = 0, b1 = ±
i
√
6h4(dλ2 + fµ2 + fρ2)√

e
, λ = λ, µ = µ,

ρ = ρ, σ = h2λ
(
dλ2 + fµ2 + fρ2

)
.

The solutions of Eq.(1) in the above case are the Jacobi elliptic function [37, 38], which can be

constructed with different Ψ expressions.

(1): When h0 = 1, h2 = −(m2 + 1) in addition to h4 = m2, the solutions obtained are

q5,1(1)(ϕ) = b−1dc(ϕ) + b0 + b1cd(ϕ), (16)

q5,1(2)(ϕ) = b−1ns(ϕ) + b0 + b1sn(ϕ). (17)
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(2): When h0 = m2, h2 = −m2 − 1 in addition to h4 = 1, the solutions obtained are

q5,2(1)(ϕ) = b−1sn(ϕ) + b0 + b1ns(ϕ), (18)

q5,2(2)(ϕ) = b−1cd(ϕ) + b0 + b1dc(ϕ). (19)

(3): When h0 = m2 − 1, h2 = 2−m2 in addition to h4 = −1, the solution is

q5,3(ϕ) = b−1nd(ϕ) + b0 + b1dn(ϕ). (20)

(4): When h0 = 1−m2, h2 = 2m2 − 1 in addition to h4 = −m2, the solution is

q5,4(ϕ) = b−1nc(ϕ) + b0 + b1cn(ϕ). (21)

(5): When h0 = −m2, h2 = −1 + 2m2 in addition to h4 = 1−m2, the solution is

q5,5(ϕ) = b−1cn(ϕ) + b0 + b1nc(ϕ). (22)

(6): When h0 = −1, h2 = 2−m2 in addition to h4 = m2 − 1, the solution is

q5,6(ϕ) = b−1dn(ϕ) + b0 + b1nd(ϕ). (23)

(7): When h0 = 1−m2, h2 = 2−m2 in addition to h4 = 1, the solution is

q5,7(ϕ) = b−1sc(ϕ) + b0 + b1cs(ϕ). (24)

(8): When h0 = 1, h2 = 2−m2 in addition to h4 = 1−m2, the solution is

q5,8(ϕ) = b−1cs(ϕ) + b0 + b1sc(ϕ). (25)

(9): When h0 = 1, h2 = 2m2 − 1 and h4 = m2(−1 +m2), the solution is

q5,9(ϕ) = b−1ds(ϕ) + b0 + b1sd(ϕ). (26)

(10): When h0 = m2(−1 +m2), h2 = 2m2 − 1 in addition to h4 = 1, we get the solution

q5,10(ϕ) = b−1sd(ϕ) + b0 + b1ds(ϕ). (27)

(11): When h0 =
1

4
, h2 =

(1−m2)

2
in addition to h4 =

1

4
, we get the solution

q5,11(ϕ) =
b−1

(ns(ϕ)± cs(ϕ))
+ b0 + b1(ns(ϕ)± cs(ϕ)). (28)

(12): When h0 =
(1−m2)

4
, h2 =

(1 +m2)

2
in addition to h4 =

1

4
, we get the solution

q5,12(ϕ) =
b−1

(nc(ϕ)± sc(ϕ))
+ b0 + b1(nc(ϕ)± sc(ϕ)). (29)

(13): When h0 =
m2

4
, h2 =

(m2 − 2)

2
in addition to h4 =

1

4
, we get the solution

q5,13(ϕ) =
b−1

(ns(ϕ) + ds(ϕ))
+ b0 + b1(ns(ϕ) + ds(ϕ)). (30)

(14): When h0 =
m2

4
, h2 =

(m2 − 2)

2
in addition to h4 =

m2

4
, we get the solutions

q5,14(1)(ϕ) =
b−1

(sn(ϕ)± icn(ϕ))
+ b0 + b1(sn(ϕ)± icn(ϕ)), (31)

q5,14(2)(ϕ) = b−1

(
i
√
1−m2sn(ϕ)± cn(ϕ)

)
nd(ϕ) + b0 + b1

dn(ϕ)(
i
√
1−m2sn(ϕ)± cn(ϕ)

) . (32)
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(15): When h0 = 1, h2 = 2− 4m2 in addition to h4 = 1, we get the solution

q5,15(ϕ) = b−1cn(ϕ)ns(ϕ)nd(ϕ) + b0 + b1sn(ϕ)dn(ϕ)nc(ϕ). (33)

(16): When h0 =
(m− 1)2

4A2
1

, h2 =
(1 +m2 + 6m)

2
and h4 =

A2
1(−1 +m)2

4
, we get the solution

q5,16(ϕ) = b−1A1(1 + sn(ϕ))(1 +msn(ϕ))nd(ϕ)nc(ϕ) + b0 +
b1dn(ϕ)cn(ϕ)

A1(1 + sn(ϕ))(1 +msn(ϕ))
.

(34)

(17): When h0 =
(m+ 1)2

4A2
1

, h2 =
(1 +m2 + 6m)

2
and h4 =

A2
1(1 +m)2

4
, we get the solution

q5,17(ϕ) = b−1A1(1 + sn(ϕ))(1−msn(ϕ))nd(ϕ)nc(ϕ) + b0 +
b1dn(ϕ)cn(ϕ)

A1(1 + sn(ϕ))(1−msn(ϕ))
.

(35)

(18): When h0 = −2m3 +m4 +m2, h2 =
−4

m
and h4 = 6m−m2 − 1, we get the solution

q5,18(ϕ) =
b−1(1 +msn2(ϕ))nd(ϕ)nc(ϕ)

m
+ b0 +

b1mdn(ϕ)cn(ϕ)

(1 +msn2(ϕ))
. (36)

(19): When h0 = 2m3 +m4 +m2, h2 = −6m−m2 − 1 and h4 =
−4

m
, we get the solution

q5,19(ϕ) =
b−1(msn

2(ϕ)− 1)nd(ϕ)nc(ϕ)

m
+ b0 +

b1mdn(ϕ)cn(ϕ)

(msn2(ϕ)− 1)
. (37)

(20): When h0 = 2 + 2
√
1−m2 −m2, h2 = 6

√
1−m2 −m2 + 2 and h4 = 4

√
1−m2, we get

the solution

q5,20(ϕ) =
b−1

(√
1−m2 − dn2(ϕ)

)
ns(ϕ)nc(ϕ)

m2
+ b0 +

b1m
2sn(ϕ)cn(ϕ)(√

1−m2 − dn2(ϕ)
) . (38)

(21): When h0 = 2 − 2
√
1−m2 −m2, h2 = 6

√
1−m2 −m2 + 2 and h4 = −4

√
1−m2, we

get the solution

q5,21(ϕ) = −

(
b−1

(√
1−m2 + dn2(ϕ)

)
ns(ϕ)nc(ϕ)

m2
+ b0 +

b1m
2sn(ϕ)cn(ϕ)(√

1−m2 + dn2(ϕ)
)) . (39)

(22): When h0 =
m2 − 1

4(A2
3m

2 −A2
2)
, h2 =

m2 + 1

2
and h4 =

(A2
3m

2 −A2
2)(m

2 − 1)

4
, we get the

solution

q5,22(ϕ) =
b−1 (A2cn(ϕ) +A3dn(ϕ))ns(ϕ)√

A2
2 −A2

3

A2
2 −A2

3m
2

+ b0 +

b1

√
A2

2 −A2
3

A2
2 −A2

3m
2
sn(ϕ)

A2cn(ϕ) +A3dn(ϕ)
. (40)
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(23): When h0 =
m2

4(A2
3 +A2

2)
, h2 =

m2 − 2

2
and h4 =

(A2
3 +A2

2)

4
, we get the solution

q5,23(ϕ) =
b−1 (A2sn(ϕ) +A3cn(ϕ))nd(ϕ)√

A2
2 +A2

3 −A2
3m

2

A2
2 +A2

3

+ b0 +

b1

√
A2

2 +A2
3 −A2

3m
2

A2
2 +A2

3

dn(ϕ)

A2sn(ϕ) +A3cn(ϕ)
. (41)

(24): When h0 =
2m−m2 − 1

A2
2

, h2 = 2m2+2 and h4 = −A2
2m

2−A2
2− 2A2

2m, the solution is

q5,24(ϕ) =
b−1A2

(
msn2(ϕ) + 1

)
(msn2(ϕ)− 1)

+ b0 +
b1
(
msn2(ϕ)− 1

)
A2 (msn2(ϕ) + 1)

. (42)

(25): When h0 = −2m+m2 + 1

A2
2

, h2 = 2m2 + 2 and h4 = −A2
2m

2 + A2
2 + 2A2

2m, we get the

solution

q5,25(ϕ) =
b−1A2

(
msn2(ϕ)− 1

)
(msn2(ϕ) + 1)

+ b0 +
b1
(
msn2(ϕ) + 1

)
A2 (msn2(ϕ)− 1)

. (43)

(26): When f0 = f4 =
1

4
and h2 =

1− 2m2

2
,the solutions are

q5,26(1)(ϕ) = b−1

(
mcn(ϕ)± i

√
1−m2

)
nd(ϕ) + b0 +

b1dn(ϕ)(
mcn(ϕ)± i

√
1−m2

) , (44)

q5,26(2)(ϕ) =
b−1

msn(ϕ)± idn(ϕ)
+ b0 + b1 (msn(ϕ)± idn(ϕ)) , (45)

q5,26(3)(ϕ) =
b−1

mns(ϕ)± cs(ϕ)
+ b0 + b1 (mns(ϕ)± cs(ϕ)) , (46)

q5,26(4)(ϕ) = b−1 (1± cn(ϕ))ns(ϕ) + b0 +
b1sn(ϕ)

(1± cn(ϕ))
. (47)

(27): When h0 = h4 =
m2 − 1

4
and h2 =

1 +m2

2
, the solutions are

q5,27(1)(ϕ) = b−1 (1±msn(ϕ))nd(ϕ) + b0 +
b1dn(ϕ)

(1±msn(ϕ))
, (48)

q5,27(2)(ϕ) =
b−1

msd(ϕ)± nd(ϕ)
+ b0 + b1 (msd(ϕ)± nd(ϕ)) . (49)

(28): When h0 = h4 =
1−m2

4
and h2 =

1 +m2

2
, the solutions are

q5,28(1)(ϕ) = b−1 (1± sn(ϕ))nc(ϕ) + b0 +
b1cn(ϕ)

(1± sn(ϕ))
, (50)

q5,28(2)(ϕ) =
b−1

(nc(ϕ)± sc(ϕ))
+ b0 + b1 (nc(ϕ)± sc(ϕ)) . (51)

(29): When h0 = − (1−m2)2

4
, h2 =

1 +m2

2
in addition to h4 =

1

4
, the solution is

q5,29(ϕ) =
b−1

(mcn(ϕ)± dn(ϕ))
+ b0 + b1 (mcn(ϕ)± dn(ϕ)) . (52)
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(30): When h0 =
1

4
, h2 =

1 +m2

2
and h4 =

(1−m2)2

4
, the solution is

q5,30(ϕ) = b−1 (dn(ϕ)± cn(ϕ))ns(ϕ) + b0 +
b1sn(ϕ)

(dn(ϕ)± cn(ϕ))
. (53)

(31): When h0 =
1

4
, h2 =

m2 − 2

2
and h4 =

m4

4
, the solution is

q5,31(1)(ϕ) = b−1

(√
1−m2 ± dn(ϕ)

)
nc(ϕ) + b0 +

b1cn(ϕ)(√
1−m2 ± dn(ϕ)

) , (54)

q5,31(2)(ϕ) = b−1 (1± dn(ϕ))ns(ϕ) + b0 +
b1sn(ϕ)

(1± dn(ϕ))
. (55)

Where ϕ = λι + µτ + ρη − σζ fulfills Eq.(9)-(55), m is a modulus in the open interval (0, 1),

A1, A2, A3(A1A2A3 ̸= 0) and A4 are arbitrary constants. The Jacobi elliptic functions are

bi-periodic and have the subsequent characteristics of trigonometric functions

sn2(ϕ) = 1− cn2(ϕ), dn2(ϕ) = 1−m2sn2(ϕ), sn′(ϕ) = cn(ϕ)dn(ϕ),

cn′(ϕ) = −sn(ϕ)dn(ϕ), dn′(ϕ) = −m2sn(ϕ)cn(ϕ).

Once m −→ 1, the functions in Jacobi?s form reprobate to functions of hyperbolic form, thus

sn(ϕ) −→ tanh(ϕ), cn(ϕ) −→ sech(ϕ).

Once m −→ 0, the functions in Jacobi?s form reprobate to functions of trigonometric form,

thus

sn(ϕ) −→ sin(ϕ), cos(ϕ) −→ sech(ϕ).

Case 6: h0 = h1 = h5 = h6 = 0,

b−1 = 0, b0 = ±
ih3

√
3
2 (dλ

2 + fµ2 + fρ2)

2
√
eh4

, b1 =
i
√

6h4(dλ2 + fµ2 + fρ2)√
e

,

λ = λ, µ = µ, ρ = ρ, σ =
λ
(
8h2h4 − 3h23

) (
dλ2 + fµ2 + fρ2

)
8h4

.

Now, the solutions of Eq.(1) for this case are as follows [37]:

(32): When h23 − 4h2h4 = 0 and 2α2 − 9β < 0, we get the solutions

q6,1(ϕ) = − b−1h3

h2

(
1 + ϵtanh

(√
h2
2
ϕ

)) + b0 − b1
h2
h3

(
1 + ϵtanh

(√
h2
2
ϕ

))
, (56)

q6,2(ϕ) = − b−1h3

h2

(
1 + ϵcoth

(√
h2
2
ϕ

)) + b0 − b1
h2
h3

(
1 + ϵcoth

(√
h2
2
ϕ

))
. (57)

(33): When h23 − 4h2h4 > 0 and h2 > 0, we get the solution

q6,3(ϕ) =
b−1

(
ϵ
√
Θ− h3sech(

√
h2ϕ)

)
2h2sech(

√
h2ϕ)

+ b0 +
2b1h2sech(

√
h2ϕ)

ϵ
√
Θ− h3sech(

√
h2ϕ)

. (58)
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(34): When h23 − 4h2h4 > 0 and h2 < 0, we get the solutions

q6,4(ϕ) =
b−1

(
ϵ
√
Θ− h3sech(

√
−h2ϕ)

)
2h2sech(

√
−h2ϕ)

+ b0 +
2b1h2sech(

√
−h2ϕ)

ϵ
√
Θ− h3sech(

√
−h2ϕ)

, (59)

q6,5(ϕ) =
b−1

(
ϵ
√
−Θ− h3sech(

√
−h2ϕ)

)
2h2sech(

√
−h2ϕ)

+ b0 +
2b1h2sech(

√
−h2ϕ)

ϵ
√
−Θ− h3sech(

√
−h2ϕ)

. (60)

(35): When h23 − 4h2h4 < 0 and h2 > 0, we get the solution

q6,6(ϕ) =
b−1

(
ϵ
√
−Θ− h3sech(

√
h2ϕ)

)
2h2sech(

√
h2ϕ)

+ b0 +
2b1h2sech(

√
h2ϕ)

ϵ
√
−Θ− h3sech(

√
h2ϕ)

. (61)

Where ϕ = λι+ µτ + ρη − σζ and Θ = h23 − 4h2h4.

Case 7: h2 = h4 = h5 = h6 = 0,

b−1 = ±
i
√
6h0(dλ2 + fµ2 + fρ2)√

e
, b0 =

ih1

√
3
2 (dλ

2 + fµ2 + fρ2)

2
√
eh0

, b1 = 0,

λ = λ, µ = µ, ρ = ρ, σ = −
3h21λ

(
dλ2 + fµ2 + fρ2

)
8h0

.

In this case, the solution is in the Weierstrass elliptic function as show in the form

q7,1(ϕ) = b−1℘

(√
h3
2
ϕ; g2, g3

)
+ b0 + b1℘

(√
h3
2
ϕ; g2, g3

)
, h3 > 0, (62)

where g2 = −4h1
h3

, g3 = −4h0
h3

and ℘ are called invariants of Weierstrass elliptic function.

2.1 Physical explanation of the results

Here, we give the physical explanation of the excess solutions regained and stated in this

work. The discussions are conducted on a case-by-case basis:

For Case 1: The Eq.(9) is a bright soliton solution to the Eq.(1), but under the inverse

limitation situations, the singular periodic solution is restored and they are enumerated in

Eqs.(10) and (11).

For Case 2: The Eq.(12) recorded indicates singular periodic solution, but when the limitation

is reversed, a dark singular combo optical soliton is attained, which is given by Eq.(13).

For Case 3: The Eq.(14) is also another form of soliton-like solution attained from the addition

procedure.

For Case 4: The Eq.(15) indicates a plane wave solution.

For Case 5: Here, the solutions are recorded according to the Jacobi’s elliptic function, where

m denotes the elliptic modulus. Therefore, the limit values for these recorded solutions as m

draw closer to 0 or 1 are listed below:
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Firstly, when m −→ 0, Eq.(16)-(55) correspondingly tend to:

q5,1(1)(ϕ) = b−1sec(ϕ) + b0 + b1cos(ϕ), (63)

q5,1(2)(ϕ) = b−1csc(ϕ) + b0 + b1sin(ϕ), (64)

q5,2(1)(ϕ) = b−1sin(ϕ) + b0 + b1csc(ϕ), (65)

q5,2(2)(ϕ) = b−1cos(ϕ) + b0 + b1sec(ϕ), (66)

q5,3(ϕ) = b−1(ϕ) + b0 + b1(ϕ), (67)

q5,4(ϕ) = b−1sec(ϕ) + b0 + b1cos(ϕ), (68)

q5,5(ϕ) = b−1cos(ϕ) + b0 + b1sec(ϕ), (69)

q5,6(ϕ) = b−1(ϕ) + b0 + b1(ϕ), (70)

q5,7(ϕ) = b−1tan(ϕ) + b0 + b1cot(ϕ), (71)

q5,8(ϕ) = b−1cot(ϕ) + b0 + b1tan(ϕ), (72)

q5,9(ϕ) = b−1csc(ϕ) + b0 + b1sin(ϕ), (73)

q5,10(ϕ) = b−1sin(ϕ) + b0 + b1csc(ϕ), (74)

q5,11(ϕ) =
b−1

(csc(ϕ)± cot(ϕ))
+ b0 + b1(csc(ϕ)± cot(ϕ)), (75)

q5,12(ϕ) =
b−1

(sec(ϕ)± tan(ϕ))
+ b0 + b1(sec(ϕ)± tan(ϕ)), (76)

q5,13(ϕ) =
b−1

2csc(ϕ)
+ b0 + 2b1csc(ϕ), (77)

q5,14(1)(ϕ) =
b−1

(sin(ϕ)± icos(ϕ))
+ b0 + b1(sin(ϕ)± icos(ϕ)), (78)

q5,14(2)(ϕ) = b−1 (isin(ϕ)± cos(ϕ)) + b0 +
b1

(isin(ϕ)± cos(ϕ))
, (79)

q5,15(ϕ) = b−1cot(ϕ) + b0 + b1tan(ϕ), (80)

q5,16(ϕ) = b−1A1(1 + sin(ϕ))sec(ϕ) + b0 +
b1cos

A1(1 + sin(ϕ))
, (81)

q5,17(ϕ) = b−1A1(1 + sin(ϕ))sec(ϕ) + b0 +
b1cos

A1(1 + sin(ϕ))
, (82)
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q5,22(ϕ) =
b−1 (A2cos(ϕ) +A3) csc(ϕ)√

A2
2 −A2

3

A2
2

+ b0 +

b1

√
A2

2 −A2
3

A2
2

sin(ϕ)

A2cos(ϕ) +A3
, (83)

q5,23(ϕ) = b−1 (A2sin(ϕ) +A3cos) + b0 +
b1

A2sin(ϕ) +A3cos(ϕ)
, (84)

q5,24(ϕ) = −b1A2 + b0 −
b1
A2

, (85)

q5,25(ϕ) = −b1A2 + b0 −
b1
A2

, (86)

q5,26(1)(ϕ) = ±ib−1 + b0 ∓ ib1, (87)

q5,26(2)(ϕ) = ∓ib−1 + b0 ± ib1, (88)

q5,26(3)(ϕ) = ±b−1tan(ϕ) + b0 ± b1cot(ϕ), (89)

q5,26(4)(ϕ) = b−1 (1± cos(ϕ)) csc(ϕ) + b0 +
b1sin(ϕ)

(1± cos(ϕ))
, (90)

q5,27(1)(ϕ) = b−1 + b0 + b1, (91)

q5,27(2)(ϕ) = ±b−1 + b0 ± b1, (92)

q5,28(1)(ϕ) = b−1 (1± sin(ϕ)) sec(ϕ) + b0 +
b1cos(ϕ)

(1± sin(ϕ))
, (93)

q5,28(2)(ϕ) =
b−1

(sec(ϕ)± tan(ϕ))
+ b0 + b1 (sec(ϕ)± tan(ϕ)) , (94)

q5,29(ϕ) = ±b−1 + b0 ± b1, (95)

q5,30(ϕ) = b−1 (1± cos(ϕ)) csc(ϕ) + b0 +
b1sin(ϕ)

(1± cos(ϕ))
, (96)

q5,31(1)(ϕ) = 2b−1sec(ϕ) + b0 +
b1cos(ϕ)

2
, (97)

q5,31(2)(ϕ) = 2b−1csc(ϕ) + b0 +
b1sin(ϕ)

2
. (98)
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Conversely, when m −→ 1, Eq.(16)-(55) correspondingly tend to:

q5,1(1)(ϕ) = b−1 + b0 + b1, (99)

q5,1(2)(ϕ) = b−1coth(ϕ) + b0 + b1tanh(ϕ), (100)

q5,2(1)(ϕ) = b−1tanh(ϕ) + b0 + b1coth(ϕ), (101)

q5,2(2)(ϕ) = b−1 + b0 + b1, (102)

q5,3(ϕ) = b−1cosh(ϕ) + b0 + b1sech(ϕ), (103)

q5,4(ϕ) = b−1cosh(ϕ) + b0 + b1sech(ϕ), (104)

q5,5(ϕ) = b−1sech(ϕ) + b0 + b1cosh(ϕ), (105)

q5,6(ϕ) = b−1sech(ϕ) + b0 + b1cosh(ϕ), (106)

q5,7(ϕ) = b−1sinh(ϕ) + b0 + b1csch(ϕ), (107)

q5,8(ϕ) = b−1csch(ϕ) + b0 + b1sinh(ϕ), (108)

q5,9(ϕ) = b−1csch(ϕ) + b0 + b1sinh(ϕ), (109)

q5,10(ϕ) = b−1sinh(ϕ) + b0 + b1csch(ϕ), (110)

q5,11(ϕ) =
b−1

(coth(ϕ)± csch(ϕ))
+ b0 + b1(coth(ϕ)± csch(ϕ)), (111)

q5,12(ϕ) =
b−1

(cosh(ϕ)± sinh(ϕ))
+ b0 + b1(cosh(ϕ)± sinh(ϕ)), (112)

q5,13(ϕ) =
b−1

coth(ϕ) + csch(ϕ)
+ b0 + b1 (coth(ϕ) + csch(ϕ)) , (113)

q5,14(1)(ϕ) =
b−1

(tanh(ϕ)± isech(ϕ))
+ b0 + b1(tanh(ϕ)± isech(ϕ)), (114)

q5,14(2)(ϕ) = ±b−1 + b0 ± b1, (115)

q5,15(ϕ) = b−1coth(ϕ) + b0 + b1tanh(ϕ), (116)

q5,16(ϕ) = b−1A1(1 + tanh(ϕ))2cosh2(ϕ) + b0 +
b1sech

2(ϕ)

A1(1 + tanh(ϕ))2
, (117)

q5,17(ϕ) = b−1A1 + b0 +
b1
A1

, (118)

q5,22(ϕ) = b−1(A2 +A3)csch(ϕ) + b0 +
b1sinh(ϕ)

A2 +A3
, (119)

q5,23(ϕ) =
b−1 (A2tanh(ϕ) +A3sech(ϕ)) cosh(ϕ)√

A2
2

A2
2 +A2

3

+ b0 +

b1

√
A2

2

A2
2 +A2

3

sech(ϕ)

A2tanh(ϕ) +A3sech(ϕ)
, (120)

q5,24(ϕ) = −b1A2cosh2(ϕ) + b0 −
b1sech2(ϕ)

A2
, (121)

q5,25(ϕ) = −b1A2sech2(ϕ) + b0 −
b1cosh2(ϕ)

A2
, (122)

q5,26(1)(ϕ) = b1 + b0 + b1, (123)

q5,26(2)(ϕ) =
b−1

tanh(ϕ)± isech(ϕ)
+ b0 + b1 (tanh(ϕ)± isech(ϕ)) , (124)

(125)
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q5,26(3)(ϕ) =
b−1

coth(ϕ)± csch(ϕ)
+ b0 + b1 (coth(ϕ)± csch(ϕ)) , (126)

q5,26(4)(ϕ) = b−1 (1± sech(ϕ)) coth(ϕ) + b0 +
b1tanh(ϕ)

(1± sech(ϕ))
, (127)

q5,27(1)(ϕ) = b−1 (1± tanh(ϕ)) cosh(ϕ) + b0 +
b1sech(ϕ)

(1± tanh(ϕ))
, (128)

q5,27(2)(ϕ) =
b−1

sinh(ϕ)± cosh(ϕ)
+ b0 + b1 (sinh(ϕ)± cosh(ϕ)) , (129)

q5,27(1)(ϕ) = b−1 (1± tanh(ϕ)) cosh(ϕ) + b0 +
b1sech(ϕ)

(1± tanh(ϕ))
, (130)

q5,27(2)(ϕ) =
b−1

sinh(ϕ)± cosh(ϕ)
+ b0 + b1 (sinh(ϕ)± cosh(ϕ)) , (131)

q5,28(1)(ϕ) = b−1 (1± tanh(ϕ)) cosh(ϕ) + b0 +
b1sech(ϕ)

(1± tanh(ϕ))
, (132)

q5,28(2)(ϕ) =
b−1

(cosh(ϕ)± sinh(ϕ))
+ b0 + b1 (cosh(ϕ)± sinh(ϕ)) , (133)

q5,29(ϕ) =
b−1

2sech(ϕ)
+ b0 + 2b1sech(ϕ), (134)

q5,30(ϕ) = 2b−1csch(ϕ) + b0 +
b1sinh(ϕ)

2
, (135)

q5,31(1)(ϕ) = ±b−1 + b0 ± b1, (136)

q5,31(2)(ϕ) = b−1 (1± sech(ϕ)) coth(ϕ) + b0 +
b1tanh(ϕ)

(1± sech(ϕ))
. (137)

For the case where m tends to 0, the solutions listed are periodic waves, periodic singular waves

or plane waves. Conversely, for the case where m tends to 1, the solutions suggest dark singular

combo solitons, bright singular combo solitons, singular solitons and some solutions are not

categorized solitons.

For Case 6: For this case, solutions (56)-(57) suggest dark singular combo solitons whereas

both solutions (58) and (61) suggest singular solitons. Eqs. (59)-(60) indicates a composition

of singular soliton in addition to periodic singular wave.

For Case 7: Here, the Eq.(62) is a Weierstrass elliptic function solutions.

§3 Conclusion

In this work, we efficiently use the modified extended direct algebraic method to attain the

exact traveling wave solutions for the nonlinear 3-D mKdV-ZK equation. With this method, we

reduce the mKdV-ZK equation to ODE, making it easy to be solved. Implementing this method

and the solutions of the auxiliary first order nonlinear ODE (ordinary differential equation),

new diversity of traveling wave solutions of the nonlinear 3-D mKdV-ZK equation are obtained

under certain parameter constraints, comprising bright solitons, dark solitons, singular periodic

solutions, and pairs of bright, dark and singular solitons. Furthermore, we retrieve new solutions

of the mKdV-ZK equation for the first time, such as constant wave, combo solitons and some
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uncategorized solitons. The method also recovers solutions from the Jacobi?s elliptic and the

Weierstrass elliptic functions.

By comparing our solutions in this work with the solutions in [39], we obtain more and new

exact solutions with solitons properties. In addition, Lu D et al [40], applied the same extended

direct algebraic method on the mKdV-ZK equation but most of the solutions we attain are

different by comparing with our solutions due to the auxiliary equation. Our solutions recovered

new solutions for the mKdV-ZK equation for the first time like constant wave, combo solitons

and uncategorized solitons which are not in [40]. This method can be extended to several NEEs

due to its efficient, simplicity and ability to execute tedious and complex algebraic calculations.
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