
Appl. Math. J. Chinese Univ.
2020, 35(1): 16-32

Growth, Zeros and Fixed points of Differences of

Meromorphic Solutions of Difference Equations

LAN Shuang-ting1 CHEN Zong-xuan2

Abstract. In this paper, we study the difference equation

a1(z)f(z + 1) + a0(z)f(z) = 0,

where a1(z) and a0(z) are entire functions of finite order. Under some conditions, we obtain

some properties, such as fixed points, zeros etc., of the differences and forward differences of

meromorphic solutions of the above equation.

§1 Introduction

In this paper, we use the basic notions of Nevanlinna’s theory (see [10,15]). In addition, we

use the notations σ(f), µ(f) to denote the order and the lower order of growth of a meromorphic

function f(z) respectively, and λ(f) to denote the exponent of convergence of zeros of f(z).

The quantity δ(a, f) is called the deficiency of the value a to f(z). We also use the notation

τ(f) to denote the exponent of convergence of fixed points of f(z) that is defined as

τ(f(z)) = lim
r→∞

log+ N
(
r, 1

f(z)−z

)
log r

.

Furthermore, we denote by S(r, f) any quantity satisfying S(r, f) = o (T (r, f)) for all r

outside of a set with finite logarithmic measure. For n ∈ N+, the forward differences ∆nf(z)

are defined in the standard way [14] by

∆f(z) = f(z + 1)− f(z), ∆n+1f(z) = ∆nf(z + 1)−∆nf(z).

For convenience, we denote ∆0f(z) = f(z). Furthermore, a meromorphic solution f(z) of a

difference (or differential) equation is called admissible if all coefficients of the equation are

small functions with respect to f(z).
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Recently, many results of complex differences and difference equations are obtained, such

as [1, 2, 4–7, 9, 11–13]. Chiang and Feng [7] studied the growth of meromorphic solutions of

homogeneous linear difference equation, and obtained the following result.

Theorem A Let A0(z), . . . , An(z) be entire functions such that there exists an integer

l, 0 ≤ l ≤ n, such that

σ(Al) > max
0≤j≤n

j ̸=l

{σ(Aj)}. (1.1)

If f(z)( ̸≡ 0) is a meromorphic solution to

An(z)y(z + n) + · · ·+A1(z)y(z + 1) +A0(z)y(z) = 0, (1.2)

then we have σ(f) ≥ σ(Al) + 1.

In Theorem A, the coefficients of (1.2) should satisfy the condition (1.1). If the condition

(1.1) was replaced by σ(Al) = max
0≤j≤n

{σ(Aj)}, what will be the results? Regarding this, Laine

and Yang [13] obtained the following theorem.

Theorem B Let A0(z), . . . , An(z) be entire functions of finite order such that among those

coefficients having the maximal order σ = max{σ(Ak), 0 ≤ k ≤ n}, exactly one has its type

strictly greater than the others. If f(z) ̸≡ 0 is a meromorphic solution of equation (1.2), then

σ(f) ≥ σ + 1.

Laine and Yang [13] raised a question that

Question: Whether all meromorphic solutions f(z)( ̸≡ 0) of equation (1.2) satisfy σ(f) ≥
1 + max

0≤j≤n
{σ(Aj)}, even if there is no dominating coefficient.

For the difference equation

a1(z)f(z + 1) + a0(z)f(z) = 0, (1.3)

where a1(z) and a0(z) are entire functions, we answer the question above, and obtain the

following result.

Theorem 1.1 Let a1(z) and a0(z) be entire functions of finite lower order such that

µ(a1) ̸= µ(a0) or δ(0, a1) ̸= δ(0, a0). If f(z)( ̸≡ 0) is a meromorphic solution of equation (1.3),

then σ(f) ≥ max{µ(a1), µ(a0)}+ 1.

The fixed points of meromorphic functions and their derivatives is a very important prob-

lem in theory of meromorphic functions. Bergweiler and Pang [3] considered fixed points of

derivative and proved the following theorem.

Theorem C Let f(z) be a transcendental meromorphic function and let R(z) be a rational

function, R ̸≡ 0. Suppose that all zeros and poles of f(z) are multiple, except possibly finitely

many. Then f ′(z)−R(z) has infinitely many zeros.

When R(z) ≡ z, Theorem C shows that f ′(z) has infinitely many fixed points under condi-

tion of Theorem C.

Some author considered fixed points of a meromorphic function f(z), its shift f(z + c) and

difference ∆f(z). In general, τ(f(z)) ̸= τ(f(z + n)), n ∈ N+ and τ(f(z)) ̸= τ(∆f(z)). For

example f(z) = ei2πz+z−1 has infinitely many fixed points and satisfy τ(f(z)) = σ(f(z)) = 1,

but its shift f(z + 1) = ei2πz + z has no fixed points, and ∆f(z) = 1 has only one fixed point.

Chen and Shon [6] gave the following construction theorem to show that even for a meromorphic
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function of small growth, ∆f(z) may have only finitely many fixed points.

Theorem D Let ϕ(r) be a positive non-decreasing function on [1,∞) which satisfies

lim
r→∞

ϕ(r) = ∞. Then there exists a function f transcendental and meromorphic in the plane

with

lim sup
r→∞

T (r, f)

r
< ∞, and lim inf

r→∞

T (r, f)

ϕ(r) log r
< ∞

such that g(z) = ∆f(z) has only one fixed point. Moreover, the function g satisfies

lim sup
r→∞

T (r, g)

ϕ(r) log r
< ∞.

Chen [5] discovered that Gamma function Γ(z) satisfies

τ(∆Γ(z)) = τ(Γ(z + n)) = σ(Γ(z)) = 1, n ∈ N.

In fact, he proved the following theorem.

Theorem E Let a1(z) and a0(z) be nonzero polynomials such that

deg(a1(z) + a0(z)) = max{deg a1(z), deg a0(z)} ≥ 1. (1.4)

Suppose f(z)(̸≡ 0) is a finite order meromorphic solution of equation (1.3), then the following

statements hold.

(i) For j = 0, 1, . . . , τ(∆f(z)) = τ(f(z + j)) = σ(f(z)) ≥ 1.

(ii) For every n ∈ N+,∆nf(z) and f(z) has same zeros, except possibly finitely many, and

λ(∆nf(z)) = λ(f(z)).

In particular, for an entire solution f(z), we have that if σ(f) > 1, then

λ(∆nf(z)) = λ(f(z)) ≥ σ(f(z))− 1;

if σ(f(z)) = 1, then either for all n ∈ N+, λ(∆nf(z)) = 1, or for all n ∈ N+,∆nf(z) has

only finitely many zeros.

We find an interesting example. For the meromorphic function f(z) = zei2πz, its shifts

f(z+n) = (z+n)ei2πz, n ∈ N+ and difference ∆f(z) = ei2πz satisfy τ(∆f(z)) = τ(f(z+n)) =

σ(f(z)), but its forward differences ∆nf(z) ≡ 0(n ≥ 2) have only one fixed point. That is

to say, even if a meromorphic function f(z) satisfies τ(∆f(z)) = τ(f(z + n)) = σ(f(z)), its

forward differences ∆nf(z) (n ≥ 2 is some integer) may have finitely many fixed points. Thus,

it is natural to ask that whether the forward differences ∆nf(z)(n ∈ N+) satisfy τ(∆nf(z)) =

τ(f(z)), under conditions of Theorem E, If the coefficient aj(z)(j ∈ {0, 1}) is transcendental,

what will be the fixed points of the differences and forward differences of meromorphic solutions

of equation (1.3)? We consider these questions, and obtain the following results.

Theorem 1.2 Let a1(z) and a0(z) be finite order entire functions such that µ(a1) ̸= µ(a0).

Suppose f(z) is an admissible meromorphic solution of equation (1.3), then for every n ∈ N,

(i) f(z + n) has no nonzero finite Nevanlinna exceptional value;

(ii) ∆nf(z) has no nonzero finite Nevanlinna exceptional value;

(iii) τ(∆nf(z)) = τ(f(z + n)) = σ(f(z)).
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Theorem 1.3 Let a1(z) and a0(z) be finite order entire functions such that σ(a1) ̸= σ(a0).

Suppose that f(z)( ̸≡ 0) is a meromorphic solution of equation (1.3), then for every n ∈ N, we
have

τ(∆nf(z)) = τ(f(z + n)) = σ(f(z)) ≥ max{σ(a1), σ(a0)}+ 1.

Corollary 1.1 Let a1(z) and a0(z) be nonzero polynomials satisfying (1.4). Suppose

that f(z)(̸≡ 0) is a finite order meromorphic solution of equation (1.3), then for every n ∈ N,

(i) τ(∆nf(z)) = τ(f(z + n)) = σ(f(z)) ≥ 1;

(ii) if f(z) is a finite order entire solution, then

λ(∆nf(z)) = λ(f(z)) = σ(f(z)),

or ∆nf(z) has only finitely many zeros.

Remark 1.1 Under conditions of Corollary 1.1, f(z) and ∆nf(z) have same zeros, except

finitely many, and ∆nf(z) has finitely many zeros possibly occurs when σ(f) = 1.

Remark 1.2 It sees that Gamma function Γ(z) satisfies the difference equation

f(z + 1)− zf(z) = 0.

We deduce from Corollary 1.1 that Gamma function Γ(z) satisfies

τ(∆nΓ(z)) = τ(Γ(z + n)) = σ(Γ(z)) = 1, n ∈ N.

The following Example 1.1 shows that in Corollary 1.1, condition (1.4) cannot be weakened.

Example 1.1 The difference equation

−zf(z + 1) + (z + 1)f(z) = 0

has an entire solution f(z) = zei2πz. Thus, ∆nf(z) ≡ 0 (n ≥ 2) have only one fixed point.

The following Example 1.2 satisfies the conditions and results of Corollary 1.1.

Example 1.2 The difference equation

zf(z + 1) + (z + 1)f(z) = 0

has entire solutions f1(z) = zeiπz and f2(z) = z sin(πz). For every j ∈ N, we have

∆2jf1(z) = 4j(z + j)eiπz, ∆2j+1f1(z) = −4j(2z + 2j + 1)eiπz,

∆2jf2(z) = 4j(z + j) sin(πz), ∆2j+1f2(z) = −4j(2z + 2j + 1) sin(πz).

Thus, for every n ∈ N+, f1(z) and ∆nf1(z) has only one zero, but f2(z) and ∆nf2(z) have the

same zeros except finitely many, and satisfy λ(∆nf2(z)) = λ(f2(z)) = σ(f2(z)) = 1.

§2 Lemmas for the Proof of Theorems and Corollary

Lemma 2.1 [7] Let f(z) be a meromorphic function of finite order σ and let η be a

nonzero complex number. Then for each ε > 0, we have

m

(
r,
f(z + η)

f(z)

)
+m

(
r,

f(z)

f(z + η)

)
= O

(
rσ−1+ε

)
.

Lemma 2.2 [9] Let c ∈ C and f(z) be a nonconstant meromorphic function of finite
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order. Then

m

(
r,
f(z + c)

f(z)

)
= S(r, f).

Lemma 2.3 [7] Let f(z) be a nonconstant finite order meromorphic function and let

c ̸= 0 be a complex number. Then

T (r, f(z + c)) = T (r, f(z)) + S(r, f).

Lemma 2.2 and Lemma 2.3 show that

Lemma 2.4 Let f(z) be a nonconstant finite order meromorphic function and let c ̸= 0

be a complex number. Then

N

(
r,

1

f(z + c)

)
= N

(
r,

1

f(z)

)
+ S(r, f).

Lemma 2.5 [8,16] Let T1(r) and T2(r) be real valued, nonnegative and nondecreasing

functions on [r0,∞), (r0 > 0 is a real constant), and satisfying

T1(r) = O(T2(r)), (r → ∞, r ̸∈ E)

where E is a set with finite linear measure. Then

lim inf
r→∞

log+ T1(r)

log r
≤ lim inf

r→∞

log+ T2(r)

log r
,

lim sup
r→∞

log+ T1(r)

log r
≤ lim sup

r→∞

log+ T2(r)

log r
.

Remark 2.1 If E is a set with finite logarithmic measure, then Lemma 2.5 still holds.

Lemma 2.6 [4] Let f(z) be a transcendental merormophic function with σ(f) < 1, and

let g1(z) and g2(z) ̸≡ 0 be polynomials, c1, c2(̸= c1) be constants. Then

h(z) = g2(z)f(z + c2) + g1(z)f(z + c1)

is transcendental.

Lemma 2.7 [9,13] Let w(z) be a nonconstant finite order meromorphic solution of

P (z, w) = 0,

where P (z, w) is a difference polynomial in w(z). If P (z, a) ̸≡ 0 for a meromorphic function

a(z) satisfying T (r, a) = S(r, w), then

m

(
r,

1

w − a

)
= S(r, w)

outside of a possible exceptional set of finite logarithmic measure.

From the proof of Lemma 2.7, we easily obtain

Remark 2.2 Let w(z) be a nonconstant finite order meromorphic solution of

P (z, w) = 0,

where P (z, w) is a difference polynomial in w(z), so that the coefficients of P (z, w) are mero-

morphic functions aj(z)(j = 1, . . . , s) satisfying σ(aj) < σ(w). If P (z, a) ̸≡ 0 for a meromorphic

function a(z) satisfying T (r, a) = S(r, w), then

m

(
r,

1

w − a

)
≤

s∑
j=1

m(r, aj) + S(r, w)

outside of a possible exceptional set of finite logarithmic measure.



LAN Shuang-ting, et al. Growth, Zeros and Fixed points of Differences of... 21

Lemma 2.8 Let a1(z) and a0(z) be entire functions such that µ(a1) ̸= µ(a0) or δ(0, a1) ̸=
δ(0, a0). Then equation (1.3) has no nonzero rational solution.

Proof. It is easy to see that at least one of a1(z) and a0(z) is transcendental. Without loss

of generality, assume a0(z) is transcendental. Suppose that R(z) is a nonzero rational solution

of equation (1.3). So

a1(z)R(z + 1) + a0(z)R(z) = 0.

Thus,

a1(z) = − R(z)

R(z + 1)
a0(z).

Since R(z) is a rational function and a0(z) is transcendental, then

T (r, a1) = T (r, a0) +O(log r) = T (r, a0) + o{T (r, a0)}, (2.1)

and

N

(
r,

1

a1

)
= N

(
r,

1

a0

)
+O(log r) = N

(
r,

1

a0

)
+ o{T (r, a0)}. (2.2)

If µ(a1) ̸= µ(a0), but by (2.1), we have µ(a1) = µ(a0). A contradiction.

If δ(0, a1) ̸= δ(0, a0), but by (2.1) and (2.2), we obtain

δ(0, a1) = 1− lim
r→∞

N
(
r, 1

a1

)
T (r, a1)

= 1− lim
r→∞

N
(
r, 1

a0

)
+ o{T (r, a0)}

T (r, a0) + o{T (r, a0)}
= δ(0, a0).

A contradiction.

Lemma 2.9 Let a1(z) and a0(z) be finite order entire functions such that µ(a1) ̸= µ(a0)

or σ(a1) ̸= σ(a0). Then

Pn(z) :=

(
n

n

) n−1∏
j=0

a0(z + j) +
n−1∑
k=1

(
n

k

) k−1∏
j=0

a0(z + j)
n−1∏
s=k

a1(z + s) +

(
n

0

) n−1∏
j=0

a1(z + j) ̸≡ 0.

Proof. Without loss of generality, we assume µ(a0) > µ(a1)(or σ(a0) > σ(a1)). Suppose

that Pn(z) ≡ 0. So

−
(
n

n

) n−1∏
j=0

a0(z + j) =
n−1∑
k=1

(
n

k

) k−1∏
j=0

a0(z + j)
n−1∏
s=k

a1(z + s) +

(
n

0

) n−1∏
j=0

a1(z + j). (2.3)

Denote

bk(z) =

(
n

k

) k−1∏
j=0

a0(z + j)

a0(z)

n−1∏
s=k

a1(z + s)

a1(z)
, k = 1, . . . , n− 1. (2.4)

It follows from Lemma 2.2 and (2.4) that

m(r, bk) ≤ S(r, a0) + S(r, a1), k = 1, . . . , n− 1. (2.5)

By (2.4), we see that (2.3) can be rewritten as the form

−
(
n

n

) n−1∏
j=0

a0(z + j) =

n−1∑
k=1

(
n

k

) k−1∏
j=0

a0(z + j)

a0(z)

n−1∏
s=k

a1(z + s)

a1(z)
ak0(z)a

n−k
1 (z) +

(
n

0

) n−1∏
j=0

a1(z + j)

=
n−1∑
k=1

bk(z)a
k
0(z)a

n−k
1 (z) +

(
n

0

) n−1∏
j=0

a1(z + j). (2.6)
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By Lemma 2.2, we have

m

r,

n−1∏
j=0

a0(z + j)

 ≤ m(r, an0 (z)) +m

r,

n−1∏
j=0

a0(z + j)

a0(z)


= nm(r, a0) + S(r, a0).

Again by Lemma 2.2, we have

nm(r, a0) = m(r, an0 (z)) ≤ m

r,
n−1∏
j=0

a0(z + j)

+m

r,
n−1∏
j=0

a0(z)

a0(z + j)


= m

r,
n−1∏
j=0

a0(z + j)

+ S(r, a0).

Combining the last two inequalities, we obtain

m

r,
n−1∏
j=0

a0(z + j)

 = nm(r, a0) + S(r, a0). (2.7)

By (2.5), we have

m

(
r,

n−1∑
k=1

bka
k
0a

n−k
1

)
= m

(
r, a0

(
n−1∑
k=1

bka
k−1
0 an−k

1

))

≤m(r, a0) +m

(
r,

n−1∑
k=2

bka
k−1
0 an−k

1 + b1a
n−1
1

)

≤m(r, a0) +m

(
r,

n−1∑
k=2

bka
k−1
0 an−k

1

)
+ (n− 1)m(r, a1) +m(r, b1) +O(1)

=m(r, a0) +m

(
r, a0

(
n−1∑
k=2

bka
k−2
0 an−k

1

))
+ (n− 1)m(r, a1) +m(r, b1) +O(1)

≤2m(r, a0) +m

(
r,

n−1∑
k=3

bka
k−2
0 an−k

1 + b2a
n−2
1

)
+ (n− 1)m(r, a1) +m(r, b1) +O(1)

≤2m(r, a0) +m

(
r, a0

(
n−1∑
k=3

bka
k−3
0 an−k

1

))
+

n−1∑
j=n−2

jm(r, a1) +

2∑
j=1

m(r, bj) +O(1)

· · ·

≤(n− 1)m(r, a0) +
n−1∑
j=1

jm(r, a1) +
n−1∑
j=1

m(r, bj) +O(1)

=(n− 1)m(r, a0) +
n(n− 1)

2
m(r, a1) + S(r, a0) + S(r, a1).

Thus,

m

(
r,

n−1∑
k=1

bka
k
0a

n−k
1

)
≤ (n− 1)m(r, a0) +

n(n− 1)

2
m(r, a1) + S(r, a0) + S(r, a1). (2.8)
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By Lemma 2.2 and (2.6)–(2.8), we have

nm(r, a0) = m

r,
n−1∏
j=0

a0(z + j)

+ S(r, a0)

≤ m

(
r,

n−1∑
k=1

bka
k
0a

n−k
1

)
+m

r,
n−1∏
j=0

a1(z + j)


≤ (n− 1)m(r, a0) +

n(n− 1)

2
m(r, a1) + nm(r, a1) + S(r, a0) + S(r, a1)

= (n− 1)m(r, a0) +
n(n+ 1)

2
m(r, a1) + S(r, a0) + S(r, a1).

Hence,

m(r, a0) ≤
n(n+ 1)

2
m(r, a1) + S(r, a0) + S(r, a1).

Since a0 and a1 are entire functions, then

T (r, a0) ≤
n(n+ 1)

2
T (r, a1) + S(r, a0) + S(r, a1),

which means µ(a0) ≤ µ(a1) (or σ(a0) ≤ σ(a1)), by Lemma 2.5 and Remark 2.1. It is a

contradiction.

§3 Proof of Theorems and Corollary

Proof of Theorem 1.1

Without loss of generality, assume µ(a1) ≥ µ(a0) and denote µ = max{µ(a1), µ(a0)} =

µ(a1). Suppose that f(z)( ̸≡ 0) is a meromorphic solution of equation (1.3) satisfying σ(f) =

σ < µ+1. By Lemma 2.8, we know f(z) is transcendental. For any given ε > 0, choose α such

that

σ − 1 + ε < α < µ− ε. (3.1)

By the equation (1.3), we have

a1(z)

a0(z)
= − f(z)

f(z + 1)
. (3.2)

By Lemma 2.1, (3.1) and (3.2), we have

T (r, a1) = m(r, a1) ≤m(r, a0) +m

(
r,

f(z)

f(z + 1)

)
=T (r, a0) +O(rσ−1+ε)

=T (r, a0) + o(rα). (3.3)

Consider the following two cases.

Case 1. µ(a1) ̸= µ(a0). Thus, µ = µ(a1) > µ(a0).

By (3.1) and the definition of lower order, when r is sufficiently large,

rα ≤ rµ−ε ≤ 1

2
T (r, a1). (3.4)
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By (3.3) and (3.4), we have

T (r, a1) ≤ T (r, a0) + o(rα)

≤ T (r, a0) +
1

2
T (r, a1),

which yields
1

2
T (r, a1) ≤ T (r, a0),

that is, µ(a1) ≤ µ(a0) = µ. Thus, µ(a1) = µ(a0) = µ. A contradiction.

Case 2. δ(0, a1) ̸= δ(0, a0). By Case 1, we may assume µ(a1) = µ(a0) = µ.

By (3.1) and (3.3), we have

T (r, a1) ≤ T (r, a0) + o{T (r, a0)}.

By (3.1), (3.2) and Lemma 2.1, we have

T (r, a0) = m(r, a0) ≤m(r, a1) +m

(
r,
f(z + 1)

f(z)

)
=T (r, a1) +O(rσ−1+ε)

=T (r, a1) + o(rα). (3.5)

By (3.1), (3.3) and (3.5), we obtain

T (r, a1) = T (r, a0) + o(rα)

= T (r, a0) + o{T (r, a0)}

= (1 + o(1))T (r, a0). (3.6)

Again by (3.2) and Lemma 2.1, we have

m

(
r,

1

a1

)
≤ m

(
r,

1

a0

)
+m

(
r,
a0
a1

)
+O(1)

= m

(
r,

1

a0

)
+m

(
r,
f(z + 1)

f(z)

)
+O(1)

= m

(
r,

1

a0

)
+O(rσ−1+ε)

= m

(
r,

1

a0

)
+ o{T (r, a0)}.

Similarly, we get

m

(
r,

1

a0

)
≤ m

(
r,

1

a1

)
+ o{T (r, a0)}.

Combining the last two inequalities, we obtain

m

(
r,

1

a1

)
= m

(
r,

1

a0

)
+ o{T (r, a0)}. (3.7)

It follows from (3.6) and (3.7) that

lim
r→∞

m
(
r, 1

a1

)
T (r, a1)

= lim
r→∞

m
(
r, 1

a0

)
+ o{T (r, a0)}

T (r, a0) + o{T (r, a0)}
= lim

r→∞

m
(
r, 1

a0

)
T (r, a0)

.

So

δ(0, a1) = δ(0, a0),

which is a contradiction.
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Proof of Theorem 1.2

Suppose that f(z) is an admissible meromorphic solution of equation (1.3).

(i) we prove that f(z + n) has no nonzero finite Nevanlinna exceptional value.

Set

P (z, f) := a1(z)f(z + 1) + a0(z)f(z) = 0. (3.8)

By Lemma 2.8, we know equation (1.3) has no nonzero rational solution. Then for any

b ∈ C \ {0}, we have P (z, b) ̸≡ 0. By Lemma 2.7 and P (z, b) ̸≡ 0, we see that

m

(
r,

1

f(z)− b

)
= S(r, f).

Thus,

N

(
r,

1

f(z)− b

)
= T (r, f(z)) + S(r, f). (3.9)

By Lemma 2.3, Lemma 2.4 and (3.9), we have

N

(
r,

1

f(z + n)− b

)
= N

(
r,

1

f(z)− b

)
+ S(r, f)

= T (r, f(z)) + S(r, f)

= T (r, f(z + n)) + S(r, f(z + n)).

Hence, δ(b, f(z + n)) = 0. That is, f(z + n) has no nonzero Nevanlinna exceptional value.

(ii) we prove that ∆nf(z) has no nonzero finite Nevanlinna exceptional value.

For any k ∈ N+, by equation (1.3), we have

f(z + k) = −a0(z + k − 1)

a1(z + k − 1)
f(z + k − 1)

=
a0(z + k − 1)

a1(z + k − 1)

a0(z + k − 2)

a1(z + k − 2)
f(z + k − 2)

= · · ·

= (−1)k
k−1∏
j=0

a0(z + j)

a1(z + j)
f(z). (3.10)

By (3.10), we obtain

∆nf(z) =
n∑

k=0

(
n

k

)
(−1)n−kf(z + k)

=
n∑

k=1

(
n

k

)
(−1)n−k(−1)k

k−1∏
j=0

a0(z + j)

a1(z + j)
f(z) +

(
n

0

)
(−1)nf(z)

= (−1)nf(z)

 n∑
k=1

(
n

k

) k−1∏
j=0

a0(z + j)

a1(z + j)
+

(
n

0

)
= (−1)nQn(z)f(z), (3.11)
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where

Qn(z) =
n∑

k=1

(
n

k

) k−1∏
j=0

a0(z + j)

a1(z + j)
+

(
n

0

)
. (3.12)

Observe that

Qn(z) =

(
n
n

) n−1∏
j=0

a0(z + j) +
n−1∑
k=1

(
n
k

) k−1∏
j=0

a0(z + j)
n−1∏
s=k

a1(z + s) +
(
n
0

) n−1∏
j=0

a1(z + j)

n−1∏
j=0

a1(z + j)

=
Pn(z)

n−1∏
j=0

a1(z + j)

, (3.13)

where

Pn(z) =

(
n

n

) n−1∏
j=0

a0(z + j) +

n−1∑
k=1

(
n

k

) k−1∏
j=0

a0(z + j)

n−1∏
s=k

a1(z + s) +

(
n

0

) n−1∏
j=0

a1(z + j). (3.14)

Since µ(a1) ̸= µ(a0), by Lemma 2.9, we know Pn(z) ̸≡ 0. So ∆nf(z) ̸≡ 0 by (3.11) and

(3.13).

Since a1(z) and a0(z) are small with respect to f(z), by (3.11), (3.12) and ∆nf(z) ̸≡ 0, we

have

T (r,∆nf) = T (r, f) + S(r, f). (3.15)

For any given b ∈ C \ {0}, suppose that P
(
z, b

(−1)nQn(z)

)
≡ 0. By (3.8), we have

a1(z)
b

(−1)nQn(z + 1)
+ a0(z)

b

(−1)nQn(z)
= 0.

Thus,

a1(z)Qn(z) + a0(z)Qn(z + 1) = 0. (3.16)

By (3.16) and Lemma 2.2, we have

m(r, a1) = m

(
r, a0

Qn(z + 1)

Qn(z)

)
≤ m(r, a0) +m

(
r,
Qn(z + 1)

Qn(z)

)
= m(r, a0) + S(r,Qn).

Again by (3.16) and Lemma 2.2, we have

m(r, a0) = m

(
r, a1

Qn(z)

Qn(z + 1)

)
≤ m(r, a1) +m

(
r,

Qn(z)

Qn(z + 1)

)
= m(r, a1) + S(r,Qn).

Thus,

T (r, a0) = m(r, a0) = m(r, a1) + S(r,Qn) = T (r, a1) + S(r,Qn). (3.17)

By (3.12), (3.17) and Lemma 2.3, we know

S(r,Qn) ≤ S(r, a1) + S(r, a0) = S(r, a1) = S(r, a0). (3.18)

By (3.17) and (3.18), we obtain

T (r, a0) = T (r, a1) + S(r, a1),

together with Lemma 2.5 and Remark 2.1, we see that µ(a1) = µ(a0) holds. A contradiction.

So,

P

(
z,

b

(−1)nQn(z)

)
̸≡ 0.
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By this and Lemma 2.7, we have

m

(
r,

1

f(z)− b
(−1)nQn(z)

)
= S(r, f)

which leads to

N

(
r,

1

f(z)− b
(−1)nQn(z)

)
= T (r, f) + S(r, f). (3.19)

By (3.11), we have

∆nf(z)− b = (−1)nQn(z)f(z)− b

= (−1)nQn(z)

(
f(z)− b

(−1)nQn(z)

)
,

together with (3.15) and (3.19), we have

N

(
r,

1

∆nf(z)− b

)
≥ N

(
r,

1

f(z)− b
(−1)nQn(z)

)
−N(r,Qn(z))

≥ T (r, f)− T (r,Qn(z)) + S(r, f)

= T (r, f) + S(r, f)

= T (r,∆nf) + S(r,∆nf).

Thus,

N

(
r,

1

∆nf(z)− b

)
= T (r,∆nf) + S(r,∆nf).

Hence, δ(b,∆nf) = 0. That is, ∆nf(z) has no nonzero Nevanlinna exceptional value.

(iii) we prove τ(f(z + n)) = σ(f(z)), τ(∆nf(z)) = σ(f(z)).

By Lemma 2.8, equation (1.3) has no nonzero rational solution, so P (z, z) ̸≡ 0. By Lemma

2.7 and P (z, z) ̸≡ 0, we see that

m

(
r,

1

f(z)− z

)
= S(r, f).

Thus,

N

(
r,

1

f(z)− z

)
= T (r, f(z)) + S(r, f).

Hence, τ(f(z)) = σ(f(z)).

Now we prove that for every n ∈ N+, τ(f(z + n)) = σ(f(z)). By (1.3), we have

a1(z + n)g(z + 1) + a0(z + n)g(z) = 0, (3.20)

where g(z) = f(z + n).

By Lemma 2.3, Lemma 2.5 and Remark 2.1, we know µ(aj(z + n)) = µ(aj(z))(j = 0, 1).

Since µ(a1(z)) ̸= µ(a0(z)), we get

µ(a1(z + n)) ̸= µ(a0(z + n)). (3.21)

By (3.20), (3.21) and the above result, we obtain τ(g(z)) = σ(g(z)). That is, τ(f(z+ n)) =

σ(f(z)).

Next we prove that τ(∆nf) = σ(f(z)). Let

Rn(z) =
z

(−1)nQn(z)
. (3.22)
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Using a same method as in the proof of (ii), we have P (z,Rn) ̸≡ 0. By P (z,Rn) ̸≡ 0 and

Lemma 2.7, we have

m

(
r,

1

f −Rn

)
= S(r, f).

Hence,

N

(
r,

1

f −Rn

)
= T (r, f) + S(r, f). (3.23)

By (3.11) and (3.22), we have

∆nf(z)− z = (−1)nQn(z)f(z)− z

= (−1)nQn(z)

(
f(z)− z

(−1)nQn(z)

)
= (−1)nQn(z)(f(z)−Rn(z)). (3.24)

By (3.23) and (3.24), we have

N

(
r,

1

∆nf − z

)
≥ N

(
r,

1

f −Rn

)
−N(r,Qn)

≥ T (r, f)− T (r,Qn) + S(r, f)

= T (r, f) + S(r, f),

which yields τ(∆nf(z)) ≥ σ(f(z)). Since τ(∆nf(z)) ≤ σ(f(z)), so τ(∆nf(z)) = σ(f(z)).

Proof of Theorem 1.3

Suppose f(z) ̸≡ 0 is a meromorphic solution of equation (1.3). Then

σ(f(z)) ≥ max{σ(a1), σ(a0)}+ 1 (3.25)

by σ(a1) ̸= σ(a0) and Theorem A.

We proceed to prove that τ(f(z + n)) = σ(f(z)) ≥ max{σ(a0), σ(a1)}+ 1. Set

P (z, f) := a1(z)f(z + 1) + a0(z)f(z) = 0. (3.26)

Since σ(a1) ̸= σ(a0), then

σ((z + 1)a1(z) + za0(z)) = max{σ(a1(z)), σ(a0(z))}.
Thus, P (z, z) = (z + 1)a1(z) + za0(z) ̸≡ 0. By P (z, z) ̸≡ 0 and Remark 2.2, we have

m

(
r,

1

f(z)− z

)
≤ m(r, a0(z)) +m(r, a1(z)) + S(r, f),

which implies that

N

(
r,

1

f(z)− z

)
≥ T (r, f(z))−m(r, a0(z))−m(r, a1(z)) + S(r, f). (3.27)

By (3.25) and (3.27), τ(f(z)) ≥ σ(f(z)) holds, together with the fact τ(f(z)) ≤ σ(f(z)), we

know τ(f(z)) = σ(f(z)).

By (1.3), we have

a1(z + n)g(z + 1) + a0(z + n)g(z) = 0, (3.28)

where g(z) = f(z + n).

By Lemma 2.3, Lemma 2.5 and Remark 2.1, we know σ(aj(z + n)) = σ(aj(z))(j = 0, 1).
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Since σ(a1(z)) ̸= σ(a0(z)), we get

σ(a1(z + n)) ̸= σ(a0(z + n)). (3.29)

By (3.28), (3.29) and the above result, we obtain τ(g(z)) = σ(g(z)). That is, τ(f(z+ n)) =

σ(f(z)).

Next we prove that τ(∆nf(z)) = σ(f(z)). We also obtain (3.10)–(3.14).

Since σ(a1) ̸= σ(a0), by Lemma 2.9, we know Pn(z) ̸≡ 0. So ∆nf(z) ̸≡ 0 by (3.11) and

(3.13).

Let

Rn(z) =
z

(−1)nQn(z)
. (3.30)

Assert that P (z,Rn) ̸≡ 0. Otherwise, by (3.26),

a1(z)Rn(z + 1) + a0(z)Rn(z) = 0.

So σ(Rn) ≥ max{σ(a1), σ(a0)}+1 by Theorem A. On the other hand, σ(Rn) ≤ max{σ(a1), σ(a0)}
by (3.12) and (3.30). A contradiction. By P (z,Rn) ̸≡ 0 and Remark 2.2, we have

m

(
r,

1

f −Rn

)
≤ m(r, a1) +m(r, a0) + S(r, f)

together with (3.12), (3.30) and Lemma 2.3, we obtain

N

(
r,

1

f −Rn

)
≥ T (r, f −Rn)−m(r, a1)−m(r, a0) + S(r, f)

≥ T (r, f)− T (r,Rn)−m(r, a1)−m(r, a0) + S(r, f)

= T (r, f)− T (r,Qn)−m(r, a1)−m(r, a0) + S(r, f)

= T (r, f) +O(T (r, a1)) +O(T (r, a0)). (3.31)

By (3.11) and (3.30), we have

∆nf(z)− z = (−1)nQn(z)f(z)− z

= (−1)nQn(z)

(
f(z)− z

(−1)nQn(z)

)
= (−1)nQn(z)(f(z)−Rn(z)). (3.32)

It follows from (3.12),(3.31),(3.32) and Lemma 2.3 that

N

(
r,

1

∆nf − z

)
≥ N

(
r,

1

f −Rn

)
−N(r,Qn)

≥ T (r, f) +O(T (r, a1)) +O(T (r, a0))− T (r,Qn) + S(r, f)

= T (r, f) +O(T (r, a1)) +O(T (r, a0)) + S(r, f),

together with (3.25), we obtain τ(∆nf(z)) ≥ σ(f(z)). Combining the fact that τ(∆nf(z)) ≤
σ(f(z)), so τ(∆nf(z)) = σ(f(z)).

Proof of Corollary 1.1

(i) By Theorem E, we know for every n ∈ N, τ(f(z + n)) = σ(f(z)) ≥ 1.

Now we prove that τ(∆nf(z)) = σ(f(z)). Using a same method as in the proof of Theorem

1.2, we obtain (3.10)–(3.14).
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Assert that Pn(z) ̸≡ 0.

If deg a1(z) < deg a0(z), we see that there is only one term
(
n
n

) n−1∏
j=0

a0(z + j) whose degree

is the highest one. So that Pn(z) ̸≡ 0.

If deg a0(z) < deg a1(z), we see that there is only one term
(
n
0

) n−1∏
j=0

a1(z + j) whose degree

is the highest one. So that Pn(z) ̸≡ 0.

Now suppose that deg a0(z) = deg a1(z). Let b0 and b1 be the leading coefficient of a0(z)

and a1(z) respectively. By (1.4), we know b0 + b1 ̸= 0. By (3.14), the leading coefficient of

Pn(z) is (
n

n

)
bn0 +

n−1∑
k=1

(
n

k

)
bk0b

n−k
1 +

(
n

0

)
bn1 =

n∑
k=0

(
n

k

)
bk0b

n−k
1 = (b0 + b1)

n ̸= 0.

So that Pn(z) ̸≡ 0. Thus, ∆nf(z) ̸≡ 0 by (3.11) and (3.13).

Let

Rn(z) =
z

(−1)nQn(z)
, (3.33)

and

P (z, f) := a1(z)f(z + 1) + a0(z)f(z) = 0.

Suppose P (z,Rn(z)) ≡ 0. That is,

a1(z)Rn(z + 1) + a0(z)Rn(z) = 0.

Since Rn(z) is a nonzero rational function, then

−a0(z)

a1(z)
=

Rn(z + 1)

Rn(z)
→ 1 (z → ∞).

Hence,

−a0(z) + a1(z)

a1(z)
= −a0(z)

a1(z)
− 1 → 0 (z → ∞),

which means deg(a1(z) + a0(z)) < deg a1(z). It contradicts with (1.4). So, P (z,Rn(z)) ̸≡ 0.

By P (z,Rn(z)) ̸≡ 0 and Lemma 2.7, we have

m

(
r,

1

f(z)−Rn(z)

)
= S(r, f),

which yields

N

(
r,

1

f(z)−Rn(z)

)
= T (r, f(z)) + S(r, f).

By (3.11) and (3.33), we get

∆nf(z)− z = (−1)nQn(z)f(z)− z

= (−1)nQn(z)

(
f(z)− z

(−1)nQn(z)

)
= (−1)nQn(z)(f(z)−Rn(z)).

Combining with the last two equalities, we obtain

N

(
r,

1

∆nf(z)− z

)
= N

(
r,

1

f(z)−Rn(z)

)
+O(log r) = T (r, f) + S(r, f).

Hence, τ(∆nf(z)) = σ(f(z)).

(ii) Suppose f(z) is a finite order entire solution of equation (1.3) satisfying λ(f) < σ(f).
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By Hadamard’s factorization theorem, f(z) assumes the form

f(z) = P (z)eh(z), (3.34)

where P (z) is an entire function satisfying

σ(P ) = λ(P ) = λ(f) < σ(f), (3.35)

and h(z) is a polynomial satisfying

deg h = σ(f). (3.36)

Substituting (3.34) into equation (1.3), we have

a1(z)P (z + 1)eh(z+1) + a0(z)P (z)eh(z) = 0.

So (
a1(z)e

h(z+1)−h(z)
)
P (z + 1) + a0(z)P (z) = 0. (3.37)

If deg h ≥ 2, by calculation, we know deg(h(z + 1)− h(z)) = deg h− 1 ≥ 1. Thus,

σ
(
a1(z)e

h(z+1)−h(z)
)
= deg h− 1 > 0 = σ(a0).

Applying Theorem A to equation (3.37), we have σ(P ) ≥ (deg h − 1) + 1 = deg h, which

contradicts with (3.35) and (3.36).

If deg h = 1, then h(z + 1) − h(z) is a constant. If P (z) is transcendental with σ(P ) < 1,

by Lemma 2.6, we know
(
a1(z)e

h(z+1)−h(z)
)
P (z + 1) + a0(z)P (z) is transcendental, which

contradicts with (3.37). So, P (z) must be a polynomial. Thus, f(z) has finitely many zeros.

Hence, either λ(f) = σ(f) or f(z) has finitely many zeros.

Since a1(z) and a0(z) are polynomials, by (3.11) and (3.12), we know ∆nf(z) and f(z) have

the same zeros, except possibly finitely many. Thus, λ(∆nf(z)) = λ(f(z)) = σ(f(z)) or ∆nf(z)

has finitely many zeros.
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