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Induced generalized exact boundary synchronizations for

a coupled system of wave equations

WANG Yan-yan

Abstract. Taking a coupled system of wave equations with Dirichlet boundary controls as

an example, by splitting and merging some synchronization groups of the state variables cor-

responding to a given generalized synchronization matrix, this paper introduces two kinds of

induced generalized exact boundary synchronizations to better determine its generalized exactly

synchronizable states.

§1 Introduction

For a coupled system of wave equations with Dirichlet boundary controls, based on the

exact boundary synchronization (by groups) of Li and Rao [2–6], the generalized exact boundary

synchronization and the corresponding generalized exactly synchronizable states were studied in

[8,9], and the results show that for the generalized exact boundary synchronization with respect

to a given generalized synchronization matrix, when the coupled system satisfies some conditions

(the strong compatibility for the coupling matrix and a suitable collocation for the boundary

controls), the corresponding generalized exactly synchronizable state can be determined only

by its initial data and is independent of applied boundary controls. When the coupled system

does not possess these conditions for the given generalized synchronization matrix, in this

paper we introduce some induced generalized synchronization matrices to replace the original

generalized synchronization matrix, such that they meet the strong compatibility condition,

then, for suitably collocated boundary controls, the corresponding induced generalized exactly

synchronizable states will be independent of applied boundary controls.

Consider the following coupled system of wave equations with Dirichlet boundary controls:
U ′′ −∆U +AU = 0 in (0,+∞)× Ω,

U = 0 on (0,+∞)× Γ0,

U = DH on (0,+∞)× Γ1

(1.1)
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with the initial condition

t = 0 : (U,U ′) = (Û0, Û1) in Ω, (1.2)

where U = (u(1), . . . , u(N))ᵀ represents the state variable, A = (aij) ∈ MN×N (R) is a given

coupling matrix with constant elements; H = (h(1), . . . , h(M))ᵀ (M ≤ N) denotes the boundary

control, and D ∈ MN×M (R) is the boundary control matrix with constant elements, standing

for the collocation of boundary controls.

Assume that Ω ⊂ Rn is a bounded domain with smooth boundary Γ = Γ0 ∪ Γ1 such that

Γ̄0 ∩ Γ̄1 = ∅ and mes Γ1 ̸= 0, and satisfies the usual multiplier geometrical condition [7]: there

exists x0 ∈ Rn, such that for m = x− x0 we have

(m, ν) > 0, ∀x ∈ Γ1; (m, ν) ≤ 0, ∀x ∈ Γ0, (1.3)

where ν is the unit outward normal vector on the boundary and (·, ·) denotes the inner product
in Rn.

Definition 1.1 (cf. [8]). For a (N − p) × N(0 ≤ p < N) full row-rank matrix Θp, called

the generalized synchronization matrix, system (1.1) is generalized exactly synchronizable with

respect to Θp, if there exists a time T > 0, such that for any given initial data (Û0, Û1) ∈
(L2(Ω))N ×(H−1(Ω))N , there exists a boundary control H ∈ L2

loc(0,+∞; (L2(Γ1))
M ) with com-

pact support in [0, T ], such that the corresponding solution U = U(t, x) ∈ C0
loc(0,+∞; (L2(Ω))N )

∩C1
loc(0,+∞; (H−1(Ω))N ) to problem (1.1)-(1.2) satisfies

t ≥ T : ΘpU ≡ 0. (1.4)

Remark 1.2 (cf. [8]). The generalized exactly boundary synchronization (1.4) can be written

as

t ≥ T : U ∈ Ker(Θp). (1.5)

Taking a basis {ϵ1, . . . , ϵp} of Ker(Θp) as a synchronization basis, condition (1.4) (i.e. (1.5))

is equivalent to that: there exists a vector function u = (u1, . . . , up)
ᵀ of t and x, such that

t ≥ T : U = u1ϵ1 + · · ·+ upϵp = (ϵ1, . . . , ϵp)u, (1.6)

where the function u, being a priori unknown, is called the corresponding generalized exactly

synchronizable state, and p is the group number. �

In Section 2, we will first give some basic results on the generalized exact boundary syn-

chronization for system (1.1). Then in Section 3 and Section 4, for system (1.1) and the given

generalized synchronization matrix Θp, we will introduce its weakly and strongly induced gen-

eralized synchronization matrices Θ̂q and Θ̃r, respectively, satisfying the following relations:

Ker(Θ̃r) ⊆ Ker(Θp) ⊆ Ker(Θ̂q) (1.7)

with r ≤ p ≤ q. When we have the original generalized exact boundary synchronization with

respect to Θp, although the corresponding generalized exactly synchronizable state usually

depends on applied boundary controls, we always have the generalized exact boundary syn-

chronization with respect to its weakly induced generalized synchronization matrix Θ̂q, and

the corresponding generalized exactly synchronizable state is independent of applied (N − q)

suitably collocated boundary controls (see Theorem 3.7). Furthermore, using more boundary
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controls, we can achieve a better result — the generalized exact boundary synchronization with

respect to the strongly induced generalized synchronization matrix Θ̃r, which implies the origi-

nal generalized exact boundary synchronization with respect to Θp, and through (N−r) suitably

collocated boundary controls the corresponding generalized exactly synchronizable state is in-

dependent of applied boundary controls (see Theorem 4.7). In Section 4, we will give examples

to illustrate the relations between the original generalized exact boundary synchronization and

the corresponding induced generalized exact boundary synchronizations.

§2 Preliminaries

According to [9], for Θp and the basis {ϵ1, . . . , ϵp} of Ker(Θp), let the normalized transfor-

mation be given by

X =

(
Θp

(y1, . . . , yp)
ᵀ

)
, (2.1)

where {y1, . . . , yp} is bi-orthonormal to {ϵ1, . . . , ϵp}: (y1, . . . , yp)
ᵀ(ϵ1, . . . , ϵp) = Ip (identity

matrix of order p), which guarantees the reversibility of X. Under this transformation, the

state variable U turns into

Ũ = XU =

(
Wp

Vp

)
, (2.2)

where

Wp = ΘpU, Vp = (y1, . . . , yp)
ᵀU, (2.3)

and the generalized exact boundary synchronization (1.6) is equivalent to that

t ≥ T : Wp = 0, Vp = u. (2.4)

Denoting

Ã = XAX−1 =

(
Āp Z1

Zᵀ
2 Ãp

)
, (2.5)

where Āp and Ãp are square matrices of order (N − p) and p, respectively, the null controllable

part Wp satisfies 
W ′′

p −∆Wp + ĀpWp = −Z1Vp in (0,+∞)× Ω,

Wp = 0 on (0,+∞)× Γ0,

Wp = ΘpDH on (0,+∞)× Γ1,

t = 0 : (Wp,W
′
p) = Θp(Û0, Û1) in Ω,

(2.6)

while, the synchronizable state part Vp satisfies
V ′′
p −∆Vp + ÃpVp = −Zᵀ

2Wp in (0,+∞)× Ω,

Vp = 0 on (0,+∞)× Γ0,

Vp = (y1, . . . , yp)
ᵀDH on (0,+∞)× Γ1,

t = 0 : (Vp, V
′
p) = (y1, . . . , yp)

ᵀ(Û0, Û1) in Ω.

(2.7)

Lemma 2.1 (cf. [9]). Assume A satisfies the condition of Θp-compatibility

AKer(Θp) ⊆ Ker(Θp), (2.8)
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then Z1 = 0 in (2.5), hence the generalized exact boundary synchronization for system (1.1)

with respect to Θp is equivalent to the exact boundary null controllability for system (2.6), and

thus equivalent to

rank(ΘpD) = N − p. (2.9)

We say that A satisfies the condition of Θp-strong compatibility if
Ker(Θp) = Span{ϵ1, . . . , ϵp} is an invariant subspace of A,

Aᵀ admits an invariant subspace Span{y1, . . . , yp} which is

bi-orthonormal to Span{ϵ1, . . . , ϵp},

(2.10)

which is equivalent to Z1 = Z2 = 0 in (2.5), then Āp and Ãp are called the generalized reduced

matrix and the generalized row-sum matrix, respectively.

Lemma 2.2 (cf. [9]). (i) If system (1.1) is generalized exactly synchronizable with respect

to Θp, and the synchronizable state part Vp is independent of applied boundary controls H,

then A necessarily satisfies the condition of Θp-strong compatibility (2.10), and D satisfies

Ker(Dᵀ) = Span{y1, . . . , yp}.
(ii) If A satisfies the condition of Θp-strong compatibility (2.10), then there exists a boundary

control matrix D with Ker(Dᵀ) = Span{y1, . . . , yp}, such that system (1.1) is generalized exactly

synchronizable with respect to Θp, and system (2.7) of the synchronizable state part becomes
V ′′
p −∆Vp + ÃpVp = 0 in (0,+∞)× Ω,

Vp = 0 on (0,+∞)× Γ,

t = 0 : (Vp, V
′
p) = (y1, . . . , yp)

ᵀ(Û0, Û1) in Ω,

(2.11)

whose solution is determined only by the initial data and independent of applied boundary con-

trols H, therefore the generalized exactly synchronizable state u = Vp is independent of applied

boundary controls H.

§3 Weakly induced generalized exact boundary synchronization

(more groups and fewer controls)

According to [8], Ker(Θp) can be extended to Span{ξ̃1, . . . , ξ̃q} (not unique) by means of a

Jordan basis {ξ̃1, . . . , ξ̃q, . . . , ξ̃N} (q ≥ p) of RN , under which A can be represented by its real

Jordan form [1]:

A(ξ̃1, . . . , ξ̃q, ξ̃q+1, . . . , ξ̃N ) = (ξ̃1, . . . , ξ̃q, ξ̃q+1, . . . , ξ̃N )

(
Jq 0

0 JN−q

)
, (3.1)

in which q is the minimal value satisfying Span{ξ̃1, . . . , ξ̃q} ⊇ Ker(Θp). Then Ker(Θ̂q)
def.
=

Span{ξ̃1, . . . , ξ̃q} is a minimal extension of Ker(Θp), which realizes the corresponding condition

of strong compatibility (see (3.3)). Thus, for the given generalized synchronization matrix Θp,

we can introduce a generalized synchronization matrix Θ̂q by extending Ker(Θp) through the

coupling matrix A as follows.
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Definition 3.1. An (N − q)×N(p ≤ q ≤ N) full row-rank matrix Θ̂q is called the weakly

induced generalized synchronization matrix corresponding to Θp, if Ker(Θ̂q) as an extension of

Ker(Θp):

Ker(Θ̂q) ⊇ Ker(Θp) (3.2)

possesses the property that A satisfies the condition of Θ̂q-strong compatibility:Ker(Θ̂q) is an invariant subspace of A,

Aᵀ admits an invariant subspace which is bi-orthonormal to Ker(Θ̂q),
(3.3)

and q is the minimal value satisfying (3.2) and (3.3). In particular, Θ̂N is a zero matrix when

q = N .

Remark 3.2. q = p if and only if A satisfies the condition of Θp-strong compatibility (2.10).

Thus we can only consider the case that the condition of Θp-strong compatibility (2.10) fails,

namely, q > p. �

In what follows we will give the generalized exact boundary synchronization with respect to

the weakly induced generalized synchronization matrix Θ̂q, called its weakly induced generalized

exact boundary synchronization for short, including its relation to the original generalized exact

boundary synchronization with respect to Θp, then we will show the benefits of introducing it.

Theorem 3.3. The generalized exact boundary synchronization (1.4) with respect to Θp

implies its weakly induced generalized exact boundary synchronization:

t ≥ T : Θ̂qU ≡ 0. (3.4)

And system (1.1) possesses the weakly induced generalized exact boundary synchronization (3.4)

if and only if

rank(Θ̂qD) = N − q. (3.5)

Proof. It follows from (3.2) that the generalized exact boundary synchronization (1.5) implies

t ≥ T : U ∈ Ker(Θ̂q), (3.6)

which is just its weakly induced generalized exact boundary synchronization (3.4). Noting

the condition of Θ̂q-strong compatibility (3.3), by Lemma 2.1 we get the second part of the

conclusion.

Remark 3.4. Noting that condition (3.5) can also be written as rank(DᵀΘ̂ᵀ
q ) = N − q =

rank(Θ̂ᵀ
q ), namely, Ker(Dᵀ) ∩ Im(Θ̂ᵀ

q ) = {0}, when the boundary control matrix D is given

beforehand, for a generalized synchronization matrix Θp, some of its weakly induced generalized

synchronization matrices Θ̂q may satisfy (3.5) and then hold the corresponding weakly induced

generalized exact boundary synchronization (3.4), while, some may not. It should be selected

suitably in applications(see Example 3.9). �

Denoting

Ker(Θ̂q) = Span{ϵ̂1, . . . , ϵ̂q}, (3.7)
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the weakly induced generalized exact boundary synchronization (3.4) can be written as: there

exists a q-dimensional vector function û = (û1, . . . , ûq)
ᵀ such that

t ≥ T : U = û1ϵ̂1 + · · ·+ ûq ϵ̂q = (ϵ̂1, . . . , ϵ̂q)û, (3.8)

in which, the generalized synchronizable state û with respect to the weakly induced generalized

synchronization matrix Θ̂q can be called as the weakly induced generalized exactly synchroniz-

able state for short.

Theorem 3.5. If we have the generalized exact boundary synchronization (1.6) with respect

to Θp, then the weakly induced generalized exactly synchronizable state û can be expressed by

its original generalized exactly synchronizable state u as follows:

û = Q̂u, (3.9)

where Q̂ is a q × p matrix of full column-rank, given by

(ϵ1, . . . , ϵp) = (ϵ̂1, . . . , ϵ̂q)Q̂. (3.10)

Proof. By Ker(Θ̂q) ⊇ Ker(Θp) = Span{ϵ1, . . . , ϵp}, there exists a (unique) q × p matrix Q̂ of

full column-rank, such that (3.10) holds. Then plugging (3.10) into (1.6) and noting (3.8), we

get (3.9).

Remark 3.6. Q̂ in (3.9) represents the way of splitting the original synchronization groups

(see Example 5.2). �

Therefore, the generalized exact boundary synchronization with respect to Θp implies that

with respect to Θ̂q, which is easier to be realized and thus demands fewer boundary controls. We

will show that when we reduce suitably the number of boundary controls, the generalized exactly

synchronizable state with respect to Θ̂q can be independent of applied boundary controls.

By the condition of Θ̂q-strong compatibility (3.3),

Span{y1, . . . , yq} (3.11)

as an Aᵀ-invariant subspace is bi-orthonormal to (3.7), then there are the generalized reduced

matrix Āq and the generalized row-sum matrix Ãq such that

XAX−1 =

(
Āq 0

0 Ãq

)
, where X =

(
Θ̂q

(y1, . . . , yq)
ᵀ

)
. (3.12)

Thus by Lemma 2.2, we have

Theorem 3.7. If and only if Ker(Dᵀ) is invariant for Aᵀ and bi-orthonormal to Ker(Θ̂q),

there exists

Span{y1, . . . , yq} = Ker(Dᵀ) (3.13)

such that the corresponding synchronizable part Vq = (y1, . . . , yq)
ᵀU of system (1.1) with respect

to Θ̂q satisfies a problem independent of applied boundary controls:
V ′′
q −∆Vq + ÃqVq = 0 in (0,+∞)× Ω,

Vq = 0 on (0,+∞)× Γ,

t = 0 : (Vq, V
′
q ) = (y1, . . . , yq)

ᵀ(Û0, Û1) in Ω,

(3.14)
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then the generalized exactly synchronizable state û = Vq with respect to Θ̂q is independent of

applied boundary controls.

Remark 3.8. By (3.11) and (3.7), the projection operator discussed in [8] is

P = (ϵ̂1, . . . , ϵ̂q)(y1, . . . , yq)
ᵀ,

thus the independence of applied boundary controls for the synchronizable part Us = PU of sys-

tem (1.1) with respect to Θp is actually that for its synchronizable state part Vq = (y1, . . . , yq)
ᵀU

with respect to the corresponding weakly induced synchronization matrix Θ̂q.

Noting that rank(D) = N−q by Lemma 2.2 and that rank(D) ≥ N−p under the generalized

exact boundary synchronization with respect to Θp, it is necessary to have q = p, that is to say,

A satisfies the condition of Θp-strong compatibility (2.10), in order to ensure the independence

of applied boundary controls for the synchronizable part Us = PU , i.e., for the synchronizable

state part Vq with respect to Θ̂q.

However, the weakly induced generalized exact boundary synchronization is weaker than the

original one, as a result, Theorem 3.7 does not require the condition of Θp-strong compatibility

(2.10) for the coupling matrix A. �

Example 3.9. Let N = 3. Consider the coupled system of wave equations given by
u(1)′′ −∆u(1) + u(1) + u(2) = 0 in (0,+∞)× Ω,

u(2)′′ −∆u(2) + u(2) = 0 in (0,+∞)× Ω,

u(3)′′ −∆u(3) + u(3) = 0 in (0,+∞)× Ω,

(3.15)

in which the coupling matrix is

A =

 1 1 0

0 1 0

0 0 1

 . (3.16)

Given the generalized synchronization matrix

Θ1 =

(
0 1 0

0 0 1

)
, (3.17)

it is easy to see that

Ker(Θ1) = Span{ϵ1}
and Aϵ1 = ϵ1, in which ϵ1 = (1, 0, 0)ᵀ, and x = ϵ2 = (0, 1, γ)ᵀ meets (A − I)x = ϵ1, where

γ is an arbitrarily given real constant. Then the minimal extension of Ker(Θ1) satisfying the

condition of strong compatibility (3.3) is

Ker(Θ̂2) = Span{ϵ1, ϵ2},
and the corresponding weakly induced generalized synchronization matrix is

Θ̂2 =
(

0 γ −1
)
. (3.18)

Thus there are infinitely many weakly induced generalized synchronization matrices Θ̂2 as γ

varies. The generalized exact boundary synchronization with respect to Θ̂2 means that

t ≥ T : Θ̂2U = 0, namely, U = (ϵ1, ϵ2)û = (û1, û2, γû2)
ᵀ, (3.19)

where û = (û1, û2)
ᵀ is the corresponding weakly induced generalized exactly synchronizable state.
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Since we only need one boundary control to realize the weakly induced generalized exact

boundary synchronization (3.19), we suppose that the boundary control matrix D ∈ M3×1(R).
Then the weakly induced generalized exact boundary synchronization (3.19) holds if and only if

γ satisfies rank(Θ̂2D) = 1, namely,

D = (d1, d2, d3)
ᵀ, with γd2 − d3 ̸= 0. (3.20)

Besides, it is easy to see that Span{y1, y2} is an Aᵀ-invariant subspace which is bi-orthonormal

to Span{ϵ1, ϵ2}, where y1 = (1, kγ,−k)ᵀ and y2 = (0, 1, 0)ᵀ with k being a real constant. Thus,

only when Ker(Dᵀ) = Span{y1, y2}, namely, when

D = (kd3, 0, d3)
ᵀ, where d3 ̸= 0 and k is a real constant, (3.21)

the corresponding synchronizable state part V2 = (v1, v2)
ᵀ = (y1, y2)

ᵀU = (u(1) + kγu(2) −
ku(3), u(2))ᵀ satisfies

v′′1 −∆v1 + v1 + v2 = 0 in (0,+∞)× Ω,

v′′2 −∆v2 + v2 = 0 in (0,+∞)× Ω,

v1 = v2 = 0 on (0,+∞)× Γ,

t = 0 : (V2, V
′
2) = (y1, y2)

ᵀ(Û0, Û1) in Ω,

(3.22)

which depends only on the initial data (Û0, Û1), k(i.e., the boundary control matrix D) and

γ(i.e., the weakly induced generalized synchronization matrix Θ̂2), but not on applied bound-

ary controls, therefore, the corresponding generalized exactly synchronizable state û = V2 is

independent of applied boundary controls. �

§4 Strongly induced generalized exact boundary synchronization

(fewer groups and more controls)

Similarly, for the given generalized synchronization matrix Θp, we can introduce a general-

ized synchronization matrix by extending Im(Θᵀ
p) through Aᵀ as follows.

Definition 4.1. An (N − r)×N(0 ≤ r ≤ p) full row-rank matrix Θ̃r is called the strongly

induced generalized synchronization matrix corresponding to Θp, if Im(Θ̃ᵀ
r ) as an extension of

Im(Θᵀ
p):

Im(Θ̃ᵀ
r ) ⊇ Im(Θᵀ

p) (4.1)

possesses the property that Aᵀ satisfiesIm(Θ̃ᵀ
r ) is an invariant subspace of Aᵀ,

A admits an invariant subspace which is bi-orthonormal to Im(Θ̃ᵀ
r ),

(4.2)

and (N − r) is the minimal value satisfying (4.1) and (4.2).

Remark 4.2. Condition (4.2) is actually the condition of Θ̃r-strong compatibility:Ker(Θ̃r) is an invariant subspace of A,

Aᵀ admits an invariant subspace which is bi-orthonormal to Ker(Θ̃r).
(4.3)
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Evidently, r = p if and only if A satisfies the condition of Θp-strong compatibility (2.10). Thus

we can only consider the case that the condition of Θp-strong compatibility (2.10) fails, namely,

0 ≤ r < p. �

Now we look at the generalized exact boundary synchronization with respect to the strongly

induced generalized synchronization matrix Θ̃r, called its strongly induced generalized exact

boundary synchronization for short, including its relation to the original generalized exact

boundary synchronization with respect to Θp, and show the benefits of introducing it.

Theorem 4.3. The generalized exact boundary synchronization (1.4) with respect to Θp

can be implied by its strongly induced generalized exact boundary synchronization:

t ≥ T : Θ̃rU ≡ 0. (4.4)

And system (1.1) possesses the strongly induced generalized exact boundary synchronization

(4.4) if and only if

rank(Θ̃rD) = N − r. (4.5)

Proof. It follows from (4.1) that Ker(Θ̃r) ⊆ Ker(Θp), thus the generalized exact boundary

synchronization (1.5) can be implied by

t ≥ T : U ∈ Ker(Θ̃r), (4.6)

which is just the strongly induced generalized exact boundary synchronization (4.4). Noting

the condition of strong Θ̃r-compatibility (4.3), by Lemma 2.1 we have the second part of the

conclusion.

Remark 4.4. Similar to Remark 3.4, when the boundary control matrix D is given, for

a given generalized synchronization matrix Θp, some of its strongly induced generalized syn-

chronization matrices Θ̃r may satisfy (4.5) and then have the corresponding strongly induced

generalized exact boundary synchronization (4.4), while, some may not. This asks us to take a

suitable choice in practices (see Example 4.8). �

Denoting Ker(Θ̃r) = Span{ϵ̃1, . . . , ϵ̃r}, the strongly induced generalized exact boundary

synchronization (4.4) is equivalent to that: there exists an r-dimensional vector function ũ =

(ũ1, . . . , ũr)
ᵀ such that

t ≥ T : U = ũ1ϵ̃1 + · · ·+ ũr ϵ̃r = (ϵ̃1, . . . , ϵ̃r)ũ, (4.7)

in which, the generalized synchronizable state ũ with respect to the strongly induced gener-

alized synchronization matrix Θ̃r can be called as the strongly induced generalized exactly

synchronizable state for short.

Theorem 4.5. If we have the strongly induced generalized exact boundary synchronization

(4.7), then the original generalized exactly synchronizable state u, defined by (1.6), can be

expressed through its strongly induced exactly synchronizable state ũ by

u = Q̃ũ, (4.8)

where Q̃ is a p× r matrix of full column-rank, given by

(ϵ̃1, . . . , ϵ̃r) = (ϵ1, . . . , ϵp)Q̃. (4.9)
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Remark 4.6. Q̃ in (4.8) represents the way of merging synchronization groups (see Example

5.2). �

Therefore, the generalized exact boundary synchronization of system (1.1) with respect

to Θ̃r implies that with respect to Θp. The strongly induced generalized exact boundary

synchronization (4.6) possesses more requirements and fewer synchronization groups (r ≤ p),

hence more boundary controls are needed. When the boundary control matrix D is suitably set,

the strongly induced generalized exactly synchronizable state ũ can be independent of applied

boundary controls.

Due to the condition of Θ̃r-strong compatibility (4.3), Span{y1, . . . , yr} as an invariant

subspace ofAᵀ is bi-orthonormal to Ker(Θ̃r) = Span{ϵ̃1, . . . , ϵ̃r}, then there exist the generalized

reduced matrix Ār and the row-sum matrix Ãr such that

XAX−1 =

(
Ār 0

0 Ãr

)
, where X =

(
Θ̃r

(y1, . . . , yr)
ᵀ

)
. (4.10)

Thus by Lemma 2.2 we have

Theorem 4.7. If and only if Ker(Dᵀ) is invariant for Aᵀ and bi-orthonormal to Ker(Θ̃r),

there exists

Span{y1, . . . , yr} = Ker(Dᵀ) (4.11)

such that the corresponding synchronizable state part Vr = (y1, . . . , yr)
ᵀU of system (1.1) with

respect to Θ̃r satisfies the following problem independent of boundary controls:
V ′′
r −∆Vr + ÃrVr = 0 in (0,+∞)× Ω,

Vr = 0 on (0,+∞)× Γ,

t = 0 : (Vr, V
′
r ) = (y1, . . . , yr)

ᵀ(Û0, Û1) in Ω,

(4.12)

then the generalized exactly synchronizable state ũ = Vr with respect to Θ̃r is independent of

applied boundary controls.

Example 4.8. Let N = 3. For the coupled system of wave equations given by (3.15) in

which the coupling matrix is (3.16), consider the strongly induced generalized exact boundary

synchronizations for

Θ2 =
(

0 1 0
)
. (4.13)

Noting that

Im(Θᵀ
2) = Span{e2}

and Aᵀe2 = e2, where e2 = (0, 1, 0)ᵀ, there is e1 = (1, 0,−α)ᵀ such that (Aᵀ − I)e1 = e2, where

α is an arbitrarily given real number. Thus the minimal extension of Im(Θᵀ
2) satisfying the

condition of strong compatibility (4.2) is

Im(Θ̃ᵀ
1) = Span{e1, e2},

then

Ker(Θ̃1) = Span{ϵ},
where ϵ = (α, 0, 1)ᵀ, and the corresponding strongly induced generalized exact synchronization
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matrix is

Θ̃1 =

(
1 0 −α

0 1 0

)
, (4.14)

correspondingly there are many strongly induced generalized exact boundary synchronizations

(4.6) as α varies. The generalized exact boundary synchronization with respect to Θ̃1 is written

as

t ≥ T : Θ̃1U = 0, namely, U = ϵũ = (αũ, 0, ũ)ᵀ, (4.15)

where ũ is the corresponding strongly induced generalized exactly synchronizable state.

Suppose that the boundary control matrix is D ∈ M3×2(R), then the strongly induced gen-

eralized exact boundary synchronization (4.15) holds if and only if α satisfies rank(Θ̃1D) = 2,

namely,

D =

 d1

d2

d3


3×2

, where d1 − αd3 and d2 are linearly independent. (4.16)

As y = (0,−k, 1)ᵀ is an eigenvector of Aᵀ and bi-orthonormal to ϵ = (α, 0, 1)ᵀ, when D

satisfies Ker(Dᵀ) = Span{y}, namely,

D =

 d1

d2

kd2


3×2

, where d1 and d2 are linearly independent, and k is a real number, (4.17)

the corresponding synchronizable state part v = yᵀU = u(3) − ku(2) satisfies
v′′ −∆v + v = 0 in (0,+∞)× Ω,

v = 0 on (0,+∞)× Γ,

t = 0 : (v, v′) = yᵀ(Û0, Û1) in Ω,

(4.18)

which depends only on the initial data (Û0, Û1) and k (i.e., the boundary control matrix D), but

not on applied boundary controls, therefore the generalized exactly synchronizable state ũ = v is

independent of applied boundary controls. �

§5 Examples of induced generalized exact boundary

synchronizations

At last we offer some examples to explain the relations between the original generalized

exact boundary synchronization and the corresponding induced generalized exact boundary

synchronizations.

Example 5.1. Assume the coupling matrix A of system (1.1) is similar to a Jordan block.

Then, for any given generalized synchronization matrix Θp(0 < p < N),

• its weakly induced generalized synchronization matrix is a zero matrix 0, hence the corre-

sponding weakly induced generalized exact boundary synchronization always holds without any

demands on boundary controls as well as on the boundary control matrix;

• its strongly induced generalized synchronization matrix is an invertible matrix Θ̃0, there-
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fore the corresponding strongly induced generalized exact boundary synchronization is actually

exact boundary null controllability of system (1.1), and requires N boundary controls, i.e., the

boundary control matrix D should be invertible and the corresponding generalized exactly syn-

chronizable state is u ≡ 0.

These two induced generalized exact boundary synchronizations are both trivial. �

Example 5.2. Let N = 5. Consider the coupled system of wave equations

u(1)′′ −∆u(1) + u(1) = 0 in (0,+∞)× Ω,

u(2)′′ −∆u(2) − u(1) + 2u(2) = 0 in (0,+∞)× Ω,

u(3)′′ −∆u(3) − 2u(1) + u(2) + 2u(3) = 0 in (0,+∞)× Ω,

u(4)′′ −∆u(4) − 2u(1) + u(2) − u(3) + 3u(4) = 0 in (0,+∞)× Ω,

u(5)′′ −∆u(5) + u(5) = 0 in (0,+∞)× Ω

(5.1)

with the boundary conditionsu(1) = u(2) = u(3) = u(4) = u(5) = 0 on (0,+∞)× Γ0,

u(1) = u(3) = u(5) = 0, u(2) = h(1), u(4) = h(2) on (0,+∞)× Γ1,
(5.2)

where the coupling matrix and the boundary control matrix are

A =


1 0 0 0 0

−1 2 0 0 0

−2 1 2 0 0

−2 1 −1 3 0

0 0 0 0 4

 , D =


0 0

1 0

0 0

0 1

0 0

 , (5.3)

respectively. Provide a generalized synchronization matrix

Θ3 =

(
1 −1 0 0 0

0 0 1 −1 0

)
(5.4)

and a basis of its kernel space:

ϵ1 = (1, 1, 0, 0, 0)ᵀ, ϵ2 = (0, 0, 1, 1, 0)ᵀ, ϵ3 = (0, 0, 0, 0, 1)ᵀ. (5.5)

Since Aϵ1 = ϵ1 − ϵ2, Aϵ2 = 2ϵ2 and Aϵ3 = 4ϵ3, A possesses the condition of Θ3-compatibility.

According to Lemma 2.1, it follows from rank(Θ3D) = N − 3 = 2 that the system is generalized

exactly synchronizable with respect to Θ3:

t ≥ T : Θ3U = 0, namely, U = (ϵ1, ϵ2, ϵ3)u = (u(1), u(1), u(3), u(3), u(5))ᵀ, (5.6)

which is just the usual exact boundary synchronization by 3 groups. It is easy to see that the

generalized exactly synchronizable state u = (u(1), u(3), u(5))ᵀ is governed by the equations of

u(1), u(3) and u(5), where the equation of u(3) relies on u(2) then on applied boundary controls.

Now we consider the weakly and strongly induced generalized exact boundary synchroniza-

tions for Θ3. Denoting

ξ1 = (1, 1, 1, 1, 0)ᵀ, ξ2 = (0, 0, 1, 1, 0)ᵀ, ξ3 = (0, 1, 0, 0, 0)ᵀ, ξ4 = (0, 0, 0, 1, 0)ᵀ,

ξ5 = (0, 0, 0, 0, 1)ᵀ,



WANG Yan-yan. Induced generalized exact boundary synchronizations for... 125

we have

A(ξ1, ξ2, ξ3, ξ4, ξ5) = (ξ1, ξ2, ξ3, ξ4, ξ5)


1 0 0 0 0

0 2 1 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4

 (5.7)

and Ker(Θ3) = Span{ϵ1, ϵ2, ϵ3} = Span{ξ1, ξ2, ξ5}. Therefore,

• the weakly induced generalized synchronization matrix is

Θ̂4 =
(

0 0 1 −1 0
)
, (5.8)

which is the last row of the original generalized synchronization matrix Θ3, and Ker(Θ̂4) =

Span{ξ1, ξ2, ξ3, ξ5}. For simplicity, we take the synchronization basis of Ker(Θ̂4) as

ϵ̂1 = (1, 0, 0, 0, 0)ᵀ, ϵ̂2 = (0, 1, 0, 0, 0)ᵀ, ϵ̂3 = (0, 0, 1, 1, 0)ᵀ, ϵ̂4 = (0, 0, 0, 0, 1)ᵀ. (5.9)

Since rank(Θ̂4D) = 1, the system possesses the generalized exact boundary synchronization with

respect to Θ̂4:

t ≥ T : Θ̂4U = 0, namely, U = (ϵ̂1, ϵ̂2, ϵ̂3, ϵ̂4)û = (u(1), u(2), u(3), u(3), u(5))ᵀ, (5.10)

which is the usual exact boundary synchronization by 4 groups, and the corresponding gener-

alized exactly synchronizable state is û = (u(1), u(2), u(3), u(5))ᵀ, where u(2) depends on applied

boundary controls. However, if we diminish the number of boundary controls and take the

boundary control matrix to be

D̂ = (0, 0, 0, 1, 0)ᵀ, (5.11)

then the system realizes the generalized exact boundary synchronization with respect to Θ̂4, and

the corresponding generalized exactly synchronizable state û is independent of applied boundary

controls.

• the strongly induced synchronization matrix is

Θ̃2 =

 1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

 , (5.12)

which adds an additional row to the original generalized synchronization matrix Θ3, and Ker(Θ̃2)

= Span{ξ1, ξ5}. Choose naturally a synchronization basis of Ker(Θ̃2) to be

ϵ̃1 = ξ1 = (1, 1, 1, 1, 0)ᵀ, ϵ̃2 = ξ5 = (0, 0, 0, 0, 1)ᵀ. (5.13)

Since rank(Θ̃2D) ≤ rank(D) < 3, we have to use more boundary controls to realize the gener-

alized exact boundary synchronization with respect to Θ̃2:

t ≥ T : Θ̃2U = 0, namely, U = (ϵ̃1, ϵ̃2)ũ = (u(1), u(1), u(1), u(1), u(5))ᵀ, (5.14)

which is just the usual exact boundary synchronization by 2 groups, where the generalized exactly

synchronizable state is ũ = (u(1), u(5))ᵀ. By increasing the rank of boundary control matrix,
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suitably reset it as

D̃ =


0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

 , (5.15)

correspondingly, the system is generalized exactly synchronizable with respect to Θ̃2, and the

generalized exactly synchronizable state ũ is independent of applied boundary controls.

Comparing to the original generalized synchronization matrix and the original boundary

control matrix, we can see the contraction or extension of induced generalized synchronization

matrices as well as boundary control matrices. In fact, (5.6) shows that the original generalized

exact boundary synchronization is in three groups: u(1) = u(2), u(3) = u(4) and u(5); and the

weakly induced generalized exact boundary synchronization (5.10) splits one of its groups into

two groups u(1) and u(2), and the rest does not change; while the strongly induced generalized

exact boundary synchronization (5.14) merges two of its groups into one group u(1) = u(2) =

u(3) = u(4), and the rest remains the same. �
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