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Pricing VIX options with stochastic skew and asymmetric

jumps

JING Bo LI Sheng-hong TAN Xiao-yu

Abstract. This paper performs several empirical exercises to provide evidence that the stochas-

tic skew behavior and asymmetric jumps exist in VIX markets. In order to adequately capture

all of the features, we develop a general valuation model and obtain quasi-analytical solutions

for pricing VIX options. In addition, we make comparative studies of alternative models to

illustrate the effects after taking into account these features on the valuation of VIX options

and investigate the relative value of an additional volatility factor and jump components. The

empirical results indicate that the multi-factor volatility structure is vital to VIX option pricing

due to providing more flexibility in the modeling of VIX dynamics, and the need for asymmetric

jumps cannot be eliminated by an additional volatility factor.

§1 Introduction

Since the 2008 financial crisis, the trading volume of volatility derivatives has shown a trend

of rapid growth. Among these diversified volatility derivatives, VIX options, as a kind of trading

and hedging tools for a wide range of investors, have gained more and more popularity. This

is partly because there is usually a negative relationship between stock returns and market

volatilities, and therefore taking long positions in VIX call options can help investors to limit

losses in a bear market environment. The research about VIX options introduced by the Chicago

Board Options Exchange (CBOE) in 2006 has been attracting great attention in finance. In

this sense, this paper focuses on the effects of stochastic skew and asymmetric jumps on the

valuation of VIX options.

Numerous studies have been conducted on VIX options pricing in recent years (e.g., [13, 14,

16, 26]). It is well known that volatility has the significant mean-reverting effect. So far, the

two most prominent mean-reverting models are the square root model (SR) and logarithmic

model (LR). The latter first considered by [12] assumes that the logarithm of VIX follows an
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Ornstein-Uhlenbeck (OU) process. [6] extended the LR model to incorporate upward jumps

and concluded that the LR model serves better than the SR model in fitting VIX historical

data and VIX option quotes. [13] led to the same conclusion as well. On the basis of the wide

acceptance of the LR model in VIX literature relative to the SR model, we would like to follow

the LR framework to model the dynamics of the VIX index.

It is widely recognized that the implied volatility surface extracted by the Black−Scholes

formula displays a smiling pattern in options markets. To account for this feature, a variety of

models have been proposed, including the stochastic volatility (SV) models. In contrast with

the downward implied volatility skew observed in the S&P 500 index (SPX) options markets,

the implied volatility smiles of VIX options display upward sloping shape, found by [2]. [14]

developed an analytical pricing formula for VIX options under the 3/2 model and pointed out

that the model is capable of generating the upward implied volatility skew. Nevertheless, the

strong time-variation in the slope of the implied volatility smile poses a new modeling challenge

for option pricing theory. There are several empirical studies providing evidence that the slopes

of the implied volatility smiles of foreign exchange options and equity index options are time

varying (e.g., [19, 21]). The feature that the skew evolves stochastically through time observed

in the VIX options markets is first illustrated by [15]. As far as we know, this stylized fact is

not extensively documented elsewhere. To this end, we perform several empirical exercises to

provide additional evidence via a quadratic polynomial fit on the implied volatility smiles.

As pointed out by [19], there are two approaches to capture the stochastic skew feature, the

first one is to randomize the mean jump size and the second one is to randomize the correlation

between the asset return and its instantaneous variance process. In this paper, we take the

latter approach to allow for stochastic correlation by considering multi-factor volatility models.

Starting with [25], lots of option pricing literature found that multi-factor volatility models

are preferred to single-factor ones (e.g., [5, 20]). Based on a principal component analysis of

the implied variance, [21] documented that the first two components together explain more

than 95% of the variation in the data. Then they applied a two-factor Heston model, which

displays stochastic correlation between the noises driving the stock return and the stochastic

volatility process, to SPX options pricing. Within the single-factor framework, on the contrary,

the correlation is constant over time which limits the ability of capturing stochastic skew. Also,

[17] indicated that the introduction of an additional stochastic volatility factor improves the

pricing performance of target volatility options.

Apart from stochastic skew, jumps are widely regarded as a salient feature of volatility. [18]

found evidence of significant upward jumps in implied volatilities. By comparing jump diffusion

and continuous-time diffusion processes with respect to the ability of capturing the dynamics

of volatility indices, [9] concluded that the former is the best fit to the data. It is well known

that good and bad surprises will cause upward and downward jumps in stock prices. Since the

Merton jump component, where jump size follows the normal distribution, has a limitation on

distinguishing the type of jumps, the double exponential jump-diffusion model is proposed by

[24] which can differentiate upward and downward jumps by employing different exponential
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distributions. Hence, in order to study the impact of asymmetric jumps on the pricing of VIX

options, we adopt the double exponential specification. Furthermore, we consider the negative

exponential specification that only captures upward jumps in the VIX dynamics to analyze

whether including downward jumps offers benefits for VIX option valuation in the context of

multi-factor volatility models.

Motivated by the critical empirical features mentioned above, we develop a general valuation

model which captures these features by employing the multi-factor volatility structure and the

double exponential jump diffusion process. To the best of our knowledge, most studies on

VIX option pricing do not take stochastic skew into account. For example, [14] employed

the 3/2 model to price VIX options, but this model is incapable of capturing this feature.

Although [15] first considered stochastic skew in the valuation of volatility options, the author

did not consider jump components nor test the pricing improvements for the additional volatility

factor. [4] also investigated the pricing performance associated with VIX options across different

models. However, we differ from [4] by adopting the standalone approach with modeling the

VIX dynamics directly.

This paper mainly contributes to the existing literature in several ways. First, the proposed

model is a general model, which adequately captures critical modeling features. It can be

regarded as an extension of the models proposed by [3, 6, 15]. Second, we find quasi-analytical

expressions for the characteristic function and thereby solving the pricing problem of VIX

derivatives. Finally, within the standalone framework, we make comparative studies of different

option valuation models to analyze the in-sample and out-of-sample pricing performance. To

further investigate the marginal contributions for the additional components in explaining the

option prices, we also test the pricing improvements across different models.

The remainder of this paper proceeds as follows. Section 2 performs empirical studies

to document the main features of VIX dynamics. Section 3 displays the model framework

and solves the pricing problem associated with VIX derivatives. The calibration procedure is

conducted in Section 4. Section 5 discusses the empirical results of the pricing performance

across different model specifications. This paper is concluded in Section 6.

§2 Empirical Analyses

2.1 Data description

In 1993, the Chicago Board Options Exchange (CBOE) introduced a volatility index, the

VIX index, originally designed to measure the implied 30-day volatility of the S&P 100 index.

After September 22, 2003, with the new methodology adopted, the VIX index reflects the

expected market volatility implied by SPX options over the next month, and the index using

the old methodology was renamed to VXO. Following the change from the old VIX (VXO) to

the new VIX, the CBOE launched VIX futures and options as tradable assets on March 26,

2004 and February 24, 2006, respectively. Our primary dataset comprises the daily time-series

of VIX and VIX option quotes obtained from the website of CBOE and OptionMetrics. The
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Table 1: Summary statistics for VIX option data.

Panel A: Number of option contracts

TTM≤60 60<TTM≤120 TTM>120 All

m ≤ −0.1 638 261 210 1,109

−0.1 < m ≤ 0.1 1,591 466 395 2,452

0.1 < m ≤ 0.3 1,805 579 438 2,822

0.3 < m ≤ 0.5 1,528 687 508 2,723

m > 0.5 3,071 2,756 2,256 8,083

All 8,633 4,749 3,807 17,189

Panel B: Average option prices

TTM≤60 60<TTM≤120 TTM>120 All

m ≤ −0.1 3.11 4.71 5.80 4.00

−0.1 < m ≤ 0.1 1.81 3.66 4.85 2.65

0.1 < m ≤ 0.3 0.94 2.41 3.45 1.63

0.3 < m ≤ 0.5 0.53 1.59 2.34 1.13

m > 0.5 0.25 0.65 0.96 0.58

All 0.94 1.52 2.10 1.36

Panel C: Average implied volatility

TTM≤60 60<TTM≤120 TTM>120 All

m ≤ −0.1 0.80 0.54 0.45 0.65

−0.1 < m ≤ 0.1 0.74 0.57 0.51 0.67

0.1 < m ≤ 0.3 0.96 0.71 0.60 0.85

0.3 < m ≤ 0.5 1.22 0.85 0.69 1.03

m > 0.5 1.52 1.06 0.83 1.17

All 1.17 0.92 0.73 1.00

This table reports the summary statistics for VIX call options data, which are obtained from Option-
Metrics, during the period from January 2, 2017 to December 31, 2017. The VIX option dataset is
divided into five moneyness categories and three time-to-maturity (TTM) categories, where the money-
ness is defined as m = log(K

S
), with K the strike level of options and S the VIX closing price. To avoid

noise in the dataset, options with time-to-maturity fewer than seven days and zero bids are deleted.
In addition, options whose open interests and volume are equal to zero are filtered out as well. The
number of option contracts, the average option prices and the average implied volatilities are listed in
the Panel A, B and C, respectively.
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VIX index closing values from January 2, 2004 through July 17, 2018 are used to investigate

empirical properties of the VIX dynamics. To document the features of market volatility implied

by VIX options, we use the end-of-day option quotes during the period from January 2, 2017

to December 31, 2017, spanning one year.

Following the standard convention in the literature, the mid-prices defined as the average

of bids and asks are the proxy for the option prices. To avoid noise in the dataset, we adopt

several filtering rules. Specifically, all options with time-to-maturity fewer than seven days and

zero bids are deleted. In addition, options whose open interests and volume are equal to zero

are filtered out as well. Finally, following [22], we use Wednesday option data as in-sample data

and Thursdays option data as out-of-sample data to avoid the day-of-the-week effect. After

applying these rules for selecting option data, a total of 17,189 observations remain in our

sample. Table 1 summarizes VIX option filtered dataset divided into five categories according

to moneyness and three categories based on time-to-maturity (TTM) in daily units. In this

paper, the moneyness is defined as m = log(KS ), where K is the strike level of options and S

denotes the VIX closing price. This definition implies that a call option is out-of-the-money

(OTM) when m value is positive and a larger value of m means a deeper OTM option. Note

that the number of OTM option contracts is greater than the number of ITM options, probably

because investors are afraid of a stock market crash and prefer to buy OTM options when

market prospects are uncertain. Looking across each column of Panel C, the implied volatility

smiles of VIX options display upward skew pattern consistent with empirical evidence found

by [2, 10], among others.

2.2 Empirical features

Using the daily time-series of VIX and VIX option quotes, we document several important

features that a VIX option pricing model should capture. Figure 1 depicts the daily VIX

logarithmic returns during the sample period. The plot suggests a mean-reversion (MR) nature

for VIX log-returns. We also observe that there are several large movements.

Figure 1: Daily logarithmic returns on the VIX index from January 2, 2004 until July 17, 2018.

To further dissect this feature, the descriptive statistics for changes in logarithmic VIX are
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provided in Table 2. The skewness and the kurtosis in returns are respectively 0.9953 and

7.117, suggesting that the return distribution is skewed to the right and has the leptokurtic

feature. Given that the number of samples is 3,660, the standard deviation is 0.0722, and the

mean is around 0, there are 19 observations exceeding the range of four-standard deviations: 15

above this range and 4 below this range, which account for approximately 0.52% of the total.

Whereas, the probability of variations happening is under 0.0063% in a normal distribution.

These findings confirm the existence of sudden jumps and heavier tails in the distribution of VIX

log-returns. Accordingly, jumps as a salient feature of VIX dynamics should be incorporated

in an option pricing model. Besides, we find that although jumps usually occur to be upward,

there are still some downward jumps. In this case, it is necessary to consider asymmetric jumps

and investigate the effect of including downward jumps on option pricing performance.

Table 2: Descriptive statistics for VIX log-returns.

Observations Mean Median Max Min Std Skew Kurt

VIX log-returns 3,660 -0.0001 -0.0054 0.7682 -0.3506 0.0722 0.9953 7.1170

This table provides descriptive statistics for VIX log-returns from January 2, 2004 until July 17, 2018.
Std is the abbreviation of standard deviation. Kurt is the excess kurtosis.

As said previously, the stochastic skew feature that the slope of the implied volatility smile

varies greatly over time has been documented by some empirical studies in equity options

markets and foreign exchange options markets. However, to the best of our knowledge, there

are little literature documenting this feature with respect to the VIX index. In order to illustrate

the existence of stochastic skew in VIX options markets as well, we fit the implied volatility

smiles through a quadratic polynomial in moneyness:

σ = c0 + c1m+ c2m
2 + e, (1)

where σ is the implied volatility, m is the previously defined moneyness and e is the error term

following normal distribution with mean zero. In this way, the intercept c0 can be interpreted as

the level of the at-the-money (m=0) implied volatility, and the other two coefficients c1 and c2

measure the slope and the curvature of the smile, respectively. This form is an extension of the

framework proposed in [21] by incorporating a quadratic term in the implied volatility function.

Under this specification, we consider not only the slope of the smile, but also the curvature

of the smile characterized by the coefficient for squared moneyness c2, which integrates all

the information contained in the implied volatility smile. Adding a quadratic term can better

describe the shape of the implied volatility smile. Therefore, we employ a quadratic polynomial

in moneyness to fit the smiles more precisely, which, in turn, ensures the accurate measurement

of the slope of the smile. In this way, we can well demonstrate the existence of stochastic skew

in the VIX options markets.



JING Bo, et al. Pricing VIX options with stochastic skew and asymmetric jumps 39

(a) c0 (b) c1

(c) c2 (d) c1 v.s. c0

Figure 2: Time series of c0, c1 and c2 and scatter plot of c1 v.s. c0.

The regression in Equation (1) is estimated on each Wednesday during the sample period

and then we can obtain the time series of resulting coefficients which are depicted in Figure

2. It is obvious from the top two panels that both the volatility level and the slope show

substantial time variation during our sample period. Moreover, the values of c1 are larger than

0, confirming the stylized fact that the implied volatility smiles of VIX options display upward

skew pattern. Thus, an option pricing model should be capable of accounting for stochastic

volatility, upward volatility skew and stochastic skew observed in the VIX options markets.

In this paper, we adopt the multi-factor volatility models as the means of capturing stochastic

skew. Another reason for considering the multi-factor volatility structure is that models without

a second volatility factor have a limitation on explaining independent movements in the level

and slope of option-implied volatility smile. From the visual point of view, it seems that the

volatility level is independent of the skew in the top two panels of Figure 2. To further verify

this, a scatter plot of c1 against c0 is displayed in the bottom right panel of Figure 2. It reveals

that there are steep and flat slopes of the smile regardless of the levels of implied volatility.
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Based on aforementioned empirical analyses, a sound VIX option pricing model should be able

to adequately capture these important features.

§3 Multi-factor Jump Diffusions

3.1 The model framework

In order to adequately capture all the features previously mentioned, we develop a gen-

eral valuation model which is characterized by the considerations on two distinctive features,

stochastic skew and asymmetric jumps. Then, we specify the four nested models so as to ana-

lyze the marginal contributions for the additional components in explaining the option prices

later. We employ the multi-factor volatility structure and the double exponential jump diffusion

process as the means of capturing stochastic skew and asymmetric jumps. Given a complete

probability space (Ω, F , Q), equipped with an information filtration {Ft}t≥0, where Q is the

risk-neutral probability measure. On the probability space (Ω, F , Q), the dynamics for log-

arithmic underlying asset price, denoted by Xt = log V IXt, and its instantaneous variance

processes jointly evolve as follows:

dXt = k (θ −Xt) dt+
√
V1tdW

1
t +

√
V2tdW

2
t + Y dNt.

dV1t = k1 (θ1 − V1t) dt+ σ1
√
V1t

(
ρ1dW

1
t +

√
1− ρ21dW 3

t

)
(2)

dV2t = k2 (θ2 − V2t) dt+ σ2
√
V2t

(
ρ2dW

2
t +

√
1− ρ22dW 4

t

)
where W 1

t , W 2
t , W 3

t and W 4
t refer to independent standard Brownian motions; k and θ are re-

spectively the mean-reversion speed and the long-run mean level of Xt; ki, θi and σi respectively

represent the mean-reversion speed, the long-run mean and the volatility of the ith instanta-

neous variance factor Vit, i = 1, 2; Nt denotes Poisson process with constant intensity λ; and

we assume the jump size Y to be drawn from the asymmetric double exponential distribution

with the density:

f(y) = p · η1e−η1yI{y≥0} + q · η2eη2yI{y<0}, (3)

where η1 > 1, η2 > 0, p, q ≥ 0 and p + q = 1. The values of p and q respectively represent

the probability of upward jumps and downward jumps. The values of 1/η1 and 1/η2 stand for

the average size of upward jumps and downward jumps. We refer to this general model as the

MSV-AJ model.

There are four option pricing models nested within the above-mentioned model framework.

The first two models, denoted by SSV and SSV-UJ, are both the single-factor stochastic volatil-

ity models, while the difference between them is that the latter, proposed by [3], allows for

upward jumps. If the jump component is removed from the general specification, the model is

reduced to a multi-factor stochastic volatility model introduced by [15], referred to as the MSV
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Table 3: Summary of model specifications.

Model Restrictions on the parameters Description

SSV k2=θ2=σ2=ρ2=V20=0, λ=0 Single-factor stochastic volatility without jumps

SSV-UJ k2=θ2=σ2=ρ2=V20=0, q=0 Single-factor stochastic volatility with upward jumps

MSV λ=0 Multi-factor stochastic volatility without jumps

MSV-UJ q=0 Multi-factor stochastic volatility with upward jumps

MSV-AJ Not applicable Multi-factor stochastic volatility with asymmetric jumps

This table shows different model specifications discussed in this paper. SSV denotes the single-factor
stochastic volatility model with no jumps. SSV-UJ adds upward jumps in VIX in the SSV model. MSV
introduces an additional volatility factor in the SSV model. MSV-UJ adds upward jumps in VIX in
the MSV model. MSV-AJ adds asymmetric jumps in VIX in the MSV model.

model, which can capture stochastic skew. Finally, setting q = 0 (i.e. p = 1) yields negative

exponential distribution used by [6] to capture only upward jumps. The fourth nested model

labeled MSV-UJ is adopted to investigate whether incorporating downward jumps improves the

pricing performance associated with VIX options in the context of the multi-factor volatility

structure. All model specifications to be discussed are summarized in Table 3.

Compared with the single-factor models, the multi-factor volatility structure is able to gen-

erate stochastic correlation between the noises driving the stock return and the stochastic

volatility process, whereas the single-factor models cannot. Based on the discussions of [19, 21],

this property enables the multi-factor models to capture stochastic skew consistent with the

empirical evidence. On the other hand, jumps in the underlying asset are modeled by the dou-

ble exponential specification which allows for asymmetric jumps and generates a highly skewed

and leptokurtic distribution matching the market data. In a word, specifying the multi-factor

volatility structure and introducing the double exponential specification both provide more

flexibility than other models in the modeling of VIX dynamics. Therefore, theoretically, the

multi-factor model with asymmetric jumps may have better explanatory power to the market

data than other models.

3.2 Pricing VIX options

Now we turn to deal with the pricing problem of VIX options. Due to the complexity of the

general specification (2), an analytical pricing formula is not directly derived and therefore we

take the characteristic function approach. The conditional characteristic function of Xt under

the risk-neutral measure Q is defined as:

g (Xt, τ ; s) := EQ
t [exp(isXT )] , (4)
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where τ = T − t, EQ
t [·] denotes the expectation conditional on the information available up

to time t under the Q measure and i2=−1. We then have the following Lemma, which is an

extension of [15].

Lemma 1. For the MSV-AJ model (2), the conditional characteristic function defined in (4)

is given by:

g (Xt, τ ; s) = exp[A(τ ; s) +

2∑
i=1

Bi(τ ; s)Vit + C(τ ; s)Xt], (5)

where A(τ ; s), Bi(τ ; s), i=1, 2 and C(τ ; s) can be obtained by solving the following ODE sys-

tem:

∂A

∂τ
= kθC +

2∑
i=1

kiθiBi + λ(
pη1

η1 − C
+

qη2
η2 + C

− 1)

∂Bi
∂τ

=
1

2
C2 + (Cρiσi − ki)Bi +

1

2
B2
i σ

2
i (6)

∂C

∂τ
= −kC

with initial conditions A (0; s) = 0, Bi (0; s) = 0, i = 1, 2 and C (0; s) = is.

Proof. See Appendix A.

We remark here that the coefficient functions Bi(τ ; s) in the above ODE system known as

the Riccati equations can be solved by using numerical method, the Runge−Kutta algorithm, in

our experiment to improve calculation speed as well as retain accuracy. Once the characteristic

function is found, we can directly derive the pricing formulas for VIX futures and VIX options.

Lemma 2. For the MSV-AJ model (2), the time-t price of VIX futures with maturity T is

given by

FTt = g (Xt, τ ;−i) . (7)

Proof. Using the characteristic function and risk-neutral valuation theory, it is trivial to obtain

the pricing formula for VIX future:

FTt = EQ
t (V IXT ) = EQ

t (eXT ) = g (Xt, τ ;−i)

Theorem 1. For the MSV-AJ model (2), the time-t prices of European-style call options and

put options written on VIX with strike price K and maturity T , denoted CTt (V IXt,K) and

PTt (V IXt,K) respectively, are given by

CTt (V IXt,K) = e−r(T−t)
[
FTt ·Π1 −K ·Π2

]
(8)

PTt (V IXt,K) = e−r(T−t)
[
K · (1−Π2)− FTt · (1−Π1)

]
(9)
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where r is the riskless interest rate and FTt is VIX future price given in (7). The two proba-

bilities Π1 and Π2 are expressed as follows:

Π1 =
1

2
+

1

π

∫ ∞
0

Re

{
g (Xt, τ ; s− i) e−is logK

g (Xt, τ ;−i) is

}
ds

Π2 =
1

2
+

1

π

∫ ∞
0

Re

{
g (Xt, τ ; s) e−is logK

is

}
ds

(10)

Proof. See Appendix B.

As the integrands in (10) are singular at the required evaluation point s = 0, the Fast

Fourier Transform (FFT) is unable to be used to calculate the above integrals. Therefore, we

adopt the direct integration approach, which is sufficiently accurate for our purpose. Moreover,

[7] showed that an efficient implementation of the direct integration method results in a sizable

speed up of the calibration of stochastic volatility models. In this paper, we apply Gaussian

quadrature to approximately calculate the above integrals. Gauss−Legendre quadrature is

one of the most widely used numerical integration methods with high precision and stability.

The abscissae in the Gaussian quadrature function are defined as the roots of the Legendre

polynomial. Fortunately, the abscissae and their corresponding weights have been extensively

tabulated. Thanks to pre-calculated abscissae and weights, numerical calculation can be easily

implemented to solve the above integrals.

§4 Calibration procedure

In order to calibrate model parameters and investigate the performance of different models

on pricing VIX options in the following section, we use the filtered dataset as stated in Section

2. The yield on three-month Treasury bills is the proxy for the riskless interest rate. In the

calibration procedure, model parameters are estimated by minimizing a loss function. Therefore,

the choice of loss functions is crucial. Among a variety of loss functions, the most commonly

used one to calibrate parameters in option valuation is the mean square error (MSE) function

which measures the deviation of market prices and model prices. However, [23] indicated that

the MSE function assigns more weight to ITM option contracts and less weight to OTM options.

In fact, investors are more concerned with OTM options especially when market prospects are

uncertain. Therefore, we employ the mean logarithmic square error (MLSE) as the loss function

in the model calibration procedure, defined as:

MLSE =
1

N1N2

N1∑
i=1

N2∑
j=1

(logCi,j − logCi,j(Θ))
2

(11)

with N1 and N2 respectively denoting the number of maturities and the number of strikes

for each fixed maturity, where Ci,j is the mid-prices of VIX call options and Ci,j(Θ) is the

model-determined prices for a given parameter set Θ.
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Table 4: VIX parameter estimates.

Panel A: Single-factor volatility models Panel B: Multi-factor volatility models

SSV SSV-UJ MSV MSV-UJ MSV-AJ

k 3.0648 3.2501 3.4531 3.3169 3.3289

(0.0983) (0.0911) (0.0899) (0.0886) (0.1004)

θ 2.9192 2.5582 2.8271 2.4263 2.4971

(0.0571) (0.0309) (0.0189) (0.0196) (0.0224)

k1 8.0532 7.7479 5.1332 4.4058 4.1880

(0.1634) (0.1658) (0.1080) (0.0947) (0.1409)

θ1 0.7062 0.6909 0.6895 0.4152 0.5038

(0.0331) (0.0465) (0.0257) (0.0380) (0.0421)

σ1 2.5581 1.4466 2.7888 2.0274 1.8436

(0.0724) (0.1046) (0.0838) (0.0901) (0.0974)

ρ1 1.000 0.8135 0.9545 0.8416 0.8379

(0.0000) (0.0071) (0.0099) (0.0061) (0.0068)

V10 0.9506 0.5436 0.2692 0.2496 0.2192

(0.0245) (0.0581) (0.0133) (0.0192) (0.0202)

k2 - - 11.9406 9.6995 10.0215

- - (0.1202) (0.1310) (0.1928)

θ2 - - 0.2647 0.3495 0.3317

- - (0.0388) (0.0392) (0.0457)

σ2 - - 5.6254 2.3773 2.5894

- - (0.0735) (0.0956) (0.1367)

ρ2 - - 0.7316 0.6418 0.6583

- - (0.0126) (0.0076) (0.0101)

V20 - - 1.2814 0.4626 0.5227

- - (0.0275) (0.0390) (0.0433)

λ - 2.9205 - 3.3359 3.9826

- (0.2681) - (0.1866) (0.2177)

1/η1 - 0.2206 - 0.2778 0.2890

- (0.0913) - (0.0659) (0.0710)

1/η2 - - - - 0.1892

- - - - (0.0495)

p - - - - 0.7263

- - - - (0.0155)

This table shows the parameter calibration results for the single-factor volatility models (Panel A) and
the multi-factor volatility models (Panel B) using VIX option filtered data during the sample period.
The parameters are calibrated from the daily updated frequency by minimizing the loss function,

defined as MLSE = 1
N1N2

N1∑
i=1

N2∑
j=1

(logCi,j − logCi,j(Θ))2. For each parameter, we report the mean

level and the standard error (in parentheses).
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The parameter calibration results are reported in Table 4. There are several observations

in order. First, the correlations between spot VIX and instantaneous variance are found to

be positive, which means all models are capable of producing upward volatility skew. Second,

within the multi-factor model framework, one volatility factor has low mean-reversion speed,

k1, which captures long-term fluctuations of volatility, while another with high mean-reversion

speed, k2, accounts for short-term fluctuations of volatility, following the discussions of [21].

Third, the models with jumps yield very different variance dynamics than the models with-

out jumps. Specifically, the introduction of jump components significantly reduces almost all

parameter values of the stochastic variance processes, whether for single-factor models or multi-

factor models. For example, the MSV-UJ model has lower volatilities of variance (σ1 = 2.03,

σ2 = 2.38) than the MSV model (σ1 = 2.79, σ2 = 5.63). This is consistent with expectations

because part of variations of VIX are accounted by jumps. In other words, adding jumps makes

a large difference in the estimation associated with the variance dynamics of the VIX, which in

turn may have an impact on the pricing of VIX options. Finally, focusing on the parameters of

the MSV-AJ model, we find that the probability of upward jumps is about 0.73 and the mean

size of upward jumps (1/η1=0.29) is higher than that of downward jumps (1/η2=0.19). These

observations are in line with the empirical analyses in Section 2.

§5 Empirical results

5.1 Pricing performance

To ensure the robustness of our results, we consider three measurements of the pricing errors,

the mean absolute error (MAE), the root mean-squared error (RMSE) and the mean absolute

percentage error (MAPE), defined as:

MAE =
1

N1N2

N1∑
i=1

N2∑
j=1

|Ci,j − Ci,j(Θ)| (12)

RMSE =

√√√√ 1

N1N2

N1∑
i=1

N2∑
j=1

(Ci,j − Ci,j(Θ))
2

(13)

MAPE =
1

N1N2

N1∑
i=1

N2∑
j=1

|Ci,j − Ci,j(Θ)|
Ci,j

(14)

In additional to the in-sample pricing performance, we also calculate the out-of-sample

pricing errors. Following [8], we use the in-sample estimated parameters to compute option

prices for the next day. The calculated results for each model are presented in Table 5. In

general, more sophisticated models, the MSV-type models, significantly reduce in-sample and

out-of-sample pricing errors regardless of the error functions. For example, the in-sample pricing
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Table 5: Pricing errors for each model.

Panel A: In-sample results

SSV SSV-UJ MSV MSV-UJ MSV-AJ

MAE 0.1045 0.0951 0.0861 0.0776 0.0749

RMSE 0.1627 0.1503 0.1386 0.1309 0.1261

MAPE 10.78 9.31 7.82 6.63 6.45

Panel B: Out-of-sample results

SSV SSV-UJ MSV MSV-UJ MSV-AJ

MAE 0.1381 0.1240 0.1162 0.1053 0.1019

RMSE 0.2113 0.1947 0.1785 0.1694 0.1636

MAPE 13.43 12.28 10.03 8.72 8.56

This table reports the average mean absolute errors (MAE), the average root mean-squared errors
(RMSE), the average mean absolute percentage errors (MAPE) for each model during the sample
period, with Panel A and B respectively presenting the in-sample and out-of-sample results. MAPE
are reported in percentage.

errors of the MSV model measured by MAE, RMSE and MAPE are 0.0861, 0.1386 and 7.82%,

respectively, while the in-sample pricing errors of the SSV model measured by MAE, RMSE

and MAPE are 0.1045, 0.1627 and 10.78%, respectively. In other words, models with the

second volatility factor generally outperform models without the second volatility factor. The

consistency of both the in-sample and out-of-sample results suggests that the extra parameters

do not cause over-fitting. In order to observe the difference of explaining option prices across

alternative models more intuitively, Figure 3 depicts model-determined option prices along with

market quotes as a function of strikes under time-to-maturity 21 days. The figure shows that

the prices of the multi-factor models basically lie within the bid-ask band of quotes, while other

models perform worse in describing the option quotes, especially for OTM option contracts.

These findings provide support for the use of multi-factor volatility models as the means of

capturing stochastic skew.

To further dissect the pricing errors across different moneyness and time-to-maturity, the

results are classified into three moneyness groups: ITM options with m < −0.1, near-the-money

(NTM) options with −0.1 ≤ m ≤ 0.1 and OTM options with m > 0.1, and each group includes

three types of time-to-maturity as follows: short-term (less than 60 days), intermediate-term

(between 60 and 120 days) and long-term (over 120 days). For each category, we report the

in-sample and out-of-sample MAE, RMSE and MAPE of different models in Table 6 and 7.

We observe that the MSV-type models outperform the SSV-type models across almost all
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(a) MSV-AJ (b) MSV-UJ (c) MSV

(d) SSV-UJ (e) SSV

Figure 3: Comparison between VIX option quotes and model-determined prices.

moneyness and time-to-maturity categories. Among the MSV-type models, the MSV models

with jumps perform better for most categories, especially for OTM options. Furthermore, we

find from Table 5 that allowing for downward jumps reduces option pricing errors to a certain

extent by comparing between the MSV-UJ model and the MSV-AJ model. Since the OTM

option contracts tend to be more popular in VIX options markets, the accurate pricing for

this type of option is more crucial. These findings confirm the importance of the multi-factor

structure and asymmetric jumps for the valuation of VIX options.

As discussed in Section 2, the two volatility components are specified as the means of

capturing stochastic skew, and the models with only one factor fail to capture the common

feature. Accordingly, in order to illustrate the value of the multi-factor specification in capturing

the shape of the implied volatility skew, Figure 4 depicts the model-determined implied volatility

skews along with the market implied volatility skew extracted from OTM options with time-

to-maturity 21 days. From the figure, the MSV-type models exhibits superior performance in

fitting the implied volatility skew, although all the models are capable of displaying the upward

volatility skew pattern. The result provides support for the valuable role of the multi-factor

volatility structure in fitting the market implied volatility skew.

5.2 Pricing improvements

Next, we aim to analyze the marginal contributions of the additional components in ex-

plaining the VIX option prices. To do this, we make comparative studies across alternative
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Table 6: Pricing errors across moneyness and time-to-maturity: In-sample

MAE RMSE MAPE

Short Intermediate Long Short Intermediate Long Short Intermediate Long

ITM options

SSV 0.3526 0.2183 0.5002 0.4592 0.2583 0.6150 13.08 5.53 9.14

SSV-UJ 0.3312 0.1940 0.4905 0.4419 0.2405 0.6097 11.62 4.29 9.26

MSV 0.3269 0.1952 0.4810 0.4381 0.2420 0.6012 11.68 4.35 8.51

MSV-UJ 0.3261 0.1909 0.4773 0.4357 0.2369 0.5982 11.43 4.24 8.53

MSV-AJ 0.3142 0.1928 0.4738 0.4253 0.2392 0.5930 11.07 4.23 8.44

NTM options

SSV 0.1976 0.1593 0.2462 0.2668 0.2011 0.3028 12.67 5.07 6.22

SSV-UJ 0.1849 0.1482 0.2210 0.2474 0.1862 0.2705 10.23 5.01 5.30

MSV 0.1557 0.1462 0.2141 0.2063 0.1781 0.2594 8.52 4.32 4.91

MSV-UJ 0.1483 0.1378 0.2059 0.2017 0.1746 0.2546 8.05 4.20 4.60

MSV-AJ 0.1416 0.1377 0.1901 0.1929 0.1744 0.2356 7.71 4.17 4.27

OTM options

SSV 0.0635 0.0741 0.0839 0.0967 0.1082 0.1194 13.88 8.76 7.92

SSV-UJ 0.0536 0.0701 0.0754 0.0851 0.0994 0.1073 12.52 6.89 6.76

MSV 0.0467 0.0613 0.0695 0.0782 0.0906 0.0985 10.07 6.02 5.89

MSV-UJ 0.0383 0.0510 0.0611 0.0656 0.0837 0.0906 8.11 5.14 4.93

MSV-AJ 0.0377 0.0494 0.0572 0.0648 0.0812 0.0825 7.88 5.05 4.79

The in-sample results are sorted by three moneyness levels and three time-to-maturity categories: ITM
options with m < −0.1, NTM options with −0.1 ≤ m ≤ 0.1 and OTM options with m > 0.1; short-term
(less than 60 days), intermediate-term (60−120 days) and long-term (over 120 days).

option pricing models with or without the additional components such as the second volatil-

ity factor or jumps. And we focus particularly on three comparisons. First, we compare the

models without the second volatility factor with the models with the second volatility factor to

investigate the marginal contributions of the second volatility factor to the valuation of VIX

options. The second comparison is made between the MSV model and the MSV-UJ model to

observe the contributions made by jump components in the context of the multi-factor volatility

framework, which answers the question of whether the second volatility factor eliminates the

need for jumps. Third, we investigate the marginal contributions of incorporating downward

jumps within the multi-factor model framework by comparing the models without asymmetric

jumps with the MSV-AJ model.

Following [26], we adopt the measurement, ∆RMSEi|j , to measure the improvements in the
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Table 7: Pricing errors across moneyness and time-to-maturity: Out-of-sample

MAE RMSE MAPE

Short Intermediate Long Short Intermediate Long Short Intermediate Long

ITM options

SSV 0.4779 0.4252 0.5323 0.6235 0.5404 0.6867 15.12 10.14 9.96

SSV-UJ 0.4713 0.4100 0.5298 0.6110 0.5375 0.6834 15.01 9.98 10.05

MSV 0.4592 0.3860 0.5109 0.5934 0.5012 0.6541 14.92 8.97 9.59

MSV-UJ 0.4416 0.3772 0.5168 0.5907 0.4932 0.6579 13.89 8.64 9.65

MSV-AJ 0.4279 0.3620 0.5041 0.5711 0.4740 0.6497 13.51 8.29 9.41

NTM options

SSV 0.2264 0.2729 0.2983 0.2879 0.3092 0.3620 12.92 7.98 7.03

SSV-UJ 0.2142 0.2663 0.2861 0.2785 0.3004 0.3593 12.69 8.25 7.18

MSV 0.2054 0.2595 0.2787 0.2578 0.2891 0.3369 11.60 7.51 6.36

MSV-UJ 0.1943 0.2411 0.2792 0.2524 0.2872 0.3344 10.84 7.38 6.47

MSV-AJ 0.1876 0.2335 0.2582 0.2431 0.2784 0.3178 10.55 7.15 6.03

OTM options

SSV 0.0893 0.0993 0.0975 0.1381 0.1443 0.1356 19.78 10.06 7.93

SSV-UJ 0.0714 0.0880 0.0835 0.1191 0.1204 0.1228 17.82 8.94 7.10

MSV 0.0583 0.0819 0.0865 0.0904 0.1157 0.1236 12.91 7.81 7.08

MSV-UJ 0.0478 0.0706 0.0764 0.0768 0.1082 0.1122 10.56 7.16 6.14

MSV-AJ 0.0475 0.0689 0.0723 0.0762 0.1049 0.1063 10.48 7.02 5.94

The out-of-sample results are sorted by three moneyness levels and three time-to-maturity categories:
ITM options with m < −0.1, NTM options with −0.1 ≤ m ≤ 0.1 and OTM options with m > 0.1;
short-term (less than 60 days), intermediate-term (60−120 days) and long-term (over 120 days).

pricing of VIX options made by the additional components. ∆RMSEi|j is defined as:

∆RMSEi|j = 100× (log RMSEi − log RMSEj) , (15)

where RMSEi and RMSEj respectively denote the RMSE of the model i and the RMSE of

the model j. Table 8 shows in-sample and out-of-sample pricing improvements across different

models. ∆RMSEi|j represents the improvements in the pricing of VIX options made by a model

i relative to a model j. For example, ∆RMSEMSV-UJ|MSV describes the marginal contributions

for jump components when the second volatility factor are specified.

The main results of Tables 8 are as follows. First, within the single-factor volatility model

framework, the in-sample and out-of-sample pricing improvements attributable to jumps are

7.93% and 8.18%, respectively. And compared with the MSV model, the MSV-UJ model greatly
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(a) MSV-AJ (b) MSV-UJ (c) MSV

(d) SSV-UJ (e) SSV

Figure 4: The model implied volatility skews and the corresponding market values.

improves the valuation of options by 5.72% in the in-sample tests and by 5.23% in the out-of-

sample tests. These empirical findings consistently identify the value of jumps in the pricing of

options, whether within the single-factor volatility model framework or within the multi-factor

framework, and illustrate that the need for jumps cannot be eliminated by the second volatility

factor.

Second, a comparison of the SSV-UJ model and the MSV-UJ model reveals that the pricing

improvements made by the second volatility factor are small when jumps are already accounted

for, with values 13.82% for in-sample tests and 13.92% for out-of-sample tests. However, the

improvements made by the second volatility factor are relative large when jumps are not incor-

porated, with values 16.03% for in-sample tests and 16.87% for out-of-sample tests. The above

phenomenon is due to the reason that jumps have contributed a little to explaining option

prices.

Third, benchmarking against the SSV model, the pricing improvements provided by the

inclusion of jumps are lower than those provided by the second volatility factor. Specifically,

the in-sample and out-of-sample pricing improvements made by jumps are 7.93% and 8.18%,

respectively, while those made by the second volatility factor are 16.03% and 16.87%, respec-

tively. That is to say, the second volatility factor contributes more than jumps in improving

the explanatory power on option prices.

Lastly, the pricing improvements attributable to downward jumps relative to the MSV-

UJ model are positive in both in-sample and out-of-sample tests, although the magnitude
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of values is small, with 3.74% and 3.48%, respectively, suggesting that the MSV-AJ model

slightly outperforms the MSV-UJ model in describing the option prices. To summarize, we

make comparative studies on the option pricing performance across five alternative models

to investigate whether incorporating an additional volatility factor and asymmetric jumps is

significant for valuation of VIX options, and to further indicate the importance of capturing

stochastic skew and asymmetric jumps features. The above results provide solid evidence that

inclusion of the second volatility factor and asymmetric jumps indeed raises the precision of the

valuation of VIX options, due to providing more flexibility in the modeling of VIX dynamics.

And the need for jumps cannot be eliminated by the multi-factor volatility structure.

Table 8: Pricing improvements across different models.

Panel A: In-sample tests

∆RMSEi|SSV ∆RMSEi|SSV-UJ ∆RMSEi|MSV ∆RMSEi|MSV-UJ

SSV 0.00 7.93 16.03 21.75

SSV-UJ -7.93 0.00 8.10 13.82

MSV -16.03 -8.10 0.00 5.72

MSV-UJ -21.75 -13.82 -5.72 0.00

MSV-AJ -25.48 -17.56 -9.45 -3.74

Panel B: Out-of-sample tests

∆RMSEi|SSV ∆RMSEi|SSV-UJ ∆RMSEi|MSV ∆RMSEi|MSV-UJ

SSV 0.00 8.18 16.87 22.10

SSV-UJ -8.18 0.00 8.69 13.92

MSV -16.87 -8.69 0.00 5.23

MSV-UJ -22.10 -13.92 -5.23 0.00

MSV-AJ -25.59 -17.40 -8.72 -3.48

This table reports the in-sample and out-of-sample pricing improvements across different models.
∆RMSEi|j measures the improvements in the pricing of VIX options made by a model i relative
to a model j, defined as ∆RMSEi|j = 100 × (log RMSEi − log RMSEj). A negative (positive) value of
∆RMSEi|j indicates that the model i outperforms (underperforms) the model j.

§6 Conclusion

Given these distinctive features observed in VIX markets, such as upward implied volatility

skew, stochastic skew and asymmetric jumps, this paper develops a general valuation model in-
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corporating these features and investigates their marginal contributions to the valuation of VIX

options by making comparative studies across different models. Within the model framework,

we derive quasi-analytical solutions for the price of VIX derivatives.

The main conclusions are drawn from the empirical results as follows. First, both in-sample

and out-of-sample pricing performance significantly favor the MSV-type models over the SSV-

type models, especially for OTM options. Besides, in terms of fitting the implied volatility

skew, the MSV-type models exhibits superior performance, due to the capability of capturing

stochastic skew. The empirical results consistently suggest that the introduction of the second

volatility factor has significant implications on explaining the option prices. Second, the value

of jumps is identified in the valuation of options, even after specifying the second volatility

factor. In addition, the consistent findings indicate that allowing for downward jumps can

improve the VIX option pricing to a certain extent. Finally, we investigate the relative value

of an additional volatility factor and jumps in VIX option pricing. Comparisons of the pricing

improvements made by an additional volatility factor and those made by jumps reveal that the

second volatility factor contributes more than jumps in improving the explanatory power on

option prices. In summary, two volatility factors and jump components play important roles

in the pricing of VIX options. The multi-factor stochastic volatility model with asymmetric

jumps, which adequately capture all of the features in VIX markets, performs better than other

alternative models in fitting VIX option quotes, both in-sample and out-of-sample.

Appendix

Appendix A. The conditional characteristic function

For notational simplicity, we denote the conditional characteristic function (4) by

g=g (Xt, τ ; s). Given the model specification (2), the differential of g can be computed by

applying Itô’s lemma as follows:

dg =

[
∂g

∂t
+ k(θ −Xt)

∂g

∂Xt
+

2∑
i=1

ki(θi − Vit)
∂g

∂Vit
+

1

2

2∑
i=1

Vit
∂2g

∂X2
t

+
1

2

2∑
i=1

σ2
i Vit

∂2g

∂Vit2

+

2∑
i=1

σiρiVit
∂2g

∂Xt∂Vit

]
dt+ [g(Xt + Y, τ ; s)− g(Xt, τ ; s)] dNt

+
√
V1t

∂g

∂Xt
dW 1

t + σ1
√
V1t

∂g

∂V1t

(
ρ1dW

1
t +

√
1− ρ21dW 3

t

)
+
√
V2t

∂g

∂Xt
dW 2

t + σ2
√
V2t

∂g

∂V2t

(
ρ2dW

2
t +

√
1− ρ22dW 4

t

)
(A.1)

By iterated conditioning argument, it is easy to prove that g is a Q-martingale. Conse-
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quently, taking conditional expectations on both sides of the above equation obtains:

0 =
∂g

∂t
+ k(θ −Xt)

∂g

∂Xt
+

2∑
i=1

ki(θi − Vit)
∂g

∂Vit
+

1

2

2∑
i=1

Vit
∂2g

∂X2
t

+
1

2

2∑
i=1

σ2
i Vit

∂2g

∂V 2
it

+

2∑
i=1

σiρiVit
∂2g

∂Xt∂Vit
+ λEQ

t [g(Xt + Y, τ ; s)− g(Xt, τ ; s)] (A.2)

Because of the affine structure of the model, we surmise that g has the following exponential

affine form:

g (Xt, τ ; s) = exp[A(τ ; s) +

2∑
i=1

Bi(τ ; s)Vit + C(τ ; s)Xt] (A.3)

with initial conditions A (0; s) = 0, Bi (0; s) = 0(i = 1, 2) and C (0; s) = is. Given the probabil-

ity density function of y, substituting this form into partial differential equation (A.2) gives:

0 =−

(
∂A

∂τ
+

2∑
i=1

Vit
∂Bi
∂τ

+Xt
∂C

∂τ

)
+ k(θ −Xt)C +

2∑
i=1

ki(θi − Vit)Bi +
1

2

2∑
i=1

VitC
2

+
1

2

2∑
i=1

σ2
i VitB

2
i +

2∑
i=1

σiρiVitBiC + λ(
pη1

η1 − C
+

qη2
η2 + C

− 1) (A.4)

By the arbitrariness of Vit and Xt, we have the following system of ODEs:

∂A

∂τ
=kθC +

2∑
i=1

kiθiBi + λ(
pη1

η1 − C
+

qη2
η2 + C

− 1)

∂Bi
∂τ

=
1

2
C2 + (Cρiσi − ki)Bi +

1

2
B2
i σ

2
i for i = 1, 2 (A.5)

∂C

∂τ
=− kC

It is easy to obtain the explicit formula of C (τ ; s) which is given by C (τ ; s) = ise−kτ .

Plugging C (τ ; s) into the ODE for Bi (τ ; s) yields the Riccati equations which can be expressed

by Kummer functions via changes of variables (see, [1]). However, the calculation is not stable

and rather time-consuming. Therefore, we recommend using Runge-Kutta numerical method

to solve the ODE for Bi (τ ; s) . With C (τ ; s) and Bi (τ ; s) availabe, A (τ ; s) can be easily solved

by integrating both sides of (A.5).

Appendix B. The pricing formulas for VIX options

The price of a European call on the VIX at time t is expressed as discounted conditional

expectation of terminal payoff under the Q measure as follows:

CTt (V IXt,K) = e−r(T−t)EQ
t [max (V IXT −K, 0)]

Given the characteristic function and the VIX future contracts pricing formula (7), by
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making the change of measure, VIX call option price can be further expressed as

CTt (V IXt,K) = e−r(T−t)EQ
t

(
eXT I{XT≥logK} −KI{XT≥logK}

)
= e−r(T−t)

{
EQ
t (eXT )EQ

t

[ eXT /EQ(eXT )

EQ
t [eXT /EQ(eXT )]

I{XT≥logK}

]
−KEQ

t (I{XT≥logK})

}
= e−r(T−t)

[
EQ
t (eXT )EQ1

t (I{XT≥logK})−KE
Q
t (I{XT≥logK})

]
:= e−r(T−t)

[
FTt ·Π1 −K ·Π2

]
(A.6)

where the Q1 measure is defined by the following Esscher transform:

dQ1

dQ

∣∣∣∣
Ft

=
eXt

EQ [eXt ]

Under the Q1 measure, the conditional characteristic function of XT is given by:

EQ1
t

[
eisXT

]
= EQ

t

[
eXT

EQ
t [eXT ]

eisXT

]
=
g (Xt, τ ; s− i)
g (Xt, τ ;−i)

With the conditional characteristic functions under the Q measure and Q1 measure available,

the two probabilities in (10) can be solved by inversion theorem of [11]:

Π1 =
1

2
+

1

π

∫ ∞
0

Re

{
g (Xt, τ ; s− i) e−is logK

g (Xt, τ ;−i) is

}
ds

Π2 =
1

2
+

1

π

∫ ∞
0

Re

{
g (Xt, τ ; s) e−is logK

is

}
ds

(A.7)

We have derived the pricing formula (8) for VIX call options. The pricing formula (9) for

put options can be derived similarly or obtained by using the modified put-call parity.
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