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Statistical Analysis and Evaluation of Macroeconomic

Policies: A Selective Review

LIU Ze-qin1 CAI Zong-wu2 FANG Ying1,3 LIN Ming1,3,∗

Abstract. In this paper, we highlight some recent developments of a new route to evaluate

macroeconomic policy effects, which are investigated under the framework with potential out-

comes. First, this paper begins with a brief introduction of the basic model setup in modern

econometric analysis of program evaluation. Secondly, primary attention goes to the focus on

causal effect estimation of macroeconomic policy with single time series data together with some

extensions to multiple time series data. Furthermore, we examine the connection of this new

approach to traditional macroeconomic models for policy analysis and evaluation. Finally, we

conclude by addressing some possible future research directions in statistics and econometrics.

§1 Introduction

It is a common practice for both policymakers and scholars to perform ex post assessmen-

t of the causal effects of social-economic programs or policies or public interventions. The

statistical econometric analysis and evaluation of such causal effects have attracted consider-

able attention during the last two decades and by now undergone substantial development and

progress. Some scholars, for example, Imbens and Wooldridge (2009) and Cerulli (2015), pro-

vided comprehensive surveys of the existing literature. However, most of these surveys mainly

focus on microeconomic policy or social program evaluations, which might not be appropriate

for macroeconomic policy or intervention evaluation.

There are at least three reasons on why one should pay a special attention to macroeconom-

ic policy analysis and evaluation. First, in some macroeconomic policy evaluations, the main

interest is to estimate the causal effect of a policy intervention on a single country or region,
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rather than the average treatment effect in microeconomic policy or social program evalua-

tions. For example, to estimate the effect of political and economic integration of Hong Kong

with mainland China on Hong Kong’s economic growth; see, for example, Hsiao, Ching and

Wan (2012, henceforth HCW), there is only one unit, like Hong Kong, in the treated group.

Therefore, in this example, only an individual treatment effect is concerned. Secondly, for

macroeconomic policy evaluation, it may be more difficult to find a well-matched control group

for the treatment unit. For example, it is not easy to match China with other countries to assess

the impact of a Chinese policy on its economy, because China has a unique economic and/or

political system. Finally, in a macroeconomic policy evaluation setting, individual observations

in different periods are usually serially autocorrelated and treatment in one period often has

impacts on the following periods.

Based on the above reasons, the macroeconomic policy evaluation framework should deserve

a particular consideration and develope separately. Although there are many other methods,

such as dynamic stochastic general equilibrium modeling (abbreviated as DSGE) and structural

vector autoregressive (SVAR) models, which are popular to be adopted to analyze macroeco-

nomic policy effects, most of these methods rely heavily on some structural specifications of the

entire economic system. In such a way, the validity of their results relies on how precise the

assumed economic models are. Therefore, conducting this new type of macroeconomic policy

evaluations leads to some precise estimates which can best provide insights to further develop

relevant structural models for policy simulations.

The main aim of this paper is to survey recent developments of an alternative route to

make causal inferences for macroeconomic policy effects. The key problem in this literature

is to estimate statistically the treatment effect of a macroeconomic policy program in a non-

experimental setup. Similar to microeconomic policy evaluation, the fundamental challenge is

the missing observation problem. That is, at most one outcome in different treatment levels can

be observed because the unit can be exposed to only one level of the treatment. This problem

is usually addressed by using the so-called counterfactual approach in the statistics literature;

see, for example, Rubin (1974, 1977) for details, which is also called the Rubin causal model.

The rest of this paper is organized as follows. Section 2 briefly introduces the basic frame-

work of the Rubin causal model. Section 3 reviews the estimation methods for estimating

macroeconomic causal effects using single time series data. Section 4 focuses on the methods

when multiple time series data are available. Section 5 concludes with discussions on some open

and interesting research questions.

§2 Basic Model Setup

From the early 1970s, Rubin (1973a, 1973b, 1974, 1978, 1979), in a series of his papers,

mapped the now dominant approach to the evaluation problem, labeled as Rubin causal model

(RCM) by Holland (1986). There are two essential ingredients in RCM: potential outcomes

and assignment mechanism. The potential outcomes framework is the hallmark of modern



LIU Ze-qin, et al. Statistical Analysis and Evaluation of Macroeconomic Policies... 59

econometric analysis of treatment effect. This section gives a concise introduction to the basic

model setup under the RCM framework, which can be used to analyze a macroeconomic policy’s

simultaneous treatment effects under certain assumptions.

2.1 Potential Outcomes

Suppose that we wish to estimate the effect of a macroeconomic policy on economic growth

using observations on T periods, indexed by t = 1, . . . , T . The policy is carried out in some of

these periods, not in others. Let Yt denote economic growth and Dt indicate whether a policy

is implemented at period t, with Dt = 1 if it is implemented and Dt = 0 if it is not. Dt can

be a binary variable, a multiple variable (see, e.g., Angrist and Imbens, 1995), or a continuous

variable (Imbens, 2000, and Hirano and Imbens, 2004). If not otherwise specified, we assume

Dt is binary in this paper.

Definition 2.1 (Potential Outcomes). Potential outcomes are pairs of outcomes for the same

period given different levels of treatment, denoted by Yt(0) and Yt(1). Yt(0) denotes the outcome

that would be realized at period t if the policy is not implemented. Similarly, Yt(1) denotes the

outcome that would be realized at period t if the policy is implemented.

Rubin (1973a, 1973b) defined novelly the causal effect as the difference between this pair

of outcomes, i.e., Yt(1)− Yt(0), the treatment effect of the policy at period t. This framework

counters a fundamental missed observation problem, since at period t, the policy can either

be implemented or not be implemented, but not both. Thus, only one of these two potential

outcomes can be realized. However, prior to the assignment being determined, both are po-

tentially observable and hence labeled as potential outcomes. If the policy is carried out at

period t, Yt(1) is realized, and Yt(0) is a counterfactual outcome. On the other hand, if the

policy is not carried out at period t, Yt(0) is realized, and Yt(1) is a counterfactual outcome.

In casual inference, it is usual to make few assumptions other than the stable unit treatment

value assumption (SUTVA), which is that one unit’s outcomes are unaffected by another unit’s

treatment assignment.

The potential outcomes Yt(0) and Yt(1) have the following relationship with the realized

outcome Yt:

Yt =

Yt(0), Dt = 0;

Yt(1), Dt = 1.
Equivalently, Yt = DtYt(1) + (1−Dt)Yt(0), (1)

which is the so-called potential outcome model (POM), and it is the fundamental relation

linking unobservable and observable outcomes. The potential outcomes framework has five

main advantages over the traditonal models defined by realized outcomes; see Imbens and

Wooldridge (2009) for more details.
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2.2 Parameters of Interest

Average treatment effect (ATE) and average treatment effect on the treated (ATET) are

two prominent parameters of interest in the literature. If Yt and Dt are strictly stationary, then

ATE = E[Yt(1)− Yt(0)], and ATET = E[Yt(1)− Yt(0)|Dt = 1].

Average treatment effect is defined over the entire period, and average treatment effect on the

treated is averaged over the subset of treated periods. Another popular parameter is conditional

average treatment effect (CATE):

ATE(x) = E[Yt(1)− Yt(0)|Xt = x], and ATE = Ex[ATE(x)],

where Xt is a vector of conditional variables (strictly stationary, and not affected by the in-

tervention). Recently, a quantile treatment effect (QTE) has been popularly studied and ex-

tensively applied in the economics literature and real applications; see Abadie, Angrist and

Imbens (2002), Chernozhukov and Hansen (2005), and Koenker and Bassett (1978). For a

given 0 < q < 1, QTE is defined as

QTEq = F−1
Y (1)(q)− F−1

Y (0)(q), (2)

where FY (d)(·) is the distribution of Yt(d) for d = 1 and 0. The conditional quantile treatment

effect (CQTE) and conditional quantile treatment effect on the treated (CQTET) can be defined

in the same way.

2.3 Assignment Mechanism

The assignment mechanism is the mechanism by which policies are carried out or not at

period time t. It is expressed as the conditional probability of receiving the treatment given

observed covariates and potential outcomes, i.e., P (Dt = 1|Xt, Yt(0), Yt(1)), which is a func-

tion of potential outcomes and observed covariates. According to the relationship between

potential outcomes and the assignment mechanism, three classes of assignment mechanism are

distinguished commonly as: randomized experiments, selection on observables, and selection

on unobservables, which are described next in detail.

The first class of assignment mechanisms is randomized experiments. In randomized exper-

iments, Dt ⊥⊥
(
Y (0), Y (1)

)
, i.e., the probability of assignment to treatment, a known function

of covariates, is independent with potential outcomes. A typical example is a completely ran-

domized experiment where we randomly choose T1 < T periods for treated and T0 = T −T1 for

untreated, and each period has equal probability of being in the control group or the treatment

group. Under the assumptions of iid (independently and identically distributed) and SUTVA,

the well-known difference-in-means (DIM) estimator in classical statistics defined in (3) can be

applied to recover the average treatment effect:

D̂IM =
1

T1

T∑
t=1

DtYt −
1

T0

T∑
t=1

(1−Dt)Yt. (3)

In reality, the decision-making process for a macroeconomic policy is complex. To carry out a

policy, the authority would gather detailed and well-documented data and information, outline
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the problems, list goals and objectives, reveal potential gains and losses, etc. Thus, it is

impossible for the authority to implement a macroeconomic policy randomly.

The second class of assignment mechanisms is selection on observables, which is also referred

to as unconfounded assignment, presented by Rosenbaum and Rubin (1983). This mechanism

assumes that factors determining whether a policy should be put into effect are observable. In

this setting, Dt ⊥⊥
(
Yt(0), Yt(1)

)
|Xt, i.e., given Xt, the assignment probability does not depend

on the potential outcomes. Different from randomized experiments, the assignment probability

is no longer assumed to be a known function of covariates.

Thus far, a majority of statistical/econometric methods for evaluation have been developed

in such a setup under the assumptions of iid and SUTVA. The most popular techniques in this

vein include, but not limited to, regression-adjustment (RA) in Heckman, Ichimura, and Todd

(1997, 1998), matching in Abadie and Imbens (2006, 2008, 2011), matching on propensity-

score in Abadie and Imbens (2016), Dehejia and Wahba (2002), and Caliendo and Kopeinig

(2010), re-weighting on propensity-score inverse probability (IPW) in Rosenbaum and Rubin

(1983), Dehejia and Wahba (1999), Hahn (1998), Hirano, Imbens and Ridder (2003), Brunell

and DiNardo (2004), Wooldridge (2010), Imbens (2004), and Lunceford and Davidian (2004),

and double-roust estimator (DR) in Robins and Rotnitzky (1995), Robins, Rotnitzky and Zhao

(1995), van der Lann and Robins (2003), and Wooldridge (2007), and the references therein.

Finally, the third one is selection on unobservables, containing cases apart from the random

experiment and selection on observables. In this setting, whether a policy is implemented

depends on not only observable factors but also unobservable factors. Thus, the assignment

probability has some dependence on potential outcomes. Therefore, givenXt, we cannot identify

the treatment effects, and we require further assumptions for the analysis. There is no general

solution for this situation.

§3 Evaluation Methods with Single Time Series Data

The model setup in section 2 is borrowed from microeconomic policy evaluation but is

still suitable for assessing a macroeconomic policy’s simultaneous effects on outcome variables

with some additional assumptions. However, subsequent movements of the outcome variables

responding to the policy are needed for a careful consideration in a macroeconomic policy eval-

uation framework. Angrist and Kuersteiner (2011), Angrist, Jordà and Kuersteiner (2018), Bo-

jinov and Shephard (2019), Jordà and Taylor (2016), and Kuersteiner, Phillips and Villamizar-

Villegas (2018) extended the modern statistical/econometric analysis of treatment effects to a

time series context for macroeconomic data.

3.1 A Road Map

In cross-sectional analysis, we have data usually consisting of multiple units in one period,

some being treated but others not. Since we cannot observe the pairs of potential outcomes

simultaneously, the individual treatment effect cannot be identified. By comparing the outcomes
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of treatment group with control group, we obtain the consistent estimation of average treatment

effect. However, in time series analysis, we only have data of a single unit in multiple periods.

Instead of the average treatment effect, the concepts of potential outcome paths introduced

by Robins (1986) and the dynamic potential outcomes introduced by Angrist and Kuersteiner

(2011) and Angrist et al. (2018) become the heart of this literature.

3.1.1 Potential Outcome Paths

Let D1:t = (D1, · · · , Dt) denote the random “treatment path” and d1:t be a realization

of D1:t. By assuming that Dt is binary, we have 2t treatment paths at time t. Bojinov and

Shephard (2019) defined potential outcomes on the treatment path D1:t as follows.

Definition 3.1 (Potential Outcome Paths). The set of 2t potential outcomes at time t is:

Yt(·) = {Yt(d1:t) : d1:t ∈ {0, 1}t},
and the potential path for the treatment path d1:t is

Y1:t(d1:t) = {Y1(d1:1), Y2(d1:2), · · · , Yt(d1:t)}.
Therefore, the potential outcome paths have the following relationship with observed outcome

path:

Y1:t =
∑

d∈{0,1}t

1{D1:t = d}Y1:t(d), t = 1, · · · , T. (4)

To see the detailed paths of potential outcome, let us consider the case that T = 3 with

the potential outcome paths indicated in Figure 1. When t = 1, there are 21 = 2 potential

Figure 1: Potential outcome paths when T=3

outcomes Y1(0) and Y1(1). When t = 2, there are 22 = 4 potential outcomes Y2(1, 1), Y2(1, 0),
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Y2(0, 1), and Y2(0, 0). Assuming that the realized treatment path is d1:3 = (1, 1, 1), then, the

potential path for d1:3 is Y1:3(d1:3) = {Y1(1), Y2(1, 1), Y3(1, 1, 1)}. According to (4), the observed

outcome path is just the potential outcome path of observed treatment path d1:t, when t=3,

Y1:t = Y1:t(d1:t) = {Y1(1), Y2(1, 1), Y3(1, 1, 1)}.
Given the potential outcome paths, any comparison of potential outcome paths at fixed

period t, has a causal interpretation. Therefore, we can define a large number of treatment

effects; see, for example, Bojinov and Shephard (2019).

Definition 3.2 (General Treatment Effect). For paths d1:t and d
′
1:t, the t-th treatment effect

is:

τt(d1:t, d
′
1:t) = Yt(d1:t)− Yt(d

′
1:t),

and the average treatment effect of the paths d1:t and d
′
1:t is:

τ̄(d1:T , d
′
1:T ) =

1

T

T∑
t=1

τt(d1:t, d
′
1:t).

3.1.2 Dynamic Potential Outcomes

In the DSGE and SVAR frameworks, one of the main focuses is the impulse response func-

tion (IRF), which is the contemporaneous and subsequent movements of outcome variables

responding to an exogenous policy shock at time t. Angrist and Kuersteiner (2011) and Angrist

et al. (2018) proposed the new concept of dynamic treatment effects as the corresponding part

of the impulse response function.

Definition 3.3 (Dynamic Potential Outcomes). Given t, l, and ψ, potential outcomes

{Y ψt,l(d); d ∈ D} are defined as the set of values the observed outcome variable Yt+l would take

on if Dt = d, with d ∈ D = {0, · · · , j, · · · , J}. ψ denotes the policy regime, which takes values

in a parameter space Ψ.

Let Yt:L = (Yt, Yt+1, · · · , Yt+L)′ is the path of the observed outcome from t to t+L, Y ψt:L(d) =

(Y ψt,0(d), Y
ψ
t,1(d), · · · , Y

ψ
t,L(d))

′ is the path of potential outcome from t to t+L. The relationship

of Yt:L and Y ψt:L(d) is:

Yt:L =
∑
d∈D

Y ψt:L(d)1{Dt = d}.

Based on the definition above, the causal effect of policy choice j is Y ψt,l(j) − Y ψt,l(0), where

d = 0 is a benchmark policy. Since individual causal effects can never be observed, Angrist

and Kuersteiner (2011) and Angrist et al. (2018) thus defined the average treatment effects,

labelled as the dynamic treatment effects in this paper.

Definition 3.4 (Dynamic Treatment Effects). Given l, the expected response of Yt+l to policy

choice j is:

θl,j = E
[
Y ψt,l(j)− Y ψt,l(0)

]
, (5)

and the collection of treatment effects from t to t+ L is:

θj = E
[
Y ψt:L(j)− Y ψt:L(0)

]
, (6)
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where θj = (θ0,j , θ1,j , · · · , θL,j).

Similar to the traditional impulse response analysis in macroeconomics, the definition for

θ focuses on a single policy shock on contemporaneous and subsequent outcomes. Indeed,

it compares two different paths, by controlling the path of Dt before t, and assuming that

dt+1:t+L|t is constant:

θl,j(j, 0) = E
[
Y ψt,l(d1:t−1, dt = j, dt+1, · · · , dt+l)− Y ψt,l(d1:t−1, dt = 0, dt+1, · · · , dt+l)

]
,

and

θj(j, 0) = E
[
Y ψt:L(d1:t−1, dt = j, dt+1, · · · , dt+L)− Y ψt:L(d1:t−1, dt = 0, dt+1, · · · , dt+L)

]
.

Note that both the timing of policy adoption and the horizon matter for Y ψt,l(j). For example,

Y ψt,l(j) may be different from Y ψt+1,l−1(j), even though both describe outcomes in period t + l,

because Y ψt,l(j) measures the effect of Dt = j on the outcome at time t+ l, Y ψt+1,l−1(j) measures

the effect of Dt+1 = j on the outcome at time t+ l, and for Y ψt,l(j), we do not limit Dt+1 = j.

3.2 Connection to Classic Macroeconomic Models

To understand how the dynamic treatment effect defined above corresponds to a nonlinear

impulse response function, we illustrate their connection using the following model:

Dt = D(zt, ψ, ut), and Yt+l = Ft,l(zt, Dt, ηt,l),

where zt is a vector, including covariate Xt, and some lags of Yt as well as Dt, ut is unobservable

idiosyncratic information, which is assumed to be independent of potential outcomes, and ηt,l

is white noise. Considering a perturbation ϵt of Dt at time t, the nonlinear impulse response

of Yt+l is defined as:

δl(zt, Dt, ϵt) = Ft,l(zt, Dt + ϵt, ηt+l)− Ft,l(zt, Dt, ηt+l). (7)

If Dt + ϵt = j, and Dt = 0, it is clear that (7) is just the dynamic treatment effect as defined

in (5). Specifically, Angrist and Kuersteiner (2011) made this strong link to linear impulse

response function in their paper. Suppose in a SVAR model,

Γ0

YtDt

Xt

 = −Γ(L)

YtDt

Xt

+

ηtϵt
ζt

 ,
where L is the lag operator, ϵt represents the policy shocks in which we are interested, ηt and

ζt represents other innovations. Assume C(L) = (Γ0 + Γ(L))−1 exists, then,YtDt

Xt

 = C(L)

ηtϵt
ζt

 .
We further suppose that the outcome is determined by Yt = ϕ1Dt + ϕ2ηt, and the policy rule

is given by Dt = ψYt−1 + ϵt, where Yt has a moving average representation:

Yt =
∞∑
l=0

ρlϵt−l +
∞∑
l=0

γlηt−l.
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Here, ρl is the impulse response function for output in response to the interested policy shocks.

In this setup, potential outcome for Dt = j is defined as:

Y ψt,l(j) = ρl(j − ψYt−1) +
∞∑

i=0,i̸=l

ρiϵt+l−i +
∞∑
i=0

γiηt+l−i.

The associated causal effect of this policy change is Y ψt,l(j) − Y ψt,l(0) = ρlj, which means how

the outcome Yt+j would change if the policy changing from 0 to j, by assuming that every-

thing else is unchanged. Obviously, this is precisely the idea of the impulse response function.

Moreover, compared to SVAR and DSGE models, the identification and estimation of dynamic

treatment effects require no need to specify the structural process of Yt and only focuses on

the policymaking process, alleviating the crucial model misspecification problem faced in these

main macroeconomic models and providing a more flexible tool for the analysis and evaluation

of macroeconomic causal relationships.

3.3 Inferences with Selection on Observables

Selection on observables is a natural starting point for identification and estimation of

the causal inferences. Angrist and Kuersteiner (2011) and Angrist et al. (2018) defined the

assumption of selection on observables in time series framework as follows:

Assumption 3.1 (Selection on Observables). Given covariate zt, Y
ψ
t,l(d) ⊥⊥ Dt | zt, for all

l ≥ 0, d ∈ D , with ψ fixed, and ψ ∈ Ψ.

This assumption is also known as conditional independence assumption (CI). It also can be

expressed as the following form:

P (Dt = d|D1:t−1 = d1:t−1, Y
ψ
1:T (·), zt) = P (Dt = d|D1:t−1 = d1:t−1, Y

ψ
1:t−1(d1:t−1), zt). (8)

In view of (8), it is clear see that the assumption means that our treatments only depend on past

observables of potential outcomes and are not influenced by the corresponding period value or by

future values of potential outcomes. This assumption is simply the “sequential randomization”

assumption as in Robins (1994), Robins, Greenland and Hu (1999), Abbring and van den Berg

(2003), and Lok (2008). Under this assumption, we have the following relationship:

θl,j = E

[
E
[
Y ψt,l(j)− Y ψt,l(0)|zt

]]
= E

[
E
[
Yt,l|Dt = j, zt

]
− E

[
Yt,l|Dt = 0, zt

]]
. (9)

Then, θl,j can be identified, since (9) is cast in terms of observable conditional means. Therefore,

to estimate θl,j , we can draw lessons from the iid case. Indeed, Angrist et al. (2018) applied

the IPW estimator to time series data to estimate the causal effect of monetary policy on

macroeconomic aggregates, while Jordà and Taylor (2016) adopted the doubly robust estimator

to time series data to evaluate the fiscal policy. They are elaborated in detail in the next

subsections.
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3.3.1 Estimation: IPW Method

Define pj(zt, ψ) = P (Dt = j|zt) as the policy propensity score, with pj(zt, ψ) being a flexible

parametric model with parameter ψ determined by the policy regime, where zt is a covariate.

Further, assume that 0 < p ≤ pj(zt, ψ) ≤ p < 1, which is a common assumption in the

literature. Then, the selection on observables assumption implies that

E [Yt,l1{Dt = j}|zt] = E
[
Y ψt,l(j)|zt

]
pj(zt, ψ),

which leads to

θIPWl,j = E

[
Yt,l

(
1{Dt = j}
pj(zt, ψ)

− 1{Dt = 0}
p0(zt, ψ)

)]
. (10)

This re-weighting scheme was first proposed by Horvitz and Thompson (1952) and adapted by

Hanh (1998) and Hirano et al. (2003) for treatment effect estimation in cross-sectional cases.

Denote

wt,j(ψ) =
1{Dt = j}
pj(zt, ψ)

− 1{Dt = 0}
p0(zt, ψ)

.

Then, (10) can be written as θIPWl,j = E[wt,j(ψ)Yt,l], a weighted expectation of Yt,l, and clearly,

θIPWl,j can be estimated by a two-step procedure. First, estimate the parameter ψ in pj(zt, ψ).

Secondly, take ψ̂ to wt,j(ψ̂) and then obtain the estimation of θIPWl,j . In a correctly specified

model, the weight wt,j(ψ) has a mean zero and is uncorrelated with zt. To ensure this condition

is true, Angrist et al. (2018) suggested weight Yt,l by ẅt,j , where ẅt,j = wt,j(ψ̂)−E[wt,j(ψ̂)|zt],
is the residual from a regression of wt,j(ψ̂) on zt and a constant. Therefore, the estimators of

θIPWl,j and θIPWj are given by

θ̂IPWl,j =
1

T

T∑
t=1

ẅt,jYt+l, and θ̂IPWj =
1

T

T∑
t=1

ẅt,jYt:L,

respectively. In practice, when pj(zt, ψ̂) is too small, the weight would be extremely large. Then,

the estimation of θIPWl,j is dominated by these outliers. To overcome this difficulty, the trimmed

method should be used by dropping observations with pj(zt, ψ̂) < 0.025 when 1{Dt = j} = 1.

Note that when the dimension of zt is not very high, the nonparametric estimate of pj(zt) can

be applied to avoid a possible misspecification of parametric form pj(zt, ψ).

3.3.2 Estimation: Doubly Robust Approch

It is well documented in the literature that if the parametric form of pj(zt, ψ) is correctly

specified, the IPW estimators θ̂IPWl,j and θ̂IPWj are consistent. To circumvent the possible

misspecification of pj(zt, ψ), one can let pj(zt) = P (Dt = j|zt) be unspecified as a nonparametric

form so that the IPW estimators are consistent. However, the dimension of zt is high in practice,

the nonparametric estimate of pj(·) may suffer from the “curse of dimensionality”. To overcome

these difficulties, Robins and Rotnitzky (1995) proposed the so-called doubly robust estimator

(DR).

Jordà and Taylor (2016) adopted the doubly robust estimator to assess the impact of fiscal

austerity on subsequent economic growth. The doubly robust estimator has an attractive

property that consistency of the estimated average treatment effect only requires either the



LIU Ze-qin, et al. Statistical Analysis and Evaluation of Macroeconomic Policies... 67

propensity score model or the regression model of the potential outcome to be correctly specified.

The doubly robust estimator used by Jordà and Tapylor (2016) is indeed an AIPW (aug-

mented IPW), which has the smallest asymptotic variance within the doubly robust class as in

Robins and Rotnitzky (1995), Robins et al. (1995), and Lunceford and Davidian (2004). It is

defined by

θAIPWl,j =
1

T

T∑
t=1

[
1{Dt = j}
pj(zt, ψ̂)

Yt+l +

(
1− 1{Dt = j}

pj(zt, ψ̂)

)
µj(zt, β̂j)

]

− 1

T

T∑
t=1

[
1{Dt = 0}
p0(zt, ψ̂)

Yt+l +

(
1− 1{Dt = 0}

p0(zt, ψ̂)

)
µ0(zt, β̂0)

]
,

where µj(zt, β̂j) = E(Yt+l|Dt = j, zt) and µ0(zt, β̂j) = E(Yt+l|Dt = 0, zt), which are two

regression estimators of potential outcomes Y ψt,l(j) and Y
ψ
t,l(0), respectively.

The AIPW estimator is the basic IPW estimator plus an adjustment of the weighted aver-

age of the two regression estimators. The adjustment term stabilizes the estimator when the

propensity scores become close to zero or one (Glynn and Quinn, 2010). In the cross-sectional

context, when the propensity score and the regression function are modeled correctly, the AIP-

W can achieve the semiparametric efficiency bound. If the propensity score pj(·) is modeled

correctly, the AIPW estimator has the asymptotic variance smaller than or equal to that for the

simple IPW estimator. If the regression model µj(·) is modeled correctly, the AIPW estimator

should have the asymptotic variance greater than or equal to that for the simple regression

estimator, but it gives protection in the event that µj(·) is misspecified.

3.3.3 Estimation: IPW Combined with Machine Learning

Liu, Cai and Fang (2019) combined machine learning with IPW to investigate the effects of

monetary policy and macro-prudential policy on financial stability, price stability and economic

growth in China. Liu et al. (2019) adopted a data-driven method to deal with estimation

problems with a large set of covariates. One of the policy propensity score models they defined

was:

pj(zt, ψ) =
eψjzt∑J
k=0 e

ψkzt
, j = 0, 1, · · · , J,

where zt contained over 700 variables, including lages of Xt, Yt and Dt. By adding L1 type or

L2 type penalty, ψ̂ was estimated to minimize the following objective function:

Lq(ψ, λ) = − 1

T

 T∑
t=1

J∑
j=0

1{Dt = j}

(
ψjzt − log

J∑
k=0

eψkzt

)+ λ1∥ψ∥qq,

where ∥ψ∥q was the Lq normal with, say, q = 1 or 2. In addition, they also adopted support

vector machine (SVM) and random forests (RF) to fit policy propensity score model. Through

utilizing the information from a large number of series and eliminating the arbitrary reliance on

a small number of predefined variables, Liu et al. (2019) found that machine learning methods

could help predict the Chinese government’s policy decision well.

With policy propensity score estimated by machine learning methods, Liu et al. (2019)
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estimated the dynamic treatment effects of monetary policy and macro-prudential policy on

financial stability, price stability and economic growth in China according to (10). The findings

were that easy monetary policy alone could reduce financial systematic risk, while tight mon-

etary policy alone could reduce CPI/PPI, and slow down the economic growth rate; macro-

prudential policy alone had little effect on financial and economic outcomes;when monetary

and macro-prudential policies were employed simultaneously, macro-prudential policy would

offset the effect of monetary policy on systematic financial risk; tight macro-prudential policy

could neutralize the negative effect of tight monetary policy on economic growth; tight macro-

prudential policy would strengthen tight monetary policys effect on PPI, but offset the impact

of tight monetary policy on CPI; see Liu et al. (2019) for more details.

3.3.4 Testing for The Selection on Observables Assumption

As one can see from (9) that the selection on observables assumption plays a vital role in

identifying the parameters of interest θl,j . However, this assumption may be violated in practice

if there exist unobserved confounders which affect both the potential outcomes Y ψt,l(j) and the

treatment variable Dt. If this assumption does not hold, both the IPW and doubly robust

estimators discussed above will deliver inconsistent estimation in general for the parameters

of interest θl,j . Thus, it is desirable to formally test whether the selection on observables

assumption holds or not. Recently, Cai, Fang, Lin and Tang (2019) proposed a new method

to test the selection on observables assumption for both cross-sectional and time series data

settings. Specifically, their method relies on the existence of an auxiliary variable which is

correlated to potential outcomes but is independent of the treatment variable given on potential

outcomes and some other observable covariates. Formally, their procedure requires the available

auxiliary variable ωt satisfying the following assumption.

Assumption 3.2. There exists an auxiliary variable ωt such that ωt ⊥⊥ Dt |
(
Y ψt,l(j), zt

)
for all

l ≥ 0,d, with ψ fixed, and ψ ∈ Ψ.

Under this assumption, Cai et al. (2019) showed that the selection on observables assump-

tion implied that E(Dt|ωt, zt) = E(Dt|zt), so that testing for the selection on observables

assumption could be transformed into testing the insignificance of the auxiliary variable ωt,

which could be formulated as the following testing hypothesis

H0 : E(Dt|ωt, zt) = E(Dt|zt)
a.s. (almost surely) versus

H1 : E(Dt|ωt, zt) ̸= E(Dt|zt) on a set with positive measure.

Let ϖt = (z′t, ω
′
t)

′ ∈ Rp, where p = q + r with q being the dimension of zt and r being the

dimension of ωt. Define εt = Dt − E(Dt|zt). Then, the null hypothesis can be rewritten as

H0 : E(εt|ϖt) = 0 a.s.

and the alternative hypothesis is

H1 : E(εt|ϖt) ̸= 0 on a set with positive measure.
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Furthermore, based on the following conditional moment

S = E
[
εtf(zt) · E

(
εtf(zt)|ϖt

)
· fϖ(ϖt)

]
,

where f(zt) and fϖ(ϖt) are the density functions of zt and ϖt, respectively, Cai et al. (2019)

proposed the following test statistic

ST =
1

T (T − 1)hp

T∑
t=1

∑
s̸=t

(
ε̂tf̂(zt) ·

(
ε̂sf̂(zs)

))
K
(ϖs −ϖt

h

)
,

where ε̂t = Dt − D̂t,

D̂t =
1

(T − 1)hq1

∑
s̸=t

K1

(zs − zt
h1

)
Ds/f̂(zt),

with f̂(zt) being the kernel density estimator of f(zt), K(·) being a p-dimensional product

kernel function, K1(·) being a q-dimensional product kernel function , and both bandwidths h

and h1 being the smoothing parameters.

Finally, under some assumptions, Cai et al. (2019) obtained the following asymptotic results,

under H0,

S̃T =
Thp/2ST√

2σ̂T

d−→ N (0, 1),

where

σ̂2
T =

1

T (T − 1)hp

T∑
t=1

∑
s̸=t

(
ε̂tf̂(zt)

)2
·
(
ε̂sf̂(zs)

)2
K2
ts,

being a consistent estimator of σ2
T given by

σ2
T = E

[
f4(zt)fϖ(ϖt)σ

4(ϖt)
]
·
(∫

K2(u)du
)
,

with σ2(ϖt) = E
(
ε2t |ϖt

)
, and under H1, P (S̃T > QT ) → 1 for any non-stochastic sequence

QT = o(Thp/2). Therefore, the decision rule is that H0 is rejected at the significance level α0

if S̃T > c, where c is the upper α0-percentile of the standard normal distribution.

3.4 RDD in Time Series

Regression discontinuity design (RDD) is another popular framework to identify treatment

effects; see, for example, Thistlethwaite and Campbell (1960), Klaauw (2008), Lee and Card

(2006), Lee (2008), Angrist and Lavy (1999), Ludwig and Miller (2007), and Hahn, Todd, and

Klaauw (2001) for details. Kuersteiner et al. (2018) extended the RDD approach to a time-

series environment. Let Dt follow a fixed rule Dt = 1{Rt > c}, where the running variable Rt

is a continuous, nonrandom function of zt such that Rt = g(zt) for some function g(·), zt is a

covariate, and c is a known threshold. Assume the potential outcome functions are continuous

at the cutoff point c, i.e., ηt,l in Yt+l = Ft,l(zt, Dt, ηt,l) satisfying E[ηt,l|Rt = c] is a.s. continuous

at c. Then, around the critical point c, the treatment effect is given by:

θl(c) = lim
∆↓0

E[Yt+l|Rt = c+∆]− lim
∆↑0

E[Yt+l|Rt = c−∆].
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The estimator θ̂l(c) is obtained by solving the problem:

(â, b̂, γ̂, θ̂l(c)) = arg min
a,b,γ,θl

T−l∑
t=1

(yt+l − al − bl(Rt − c)− θlDt − γl(Rt − c)Dt)
2K

(
Rt − c

h

)
,

where K(·) is a kernel function and h is a bandwidth. To illustrate the importance of RDD

in practice, we use the example in Kuersteiner et al. (2018) to investigate how to use RDD in

macroeconomic policy evaluation.

Example 3.1. In October 1999, the Central Bank of Colombia (CBoC henceforth) adopted an

inflation-targeting regime with a floating exchange rate. Meanwhile, to control the volatility of

exchange rate, CBoC carried out rule-based currency interventions. The mechanics of rule-based

interventions were as follows: at the close of any business day, whenever the average exchange

rate for the entire day et, appreciated or depreciated (vis-a-vis its last 20-day moving average

ēt) at a rate faster than a cutoff rt, the rule would be triggered, and call or put options on pesos

would be issued. Options expired one month after the issued day, and could be exercised on days

that the rule was triggered. There are two necessary conditions for CBoC to issue options:

(1) The appreciating or depreciating rate of et exceeds the cutoff rt;

(2) There are no outstanding options from a previous auction.

Thus, the running variable can be defined as:

Ct =
1

rt

et − ēt
ēt

(1−OCt), and Pt =
1

rt

et − ēt
ēt

(1−OPt),

where Ct is the running variable for issuing call options on pesos, Pt is the running variable for

issuing put options on pesos, and OCt (OPt) is a dummy variable denoting whether call (put)

options from a previous auction remain outstanding at date t. The policy intervention dummies

(DC,t, DP,t) are defined as, DC,t = 1{Ct ≥ 1} with Rt = Ct and c = 1, and DP,t = 1{Pt ≤ −1}
with Rt = Pt and c = −1. During the time period from January 2002 to February 2012, the rule

was trigged 231 times, 38 auctions were issued, and options were exercised in 75 cases. The

aim is to evaluate the dynamic treatment effects of the rule-based interventions on exchange

rates. Here, Yt is change in log exchange rate, i.e. Yt = log et+l − log et, where l > 0.

In this example, the authors used the RDD method to measure the dynamic treatment

effects. Consider the put options, for example, by assuming that E[ηt,l|Pt = −1] was continuous,

where ηt,l was the unobservable shocks of Yt,l as defined above. Then, if Pt was very close to

−1, based on the facts that traders could neither manipulate the running variable nor predict

with certainty whether the rule was triggered or not, they concluded that any movement in Pt

at this point was as good as random noise. While the small movement of Pt had a small effect

on the average ηt,j , the movement could move DP,t from 0 to 1 or vice versa. Therefore, the

movement when Pt was local to the cutoff was as good as if they could randomly change DP,t,

and they obtained a local random assignment mechanism. Thus, the local dynamic treatment

effect of put options could be estimated by:

θl = lim
p↓(−1)

E[Yt+l|Pt = p]− lim
p↑(−1)

E[Yt+l|Pt = p].
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Define the dynamic treatment effect for horizons 1, · · ·L as:

θ = (θ1, · · · , θL)′.
Then, θ̂ could be obtained by local linear method:

(â, b̂, γ̂, θ̂) = arg min
a,b,γ,θ

L∑
l=1

T−L∑
t=1

(yt+l − al − bl(Pt + 1)− θlDP,t − γl(Pt + 1)DP,t)
2K

(
Pt + 1

h

)
,

with c = −1.

θ̂ obtained by RDD method can be cast in both a local nonlinear impulse response function

framework and a potential outcome framework, which again illustrates the link between dynamic

treatment effects defined by potential outcomes and classic macroeconomic model. Consider

a perturbation ϵ(δ) of zt such that the function of running variable Rt = g(zt) satisfying

g(zt + ϵ) − g(zt) = δ with δ > 0. For δ fixed and ϵ = ϵ(δ), the nonlinear impulse response

function of yt+j is:

θl(ϵ, zt) = Ft,l(D(zt + ϵ), zt + ϵ)− Ft,l(D(zt), zt).

Since Ft,l(·) is continuous, we have lim
δ→0

θl(ϵ(δ), zt) = 0, when g(zt) is far away from the point c,

and we have lim
δ→0

θl(ϵ(δ), zt) = θRDDl (zt) = Ft,l(1, zt)−Ft,l(0, zt), when g(zt) is around the point

c. According to the definition of dynamic potential outcomes given by Angrist and Kuersteiner

(2011) and Angrist et al. (2018), we know that Ft,l(1, zt) = Yt,l(1), and Ft,l(0, zt) = Yt,l(0).

Therefore, the local nonlinear impulse response function is simply the treatment effect defined

by potential outcomes.

From the equation θRDDl (zt) = Ft,l(1, zt)− Ft,l(0, zt), we can check the different conditions

among traditional impulse response function, selection on observables, and RDD. Write the

observed outcome Yt+l as:

Yt+l = Ft,l(0, zt) + θRDDl (zt)Dt. (11)

When assuming Ft,l(0, zt) is linear in zt, θ
RDD
l (zt) is a constant, and E[Dt|zt, Ft,l(·)] = E[Dt|zt]

(selection on observables), (11) is a linear regression function, and θRDDl (zt) is the traditional

impulse response coefficient. Without assuming that Ft,l(0, zt) is linear in zt and θ
RDD
l (zt) is a

constant, the framework of selection on observables introduced in Section 3.3.1 can be applied.

When the assumption of selection on observables fails, if a policy is implemented based on a

clear rule, we can use the RDD method to estimate the dynamic treatment effects under the

assumption that the potential outcomes function Ft,l(zt, Dt, ηt,l) is a.s. continuous at c.

§4 Evaluation Methods with Multiple Time Series Data

In this section, we survey the existing approaches for estimation of macroeconomic policy

effects with multiple time series data. We first discuss synthetic control method (SCM) and

then examine the panel data approach proposed by Hsiao et al. (2012). In this setting, we

have observations of multiple periods on multiple units, indexed by i = 1, · · · , N , t = 1, · · · , T .
Before T1 (1 ≤ T1 < T ), neither of units receives the policy intervention. after T1, without loss

of generality, we assume that only the first unit is exposed to the policy intervention.
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4.1 Synthetic Control Method

A way to assess treatment effects for the multiple time series setting is the synthetic control

method (SCM), which is proposed by Abadie and Gardeazabal (2003), and Abadie, Diamond

and Hainmueller (2010). The main idea behind SCM is using a linear combination of all control

units to form an artificial control unit that is more similar to the treatment unit in the pre-

intervention periods than any of control units on their own. The counterfactual outcomes after

the implementation periods for the treatment unit is estimated as outcomes of the artificial

control unit in the same periods, which are weighted average ones of the control units. The

SCM method is illustrated in detail using the example in Abadie and Gardeazabal (2003).

Example 4.1. Assume there are N regions, i = 1, · · ·N . The first unit (i=1) is Basque

Country, and the others are other Spanish regions. The regions were observed at periods from

1955 to 1997, i.e., t = 1, · · ·T , t = 1 denotes the year 1955, and t = T denotes the year 1997.

From year T1+1 (T1 = 1967), Euskadi Ta Askatasuna (ETA), a Basque terrorist organization,

claimed its first victim in Basque Country and continued afterwards. ETA’s terrorist activity

was no more than two victims per year before 1973, increased to almost 16 victims per year on

average in the period 1974-1977, and peaked to a total of 235 victims in the years of 1978-1980,

after which it decreased gradually. In September 1998, ETA declared a total and indefinite cease

fire. Since ETA’s violent activity was concentrated in the Basque Country, other areas were

deemed to not require such treatment. Let Dit denote a binary treatment indicator, Thus, we

have the data {(Dit, Yit,Xi)}, where Dit = 0 for i = 1 · · ·N and t = 1, · · · , T1, D1t = 1 for

t = T1 + 1, · · · , T , and Dit = 0 for i = 2, · · · , N and t = T1 + 1, · · · , T , and Yit is per capita

GDP for region i at time t, Xi is a vector of economic growth predictors for region i with the

dimension of K (not affected by the intervention).

The main target of the analysis in Abadie and Gardeazabal (2003) is to evaluate the impact

that terrorism has had on economic growth for the Basque Country. Since there is no interven-

tion before T1, it is clear that Yit = Yit(0) for i = 1, · · · , N, t = 1, · · · , T1. After T1, only the

first unit receives the treatment. Then, Y1t = Y1t(1) for t = T1 + 1, · · · , T and Yit = Yit(0) for

i = 2, · · · , N and t = T1+1, · · · , T . To recover Y1t(0) for periods t = T1+1, · · · , T , Abadie and

Gardeazabal (2003) conceptualized a weighted average of other Spanish regions as a “synthetic”

Basque Country without terrorism; that was,

Y1t(0) =
N∑
i=2

wi · Yit, t = T1 + 1, · · · , T,

with wi (i = 2, · · · , N) being the weight of region i in the synthetic Basque Country, wi ≥ 0,

and
∑N
i=2 wi = 1. Let W = (w2, · · · , wN )′, W is obtained by minimizing

(Z1 − Z0W )′V (Z1 − Z0W )′,

with wi ≥ 0 and
∑N
i=2 wi = 1. Here, Z1 = (Y11, · · · , Y1T0 ,X

′
1)

′ is a (T1 + K) × 1 vector of

outcomes before T1 and K covariates for Basque Country, and Z0 is a (T1 + K) × (N − 1)

matrix of the same values of other N-1 regions. Further, V is a (T1 +K)× (T1 +K) positive-

definite matrix, with the diagonal elements vii reflecting the relative importance of the different
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variables in determining Y . The choice of V could be subjective. After obtaining the optimal

weights w∗
i , the treatment effect can be estimated by:

∆̂1t = Y1t −
N∑
i=2

w∗
i Yit.

SCM method can be regarded as a generalization of the differnce-in-differences (DID) model.

A standard SCM model is supposed as:

Yit(0) = δt + b′ift + β′
tXi + ϵit, and Yit(1) = Yit(0) + ∆itDit, (12)

where δt is an unknown common factor with constant factor loadings across units, ft is a

vector of unknown common factors with varying factor loadings bi, Xi is a vector of covariates

(independent from intervention and time-invariant), βt is a vector of unknown parameters with

possible time-varying, and ϵit is unobserved shock with zero mean for all unit i. If we impose

that ft is constant for all t in SCM:

Yit(0) = δt + fbi + β′
tXi + ϵit,

the DID model is obtained with bi = gi, where gi is the group unit i belonged to, and gi ∈
{0, 1, · · · , G} . Thus, the SCM model allows for the time-varying effects of unobserved common

factors, but the DID model restricts the effects of these unobservable common factors to be

constant in time.

4.2 HCW Method

Hsiao et al. (2012) proposed a flexible and simple-to-implement panel data methodology to

analyze treatment effects. This method exploited the correlations among cross sectional units

to construct the counterfactuals. Hsiao et al. (2012) argued the cross-sectional dependence was

due to the presence of some unobserved common factors. Based on this point, they developed a

straightforward way to construct counterfactuals with observed data. In this section, we discuss

the basic model and some extensions of their approach.

4.2.1 Model Setup

The setting is the same as that in SCM. That is, Y1t = Y1t(0) for t = 1, · · · , T1, Y1t = Y1t(1),

for t = T1 + 1, · · · , T , and Yit = Yit(0) for i = 2, · · · , N and t = 1, · · · , T . To recover Y1t(0) for

periods T1 + 1, · · · , T , the HCW method assumes that Yit(0) has the following factor model:

Yit(0) = αi + b′ift + ϵit, i = 1, · · ·N ; t = 1, · · ·T,
where αi is the fixed individual-specific effect, ft is a K × 1 vector of unobserved common

factors that vary over time, bi is a K × 1 vector of factor loadings that vary across i, ϵit is

the unobservable random idiosyncratic component with E[ϵit] = 0. The HCW model can be

expressed in terms of matrix form as:

Yt(0) = α+Bft + ϵt,

where Yt(0) = (Y1t(0), . . . , YNt(0))
′, α = (α1, . . . αN )′, ϵt = (ϵ1t, . . . , ϵNt)

′, B is the N×K factor

loading matrix B = (b1, . . . , bN )′, with ∥bi∥ = c < ∞ for all i, ϵt is I(0) such that E(ϵt) = 0
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and E(ϵtϵ
′
t) = V , where V is a diagonal constant matrix, E(ϵtf

′
t) = 0, and RANK(B) = K.

To estimate Y1t(0) for periods T1 + 1, · · · , T , it is needed to further assume that

E[ϵjs|Dit] = 0 for j ̸= i. (13)

The assumption in (13) means that other units are not affected by the policy implemented to

the treatment unit.

Let v = (1,−γ′)′ and γ = (γ2, · · · γN )′, such that v′B = 0, i.e., v ∈ N (B), where N (B) is

the null space of B. Then,

v′Yt(0) = v′α+ v′ϵt.

By rearranging, we obtain

Y1t(0) = γ1 + γ′Ỹt + ϵ∗1t,

where γ1 = v′α, Ỹt = (Y2t, · · · , YNt)′, ϵ∗1t = v′ϵt = ϵ1t − γ′ϵ̃t, and ϵ̃t = (ϵ2t, · · · , ϵNt)′. Since Ỹt

is correlated with ϵ∗1t, we decompose ϵ∗1t = E(ϵ∗1t|Ỹt) + η1t and E[η1t|Ỹt] = 0. Then,

Y1t(0) = γ1 + γ′Ỹt + E(ϵ∗1t|Ỹt) + η1t.

Furthermore, it is assumed that

E(ϵ∗1t|Ỹt) = a0 + b′0Ỹt. (14)

Then,

Y1t(0) = a+ c′Ỹt + η1t, t = 1, · · · , T, (15)

where a = a0 + γ1, and c = γ + b0, which means that we can use observations of Y2t, · · · , YNt
to predict Y1t(0). Later, Li and Bell (2017) showed that without the assumption in (14), (15)

still held. By minimizing the following equation:
1

T1
(Y1(0)− a′e− c′Y−1)A(Y1(0)− a′e− c′Y−1),

we can obtain a consistent ordinary least squares (OLS) estimator of a and c. Here, Y1(0) =

(Y11, · · · , Y1T1)
′, e is a T1 × 1 vector of 1’s, Y−1 is a T1 × (N − 1) matrix of T1 time series

observations of Ỹt, A is a T1×T1 positive definite matrix. So, Y1t(0) for periods t = T1+1, · · · , T
is:

Ŷ1t(0) = â+ ĉ′Ỹt, t = T1 + 1, · · · , T.
Thus, the treatment effect for unit 1 is:

∆̂1t = Y1t − Ŷ1t(0), t = T1 + 1, · · · , T.
The standard deviation of Ŷ1t(0), denoted by σY1t(0), can be calculated by the standard formula

for standard deviation. For example, when η1t is iid, then

σ2
Y1t(0)

= σ2
η1 [1 + (1, Ỹ ′

t )(Y
′
−1Y−1)

−1(1, Ỹ ′
t )].

The confidence interval of ∆1t is correspondingly as ∆̂1t ± cσY1t(0). Furthermore, suppose ∆1t

follows an autoregressive moving average model (ARMA):

a(L)∆1t = µ+ θ(L)ηt,

where L is the lag operator, ηt is white noise, and the roots of θ(L) = 0 lie outside the unit

circle. If all roots of a(L) = 0 lie outside the unit circle, then the long-term treatment effect is

∆1 = a(L)−1µ = µ∗,
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and ∆1 can be estimated by taking the simple average of the treatment effect:

∆̂1 =
1

T2

T∑
t=T1+1

∆̂1t,

where T2 = T − T1. Indeed, Li and Bell (2017) derived the consistency and asymptotic distri-

bution of ∆̂1 by showing that

∆̂1 −∆1 = Op(T
−1/2
1 + T

−1/2
2 ),

and √
T2(∆̂1 −∆1)

d−→ N(0,Σ), (16)

where Σ = Σ1 +Σ2, Σ1 = ηE(χt)
′V E(χt),

η = limT1,T2→∞ T2/T1, χt = (1, Ỹ ′
t )

′, V = limT1,T2→∞ Var(
√
T1β̂), β̂ = (â, ĉ′)′,

and Σ2 = limT1,T2→∞ Var
(
T

−1/2
2

∑T
t=T1+1 (∆1t − E(∆1t) + η1s)

)
.

Obviously, the asymptotic normality in (16) can be used for making inferences for ∆1 provided

that a consistent estimate of Σ in (16) is available.

The above is the main idea of the HCW method. By using this method, Hsiao et al. (2012)

assessed the effect of political and economic integration of Hong Kong with mainland China

after 1997 on Hong Kong’s economic growth.

4.2.2 Selection of Control Units

In real applications, the question how to select control units arises. It is well known that

when Ỹt is used to predict Y1t(0), given the size of time series, it is not always better to include

all units in the donor pool to the prediction regression. To balance the within-sample fit and

post-sample prediction error, two criteria must be met to select control units. One is that control

units must display strong correlations with the treatment unit based on the pretreatment data.

The other criterion is that control units should be independent of the treatment.

Hsiao et al. (2012) proposed a two-step way to choose the strongest correlated predictors.

First, assume we can use j units to predict Y1t(0), j = 1, · · · , N − 1 and then use R2 or

likelihood values to select the best predictor for Y1t(0), denoted by M(j)∗. Secondly, choose

the best M(m)∗ from M(1)∗,M(2)∗, · · · ,M(N − 1)∗ in terms of a model selection criterion.

The essence of the procedure proposed by Hsiao et al. (2012) is to minimize the Akaike

information criterion (AIC) or its extension (corrected version of AIC, AICC) or the Baysian

information criterion (BIC). However, AIC and AICC are asymptotically inconsistent (Shao,

1993, 1996) because neither the probability of selecting the optimal model nor the probability

of selecting the model with the best predictive ability converges to 1 as T → ∞. To overcome

this problem, Du and Zhang (2015) suggested using a leave-nv-out cross-validation criterion

(CV(nv)) to choose the optimal control units, which had the consistent property. The CV(nv)

method first chooses the data from cross-sectional dimension, the chosen subset of {2, · · · , N}
is denoted by S, and the components in S are ỸSt. Then, split the data into two parts from

the time dimension. That is, {Y1t, Ỹ ′
St}

T1
t=1 is split into {(Y1k, Ỹ ′

Sk), k ∈ κ}, {Y1k, Ỹ ′
Sk), k ∈ κc},

where κ is a subset of {1, · · · , T1} with nv elements and κc is its complement. After that,
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regression Y1k on constant and ỸSk using the data indexed by κc, and obtain the estimation

of âS,κc and ĉS,κc . Calculate the average squared prediction error using the data indexed by

κ, 1
nv

∑
k∈κ(Y1k − âS,κc − ĉ′S,κc ỸSk)

2. There are Cnv

T1
ways to divide 1, 2, · · ·T1 into κ and κc.

Therefore,M of them are randomly drawn, as {κj , κcj}
M

j=1
, and the objective function is defined

as

1

nvM

M∑
j=1

∑
k∈κj

(Y1k − âS,κc
j
− ĉ′S,κc

j
ỸSk)

2. (17)

From all the possible subsets of {2, · · ·N}, Du and Zhang (2015) chose S∗ to minimize the

objective function defined in (17). They showed that the CV(nv) method could produce the

consistent estimate and give smaller out-of-sample prediction results than AIC and AICC via

simulations.

Instead of using some classical model selection approaches, Li and Bell (2017) proposed using

the least absolute shrinkage and selection operator (Lasso) method to select control units. The

objective function of the Lasso method is
T1∑
t=1

(Y1t − χ′
tβ)

2 + λ
N∑
j=1

|βj |,

where χt = (1, Ỹ ′
t )

′, β = (â, ĉ′)′, and λ is a tuning parameter. The larger λ is, the more

penalty is imposed on nonzero βj . To obtain a Lasso estimator of β, a value of λ must first be

selected. Li and Bell (2017) adopted the leave-one-out cross validation method to select λ over

a discrete set ΛL = {λ1, λ2, · · · , λL}. For each λ ∈ ΛL, and each t = 1, · · · , T1, by minimizing

the following leave-one-out objective function:
T1∑

k=1,k ̸=t

(Y1k − χ′
kβ)

2 + λ
N∑
l=1

|βl|,

we get the leave-one-out estimator of β−t,λ. Then, we compute the CV(λ),

CV(λ) =
1

T1

T1∑
t=1

(Y1t − χ′
tβ−t,λ)

2.

Finally, we choose λ to minimize CV(λ).

4.2.3 Semiparametric Model

Ouyang and Peng (2015) relaxed the linear conditional mean assumption in (14) and extend-

ed the HCW model to a semiparametric setting. Under semiparametric setting, (15) becomes:

Y1t(0) = g(Ỹt) + η1t,

where g(Ỹt) = γ1+γ
′Ỹt+E(ϵ∗1t|Ỹt), and g(Ỹt) can be estimated using a nonparametric method,

such as the local constant kernel method:

ĝ(Ỹt) =

∑T1

s=1 Y1sK2s,2t∑T1

s=1K2s,2t

, t = T1 + 1, · · · , T,

where K2s,2t = ΠNj=2k((Yjs − Yjt)/hj) is the (N-1)-dimensional product kernel function of the

univariate kernel k(·), and hj is the bandwidth associated with covariate Yjt for j = 2, · · · , N .
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The average treatment effect can then be estimated by:

∆̂1,NP =
1

T2

T∑
t=T1+1

(Y1t − ĝ(Ỹt)).

To avoid the so-called “curse of dimensionality” problem for large N , g(Ỹt) can be estimated

semiparametrically:

g(Ỹt) = β′z1t + h(z2t), (18)

where z1t ∪ z2t = Ỹt, and z1t ∩ z2t = ∅. If q, the dimension of z2t is low, the “curse of

dimensionality” problem can be greatly alleviated. β̂ and ĥ(·) can be estimated by the profile

least squares method using the pretreatment data. First, we treat β as if it was known and

estimate h(z2t) by

h̃(z2t) = T−1
1

T1∑
s=1

(Y1s − β′z1t)Ksh/f̂
∗
t = B1t −B′

2tβ, (19)

where B1t = T−1
1

∑T1

s=1 Y1sKsh/f̂
∗
t , B2t = T−1

1

∑T1

s=1 z1sKsh/f̂
∗
t , f̂

∗
t = T−1

1

∑T1

s=1Ksh, and

Ksh = Πql=1h
−1
l k((z2s,l− z2t,l)/hl). Since β is unknown, h̃(z2t) is not feasible. Replacing h(z2t)

in (18) by h̃(z2t), we obtain:

Y1t −B1t = (z1t −B2t)
′β + η1t.

Using the OLS to estimate β, then,

β̂ =

[
T1∑
t=1

(z1t −B2t)(z1t −B2t)
′

]−1 T1∑
t=1

(z1t −B2t)(Y1t −B1t).

Plugging β̂ into (19) yields

ĥ(z2t) = T−1
1

T1∑
s=1

(Y1s − β̂′z1t)Ksh/f̂
∗
t .

4.2.4 Disentangling the Effects of Multiple Treatments

All the methods proposed above assume that there is only one treatment. However, in

many cases, there may be several treatments working simultaneously. Fujiki and Hsiao (2015)

extended the standard HCW to distinguish the effect of one treatment from the other when

the units were exposed to both working treatments at the same time. We use their example of

Great Hanshin-Awaji earthquake to introduce the idea behind this methodology.

Example 4.2. The Great Hanshin-Awaji earthquake took place on January 17, 1995. After

that, the economic growth of the Kobe region declined dramatically. However, at approximately

the same time, there were fundamental structural changes occurring around the disaster area.

On the one hand, the port of Kobe was met by a challenge from other lower-cost ports in Asia

such as Pusan, Hong Kong or Singapore. On the other hand, traditional industries, which were

heavily concentrated in the disaster area, were challenged by globalization. For example, the

chemical shoe industry, one of the most important local industries, had to compete with the

cheaper shoes from China and the expensive shoes from Italy and France. How much the Great
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Hanshin-Awaji earthquake should account for this economic decline was the issue explored by

Fujiki and Hsiao (2015).

Real GDP data from the 47 prefectures are available from 1955 to fiscal year 2009, i.e., we

have observations of N = 47 units in T = 54 periods, and T1 is the fiscal year 1994. Before T1,

no unit received treatment. From T1 +1 onwards, the first unit, the Hyogo prefecture (the Kobe

region) received two treatments D1t and D2t, while the rest did not. D1t is a binary indicator

for the earthquake treatment, and D2t is a binary indicator for the other treatment, such as

structural economic changes. Suppose the net effect of natural disaster is transitory, then, from

T2 + 1 (T2 > T1), the observed value no longer contains the earthquake effect. Here, Y denotes

the real GDP. Define Y1t = Y1t(0, 0) for t = 1, · · · , T1, Y1t = Y1t(1, 1) for t = T1 + 1, · · · , T2,
Y1t = Y1t(0, 1) for t = T2 + 1, · · · , T , and Yit = Yit(0, 0) for i = 2, · · · , N and t = 1, · · · , T ,
where Yit(i, j) denotes the potential outcomes of Y , when D1t = i and D2t = j for i = 0 and 1,

and j = 0 and 1.

To measure the net impact of the earthquake on the economy of Kobe region, Fujiki and

Hsiao (2015) first estimated Ŷ1t(0, 0) after period T1 using the HCW method. That is,

Ŷ1t(0, 0) = E[Y1t(0, 0)|Ỹt] = γ1 + γ′Ỹ ∗
t , t = T1 + 1, · · · , T,

where Ỹ ∗
t is the chosen subset of Ỹt according to the two criteria to predict Y1t(0, 0). Using

data from 1 to T1, γ̂1 and γ̂ are obtained and we have:

Ŷ1t(0, 0) = γ̂1 + γ̂′Ỹ ∗
t , t = T1 + 1, · · · , T.

Since during periods from T1 +1 to T2, Y1t = Y1t(1, 1), the treatment effects Y1t − Ŷ1t(0, 0) are

the combined effects of earthquake and structural change. To isolate the net earthquake effects,

Fujiki and Hsiao (2015) noticed the fact that only the treatment of structural change worked

after T2. Using the same way, they constructed Ŷ1t(0, 1) before T2,

Ŷ1t(0, 1) = E[Y1t(0, 1)|Ỹt] = δ1 + δ′Ỹ ∗∗
t , t = 1, · · · , T2,

with Ỹ ∗∗
t being the subset of Ỹt to predict Y1t(0, 1). Using data from T2 + 1 to T , δ̂1 and δ̂ are

obtained and the estimation of potential outcome Y1t(0, 1) before T2 is backcasted as:

Ŷ1t(0, 1) = δ̂1 + δ̂′Ỹ ∗∗
t , t = 1, · · · , T2.

Then, the net earthquake effects from T1 + 1 to T2 are:

∆̂e
1t = Y1t − Ŷ1t(0, 1), t = T1 + 1, · · · , T2,

and the net effects of structural change from T1 + 1 to T2 are estimated by:

∆̂s
1t = Ŷ1t(0, 1)− Ŷ1t(0, 0), t = T1 + 1, · · · , T2.

4.2.5 Comparison of SCM and HCW

As mentioned above, the HCW and SCM models are both applicable to the setting that

only one unit is exposed to the treatment after period T1, while others are never exposed to the

treatment. Moreover, when δt from (12) in the SCM model is incorporated into b′ift, a general

underlying factor model for Yit(0) as the following can encompass the two methods:

Yit(0) = αi + b′ift + β′
tXi + ϵit, i = 1, · · ·N, t = 1, · · ·T,
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where the individual-specific effect αi is not considered in SCM, and the covariate effect β′
tXi

is not included in the original version of HCW, see, for example, Gardeazabal and Vega-Bayo

(2016) for details.

However, there are still important differences between SCM and HCW. Wan, Xie and Hsiao

(2018) explained these differences carefully and they argued that the main differences between

SCM and HCW were the assumptions that each method was based on. HCW places restrictions

on the control units by assuming that control units must have strong correlation with the

treatment unit and should be independent of the treatment, while SCM assumes that the

weights must be nonnegative and add up to one. If the HCW assumptions about control

units hold for both approaches, the difference between SCM and HCW is that HCW is an

unconstrained regression, while SCM is a constrained regression. When the constraints are

valid, SCM is more efficient. However, when the constraints are invalid, SCM could lead to

biased estimation. Therefore, through conducting simulation studies, Wan et al. (2018) found

that HCW significantly dominated SCM in a majority of cases.

§5 Conclusion

Evaluating the effect of macroeconomic policies quantitatively is one of the central issues

in economic studies and policy research in many applied fields. This paper provides a selective

review of recent advances in macroeconomic policy evaluation in the framework of the Rubin

causal model. Compared to other popular methods such as DSGE and SVAR models, the

method proposed by Angrist et al. (2018) and Kuersteiner et al. (2018) does not need to specify

the model of the whole economy. Moreover, the dynamic treatment effect exactly corresponds

to the impulse function induced from a DSGE or SVAR model, which means that the dynamic

treatment effect provides an alternative method under less restrictive assumptions. When panel

data are available, Hsiao et al. (2012), Abadie and Gardeazabal (2003), and Abadie et al. (2010)

provided new methods to estimate the individual treatment effect of macroeconomic policies.

In summary, macroeconomic policy evaluation is still a very dynamic and challenging research

area which deserves further studies. As expected, without doubt, this area will receive a great

attention in the near future. For example, of importance and challenge is to consider the

synthetic control method and/or the HCW model to the quantile treatment effect as in (2).

The macroeconomic policies are inherently different over time, in the sense that the size of

the same type of policy shocks is different at different time periods and/or they are implemented

under different economic scenarios (deep recession versus mild recession versus boom), and/or

relevant policy regimes (e.g., consider fiscal policy with or without zero lower bound or generally

accommodating monetary policy). Therefore, the part of this article discusses some potential

approaches of identifying one policy impacts by controlling for other policies scenarios most.

Of course, a future research on whether the time-varying policy impacts can be addressed in

this type of framework is very interesting, and there would have some interesting applications.
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