
Appl. Math. J. Chinese Univ.
2020, 35(1): 1-15

Local times of linear multifractional stable sheets

SHEN Guang-jun1,2 YU Qian3∗ LI Yun-meng2

Abstract. Let XH(u)(u) = {XH(u)(u), u ∈ RN
+} be linear multifractional stable sheets with

index functional H(u), where H(u) = (H1(u), · · · , HN (u)) is a function with values in (0, 1)N .

Based on some assumptions of H(u), we obtain the existence of the local times of XH(u)(u) and

establish its joint continuity and the Hölder regularity. These results generalize the correspond-

ing results about fractional stable sheets to multifractional stable sheets.

§1 Introduction

As a suitable generalization of the Brownian motion, the fractional Brownian motion BH

(Mandelbrot and Van Ness [15]) has been applied in some scientific areas such as finance and

image processing. Its Hurst index H controls almost all sample path properties. However, many

data coming from applications are heavy-tailed, the fractional Brownian motion has extremely

light tails, so its applications are limited. Moreover, since the pointwise Hölder exponent

of BH is almost surely constant, the fractional Brownian motion can not be used to model

some phenomena for which regularity varies in space. Thus, many authors have introduced

some extensions of the fractional Brownian motion, such as fractional stable process which can

overcome the light tails problem and multifractional process which can solve the homogeneity

(see, for example, Samorodnitsky and Taqqu [18]).

Several authors have considered some sample path properties, local time of the fractional

stable fields and multifractional stable process (see, for example, Lin and Cheng [14], Nolan

[17], Kôno and Shieh [13], Shieh [20], Dai and Li [8], Shevchenko [19], Chen, Wu and Xiao

[7]). Recently, Ayache and Xiao [5] studied the fractional stable fields and established the joint

continuity of its local time. When α ∈ (0, 1), this solves an open problem that was raised in
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Nolan [17]. Xiao [24] applied the strong local nondeterminism to studied the local times of

some stable random fields.

In this paper, we consider the local times of linear multifractional stable sheets (LMFSS in

short), the processes have properties of heavy tails and multifractionality. They can be regarded

both as a multifractional generalization of a fractional stable sheets (Xiao [24]) and a stable

generalization of multifractional Brownian sheets (Meerschaert, Wu and Xiao [16]).

This paper is organized as follows. Section 2 contains detail information on LMFSS and some

assumptions on the index functional H(u). In Section 3, we obtain the existence of L2-local

times and establish the joint continuity and the Hölder regularity of the (N, d) LMFSS.

Throughout this paper, an unspecified positive and finite constant will be denoted by C and

Ci, i = 1, 2, 3..., which may not be the same in each occurrence.

§2 Preliminaries

In this section, firstly, we mainly recall the information on LMFSS. Then we introduce the

local times and the definition of the one-sided sectorial local nondeterminism.

For any 0 < α < 2, H = (H1, · · · , HN ) ∈ (0, 1)N . Recall that linear fractional stable sheets

XH = {XH(u), u ∈ RN+} with values in R have the representation:

XH(u) =

∫
RN

g(u, v)Mα(dv), ∀u ∈ RN+ , (2.1)

where Mα is a symmetric α-stable random measure on RN with Lebesgue control measure and

g(u, v) = c

N∏
k=1

[(uk − vk)
Hk−1/α
+ − (−vk)

Hk−1/α
+ ], (2.2)

where constant c > 0 and (·)+ = max{·, 0}. For the stochastic process XH(u), some authors

have considered its local time, such as Ayache, Roueff and Xiao [1] considered the local and

asymptotic properties, Ayache, Roueff and Xiao [2] proved the joint continuity of local times,

Xiao [24] provided some sufficient conditions for the sectorial local nondeterminism and applied

the property to study the existence of local times and fractal results.

Thanks to Stoev and Taqqu [21, 22], now, we define the real LMFSS which is the extension

of linear fractional stable sheets.

Definition 2.1. Let α ∈ (0, 2) and H(u) = (H1(u), · · · , HN (u)) be a function in u ∈ RN+ with

values in (0, 1)N . A real LMFSS with index functional H(u) is defined as

XH(u)(u) = c

∫
RN

N∏
k=1

[(uk − vk)
Hk(u)−1/α
+ − (−vk)

Hk(u)−1/α
+ ]Mα(dv), ∀u ∈ RN+ . (2.3)

Clearly, if N = 1 the stochastic process XH(u)(u) is linear multifractional stable motion (see

Stoev and Taqqu [21, 22]), if H(u) = H, the process XH(u)(u) is linear fractional stable sheet

(see Ayache, Roueff and Xiao [1, 2]).

Recall that, the more general method to prove the joint continuity of local times is to

establish local nondeterminism first, and then apply the local nondeterminism to study the
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local times. However, Ayache, Roueff and Xiao [2] do not prove the local nondeterminism,

they only give the increments of the linear fractional stable sheet (see there in Lemma 2.1),

then the existence of local times follows from Theorem 21.9 in Geman and Horowitz [11]. The

joint continuity of local times follows from Lemma 2.4 in Ayache, Roueff and Xiao [2] and a

multiparameter version of the Kolmogorov continuity theorem. Lemma 2.4 can be regarded as

the tightness of moments of the local time L, with the method derived from the theory based

on (25.5) and (25.7) in Geman and Horowitz [11].

In this paper, we will show the existence and joint continuity of local times of LMFSS

theoretically, and its Hölder regularity will also be given. As a more general fractional stable

process, LMFSS is multifractional generalization of a fractional stable sheets. It is not easy to

obtain the increments of LMFSS, since u and H(u) in (2.3) are changing at the same time. Thus

by controlling a single variable, before the proof of Lemma 3.2, we show Lemma 3.1 at first.

Moreover, making full use of one-sided sectorial local nondeterminism, we obtain the existence

of local times of LMFSS. The conditions in (3.21) and Theorem 3.2 desire the convergence of

moments in Lemmas 3.6 and 3.7, then by the multiparameter version of Kolmogorov continuity

theorem and the way in Ehm [10], we can obtain joint continuity and Hölder regularity of local

times of XH(u)(u). Furthermore, it can be expected that the existing results of local times

related to linear fractional stable sheet can be extended to LMFSS.

In the following, we briefly recall the local times and the one-sided sectorial local nonde-

terminism. Some surveys and complete literature could be found in Geman and Horowitz [11],

Dozzi [9], Xiao [24] and the references therein.

Let Y (t) be a Borel vector field on RN with values in Rd. For any Borel set I ⊂ RN , the

occupation measure of Y on I, is defined as

µI(·) = λN{t ∈ I : Y (t) ∈ ·},
which is the Borel measure on Rd. If µI is almost surely absolutely continuous with respect

to the Lebesgue measure λd, then Y is said to have local times on I and define its local time

L(·, I) to be the Radon-Nikodým derivative of µI with respect to λd, that is,

L(x, I) =
dµI
dλd

(x), ∀x ∈ Rd,

where x is the so-called the space variable, and I is called time variable. Intuitively, L(x, I)

measures the amount of “time” Y spent at x during I. Sometimes, we write L(x, t) in place

of L(x, [0, t]). Notice that if Y has local times on I then for any Borel set J ⊂ I, L(x, J) also

exists. It follows from Geman and Horowitz [11] that the local times satisfies the occupation

density formula: for any Borel function g(t, x) ≥ 0 on I × Rd,∫
I

g(t, Y (t))dt =

∫
Rd

∫
I

g(t, x)L(x, dt)dx. (2.4)

Especially, we let I =
∏N
k=1[bk, bk + hk]. If the local time L(x,

∏N
k=1[bk, bk + tk]) is a

continuous function of (x, t1, · · · , tN ) ∈ Rd×
∏N
k=1[0, hk], then we call Y has a jointly continuous

local time on I.

Now, we introduce one-sided sectorial local nondeterminism on I, which is important to the



4 Appl. Math. J. Chinese Univ. Vol. 35, No. 1

proofs of Lemma 3.3.

Definition 2.2. (Xiao [24]). Let Z = {Z(u), u ∈ RN} be an α-stable random field with

following representation,

Z(u) =

∫
∧
g(u, x)Mα(dx), (2.5)

where Mα is a symmetric α-stable (SαS) random measure on a measurable space (∧,F) with

control measure m and g(u, ·) : ∧ → R (u ∈ RN ) is a family of measurable functions on ∧
satisfying

Z(u) =

∫
∧
|g(u, x)|αm(dx) <∞, ∀u ∈ RN . (2.6)

Then Z is said to be one-sided sectorial locally nondeterminism on I if for every u, v ∈ I with

|u− v| sufficiently small

||Z(u)||α > 0, ∀ u ∈ I, ||Z(u)− Z(v)||α > 0, (2.7)

and there exists positive constant C such that for every n ≥ 2 and u1, · · · , un ∈ I with ukl ≤ unl
for all 1 ≤ k ≤ n− 1 and some 1 ≤ l ≤ N, we have

||Z(un)|Z(u1), · · · , Z(un−1)||α ≥ C min
1≤k≤n−1

(unl − ukl )Hl . (2.8)

Here Denote

||
n∑
k=1

akZ(uk)||α := ||
n∑
k=1

akg(uk, ·)||Lα , (2.9)

for the scale parameter of
∑n
k=1 akZ(uk).

Thanks to Meerschaert, Wu and Xiao [16], in this paper, we will use the following metric

ρM (u, v) in RN

ρM (u, v) =

N∑
k=1

|uk − vk|Mk , ∀u, v ∈ RN , (2.10)

where M = (M1, · · ·,MN ) ∈ (0, 1)N is a fixed vector.

In the following, we will assume that H(u) = (H1(u), · · ·, HN (u)) is a function in u ∈ RN+
with values in (0, 1)N which satisfies conditions C1 and C2:

C1. There are constants a ∈ (0, 1), b = max{M1, · · · ,MN} such that for any k ∈ {1, 2, · · · , N},
a ≤ Hk(u) ≤Mk(u) ≤ b, u ∈ RN+ .

C2. There are constants ck = ck(I) > 0 and δ > 0 satisfying

|Hk(u)−Hk(v)| ≤ ckρM (u, v), ∀u, v ∈ I with |u− v| < δ.

In this paper, s = (s1, s2, · · · , sN ) ∈ RN , 〈c〉 = (c, · · · , c). For every u, v ∈ RN , if ui <

vi (i = 1, 2, · · · , N), define closed interval (or rectangle) [u, v] =
∏N
i=1[ui, vi]. A = {[u, v], u, v ∈

[ε, T ]N} denotes the collection of [u, v].

§3 Local times of LMFSS

In this section, we will consider the local times of LMFSS XH(u)(u). We obtain the existence

of the local times of XH(u)(u) and establish its joint continuity and Hölder regularity. Firstly,

we give some lemmas that are useful for the proofs of the main results.
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Lemma 3.1. Suppose 0 < ε < T and 0 < a < b < 1. {Xk(u), (u, k) ∈ RN+ × [a, b]N} be

a real-valued LMFSS defined by (2.3) with H(u) = k. Then for any u ∈ [ε, T ]N and H1 =

(h1, · · · , hN ), H2 = (h
′

1, · · · , h
′

N ) ∈ [a, b]N , we have

||XH1(u)−XH2(u)||αα ≤ C|H1 −H2|α, (3.1)

where the constant C > 0 depending on a, b, ε, T , N .

Proof. For H1, H2 ∈ [a, b]N , define hl = (h
′

1, · · · , h
′

l, hl+1, · · · , hN ) for l = 1, 2, · · · , N and

h0 = H1 = (h1, · · · , hN ). Using the triangle-type inequality, we obtain

||XH1(u)−XH2(u)||αα
= ||XH1(u)−Xh1

(u) +Xh1

(u)−Xh2

(u) + · · ·+XhN−1

(u)−XhN (u)||αα

≤ C1

N∑
l=1

||Xhl−1

(u)−Xhl(u)||αα.

(3.2)

For fixed l = 1, 2, · · · , N , we have∣∣∣∣Xhl−1

(u)−Xhl(u)
∣∣∣∣α
α

=

∫
RN−1

l−1∏
j=1

∣∣∣∣(uj − vj)h′j−1/α

+ − (−vj)
h′j−1/α

+

∣∣∣∣α · N∏
j=l+1

∣∣∣∣(uj − vj)hj−1/α
+ − (−vj)

hj−1/α
+

∣∣∣∣αdṽl
×
∫
R

∣∣∣∣(ul − vl)hl−1/α
+ − (−vl)hl−1/α

+ −
(

(ul − vl)
h′l−1/α
+ − (−vl)

h′l−1/α
+

) ∣∣∣∣αdvl
=: I1 × I2,

(3.3)

where ṽl = (v1, · · · , vl−1, vl+1, · · · , vN ).

It is clear that

I1 =

l−1∏
j=1

∫
R

∣∣∣∣(uj − vj)h′j−1/α

+ − (−vj)
h′j−1/α

+

∣∣∣∣αdvj
·

N∏
j=l+1

∫
R

∣∣∣∣(uj − vj)hj−1/α
+ − (−vj)

hj−1/α
+

∣∣∣∣αdvj ,
(3.4)

which is bounded by a constant independent of l, since
∫
R |(uj − vj)

hj−1/α
+ − (−vj)

hj−1/α
+ |αdvj

is finite.

By the mean value theorem, we have

I2 =

∫
R

∣∣∣∣(ul − vl)h′′l −1/α
+ log(ul − vl)+ − (−vl)

h
′′
l −1/α

+ log(−vl)+

∣∣∣∣α|hl − h′l|αdvl
≤ C2|hl − h

′

l|α,
(3.5)

for all H1, H2 ∈ [a, b]N , u ∈ [ε, T ]N , where h
′′

l ∈ (hl ∧ h
′

l, hl ∨ h
′

l). Combining (3.2)–(3.5) with

Hölder inequality, we obtain that

||XH1(u)−XH2(u)||αα ≤ C3

N∑
l=1

|hl − h
′

l|α ≤ C4

(
N∑
l=1

|hl − h
′

l|2
)α/2

= C5|H1 −H2|α.

This completes the proof.
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Lemma 3.2. Let {XH(u)(u)} be a LMFSS in R. Then, there exist constants δ > 0, C ′ and C ′′

satisfying for any u, v ∈ [ε, T ]N with |u− v| < δ, we have

C ′
N∑
k=1

|uk − vk|αHk(û) ≤ ||XH(u)(u)−XH(v)(v)||αα ≤ C ′′
N∑
k=1

|uk − vk|αHk(û), (3.6)

where û ∈
∏N
k=1[vk ∧ uk, vk ∨ uk].

Proof. Using the triangle-type inequality,

|u+ v + w|α ≤ 3(|u|α + |v|α + |w|α)

and

|u+ v + w − v − w|α ≤ 3(|u+ v + w|α + |v|α + |w|α).

We have
1

3
||XH(û)(u)−XH(û)(v)||αα − ||XH(u)(u)−XH(û)(u)||αα

− ||XH(v)(v)−XH(û)(v)||αα
≤ ||XH(u)(u)−XH(v)(v)||αα
≤ 3
(
||XH(û)(u)−XH(û)(v)||αα + ||XH(u)(u)−XH(û)(u)||αα
+ ||XH(v)(v)−XH(û)(v)||αα

)
.

(3.7)

From Lemma 17 in Ayache, Roueff and Xiao [3], we have

C6

N∑
l=1

|ul − vl|αHl(û) ≤ ||XH(û)(u)−XH(û)(v)||αα ≤ C7

N∑
l=1

|ul − vl|αHl(û), (3.8)

where the positive constants C6, C7 depending on a, b, ε and N .

According to Lemma 3.1, Hölder inequality and the conditions C1 and C2, there exists a

positive constant δ small enough, such that for any u, v ∈ [ε, T ]N with |u− v| < δ, then one has

|û− v| < δ and

||XH(û)(u)−XH(u)(u)||αα ≤ C|H(u)−H(û)|α

= C8(

N∑
j=1

|Hj(û)−Hj(u)|2)α/2 ≤ C9(

N∑
j=1

|uj − vj |2Mj )α/2

≤ C10

N∑
j=1

|uj − vj |αMj ≤ C11

N∑
j=1

|uj − vj |αHj(û).

(3.9)

Using the same way as (3.9), we get

||XH(û)(v)−XH(v)(v)||αα ≤ C12

N∑
j=1

|uj − vj |αHj(û). (3.10)

From condition C1, note that supuj Hj(uj) ≤ Mj , combining (3.7)–(3.10), we obtain that

(3.6) holds. This completes the proof.

In the following, we decompose XH(u)(u) and get a multifractional sheets Zj(u) which

satisfies one-sided sectorial local nondeterminism.
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Let

gj(uj , vj) = (uj − vj)
Hj(u)−1/α
+ − (−vj)

Hj(u)−1/α
+ .

According to (2.3), for any u ∈ RN+ ,

XH(u)(u) =

∫
(−∞,u]/[0,u]

N∏
j=1

gj(uj , vj)Mα(dv) +

∫
[0,u]

N∏
j=1

gj(uj , vj)Mα(dv)

=

∫
(−∞,u]/[0,u]

N∏
j=1

gj(uj , vj)Mα(dv) +

∫
[0,u]

N∏
j=1

(uj − vj)
Hj(u)−1/α
+ Mα(dv).

(3.11)

Denote

Y H(u)(u) =

∫
[0,u]

N∏
j=1

(uj − vj)
Hj(u)−1/α
+ Mα(dv).

Clearly, for any integers n ≥ 2, u1, u2, · · · , un ∈ [ε, T ]N , a1, a2, · · · , an ∈ R, it is easy to obtain

that

||
n∑
l=1

alX
H(ul)(ul)||α ≥ ||

n∑
l=1

alY
H(ul)(ul)||α. (3.12)

Now, the rectangle [0, u] can be decomposed into the disjoint union of sub-rectangles, for any

u ∈ [ε, T ]N ,

[0, u] = [0, ε]N ∪
N⋃
j=1

Qj(u) ∪ P (ε, u),

where Qj(u) = {s ∈ [0, T ]N : 0 ≤ si ≤ ε if i 6= j, ε < sj ≤ uj} and P (ε, u) can be written as a

union of 2N −N − 1 sub-rectangles of [0, u]. Thus, we get

Y H(u)(u) =

∫
[0,ε]N

g(u, v)Mα(dv) +

N∑
j=1

∫
Qj(u)

g(u, v)Mα(dv)

+

∫
P (ε,u)

g(u, v)Mα(dv)

=: Z1(ε, u) +

N∑
j=1

Zj(u) + Z3(ε, u),

(3.13)

where g(u, v) was defined in (2.2). One can find that the stochastic process Z1(ε, u), Zj(u) (1 ≤
j ≤ N) and Z3(ε, u) are independent since they are defined over disjoint sets. The Lemma 3.3

proves that the stochastic process Zj(u) satisfies one-sided sectorial local nondeterminism. It

will be very important to the proofs of the main results.

Lemma 3.3. Assume I ∈ A is closed interval and j ∈ {1, 2, · · · , N}. For any integers n ≥ 2

and u1, · · · , un ∈ I satisfies u1
j ≤ u2

j ≤ · · · ≤ unj . Then, we have

||Zj(un)|Zj(u1), · · · , Zj(un−1)||αα ≥ C|unj − un−1
j |αHj(u

n), (3.14)

where u0
j = 0, C denotes a constant only depending on ε and I.

Proof. In order to show (3.14) holds, we only need to show that there exists a constant C such
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that

||Zj(un)−
n−1∑
l=1

alZj(u
l)||αα ≥ C|unj − un−1

j |αHj(u
n),

where al ∈ R (l = 1, 2, · · · , n− 1) (see, for example, Ayache, Wu and Xiao [4]).

Using the fact that Zj(u) has the independence on disjoint sets, we have

||Zj(un)−
n−1∑
l=1

alZj(u
l)||αα =

∫
Qj(un)/Qj(un−1)

|g(un, v)|αdv

+

∫
Qj(un−1)/Qj(un−2)

|g(un, v)− an−1g(un−1, v)|αdv + · · ·

+

∫
Qj(u1)

|g(un, v)−
n−1∑
l=1

alg(ul, v)|αdv

≥
∫
Qj(un)/Qj(un−1)

|g(un, v)|αdv

≥
∫ ε

0

· · ·
∫ unj

un−1
j

· · ·
∫ ε

0

N∏
k=1

(unk − vk)αHk(un)−1dv

≥ C13

∫ unj

un−1
j

(unj − vj)αHj(u
n)−1dvj

≥ C14|unj − un−1
j |αHj(u

n).

(3.15)

This completes the proof.

By Lemma 3.2, Lemma 3.3 and Boufoussi, Dozzi and Guerbaz [6], it is easy to obtain the

following inequality∣∣∣∣ n∑
l=1

al[Zj(u
l)− Zj(ul−1)]

∣∣∣∣α
α
≥ C

n∑
l=1

|al|α||Zj(ul)− Zj(ul−1)||αα

for Gaussian process, but not easy for stable process. Hence, we give different inequality below.

Lemma 3.4. For any n ≥ 2, there exists a constant C > 0 depending on n only, such that for

every j ∈ 1, 2, · · · , N∣∣∣∣ n∑
l=1

alZj(u
l)
∣∣∣∣
α
≥ C

(
|a1|||Zj(u1)||α +

n∑
l=2

|al|
∣∣∣∣∣∣Zj(ul)|Zj(u1), · · · , Zj(ul−1)

∣∣∣∣∣∣
α

)
, (3.16)

where al ∈ R, ul ∈ I ∈ A, (l = 1, 2, · · · , n) satisfies u1 < · · · < un.

Proof. Without loss of generality, we only need to prove n = 2. Let A1 be the subspace

generated by Zj(u
1). Then the metric projection of Zj(u

2) on A1 can be written as a21Zj(u
1)

for some a21 ∈ R. Then Zj(u
2)− a21Zj(u

1) and A1 are orthogonal. So, we can find that

||a1Zj(u
1) + a2Zj(u

2)||α = |a2|
∣∣∣∣∣∣(a1

a2
+ a21)Zj(u

1) + Zj(u
2)− a21Zj(u

1)
∣∣∣∣∣∣
α

≥ C
(
|a1 + a21a2|

∣∣∣∣∣∣Zj(u1)
∣∣∣∣∣∣
α

+ |a2|
∣∣∣∣∣∣Zj(u2)|Zj(u1)

∣∣∣∣∣∣
α

)
.

The left proof for cases n ≥ 3 are similar.
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Combining (3.12), (3.13) with the independence of Zj(u), one can obtain the following

lemma.

Lemma 3.5. For n ≥ 2, al ∈ R, ul ∈ I ∈ A (l = 1, 2, · · · , n). Then, we have∣∣∣∣ n∑
l=1

alX
H(ul)(tl)

∣∣∣∣α
α
≥
∣∣∣∣ n∑
l=1

alY
H(ul)(ul)

∣∣∣∣α
α
≥

N∑
j=1

∣∣∣∣ n∑
l=1

alZj(u
l)
∣∣∣∣α
α
, (3.17)

where al ∈ R, ul ∈ I, (l = 1, 2, · · · , n) satisfies u1
j < · · · < unj with |u1

j − unj | < δ.

Next, we study the existence and joint continuity of the local times of LMFSS X =

{XH(u)(u), u ∈ RN+}.

Theorem 3.1. Let X = {XH(u)(u), u ∈ RN+} be the LMFSS, I = [ε, 1]N and Hl = maxu∈I Hl(u)

for l = 1, · · · , N . If d <
∑N
l=1

1
Hl

, then X admits an L2-integrable local time L(·, I) almost

surely.

Proof. The proof is similar to the proof of Theorem 4.1 in Xiao [24]. So we give a sketch of the

proof. The occupation measure µI is

µI(·) = λN{u ∈ I : X(u) ∈ ·},
and the Fourier transform of the occupation measure µI is

µ̂I(ξ) =

∫
T

ei〈ξ,X
H(u)(u)〉du.

Applying the Fubini’s theorem twice, we have

E
∫
Rd
|µ̂I(ξ)|2dξ =

∫
I

∫
I

∫
Rd

E exp(i〈ξ,XH(u)(u)−XH(v)(v)〉)dξdudv.

Denote

J (T ) =

∫
I

∫
I

∫
Rd

E exp(i〈ξ,XH(u)(u)−XH(v)(v)〉)dξdudv.

In order to complete the proof of the Theorem, by Theorem 21.9 in Geman and Horowitz [11],

it is enough to prove J (T ) <∞. Using Lemma 3.3 and Lemma 3.5, we have

J (T ) =

∫
I

∫
I

dvdu

||XH(u)(u)−XH(v)(v)||dα

≤ C15

∫
I

∫
I

dvdu

(
∑N
l=1 ||Zl(u)− Zl(v)||α)d

≤ C16

∫
I

∫
I

dvdu

(
∑N
l=1 |ul − vl|Hl(v))d

<∞,

(3.18)

since d <
∑N
l=1

1
Hl

.

The following result gives the joint continuity of the local times of {XH(u)(u), u ∈ RN+}.

Theorem 3.2. Let X = {XH(u)(u), u ∈ RN+} be the LMFSS with values in Rd. Let I = [ε, 1]N

and Hl = maxu∈I Hl(u) for l = 1, · · · , N . If d <
∑N
l=1

1
Hl

, then X has a jointly continuous

local time on I.

In order to prove Theorem 3.2, we need some preliminaries. First, we give some moment

estimates for the local times of X.



10 Appl. Math. J. Chinese Univ. Vol. 35, No. 1

By (25.5) and (25.7) in Geman and Horowitz [11]: for any x, y ∈ Rd, I ∈ A and any integers

n ≥ 1,

E[L(x, I)n] = (2π)−nd
∫
In

∫
Rnd

exp
(
− i

n∑
k=1

〈vk, x〉
)

× E exp
(
i

n∑
k=1

〈vk, X(uk)〉
)
dvdu,

(3.19)

and for any even integers n ≥ 2,

E[
(
L(x, I)− L(y, I)

)n
] = (2π)−nd

∫
In

∫
Rnd

n∏
k=1

[e−i〈v
k,x〉 − e−i〈v

k,y〉]

× E exp
(
i

n∑
k=1

〈vj , X(uk)〉
)
dvdu,

(3.20)

where v = (v1, · · · , vn), u = (u1, · · · , un) and each vk = (vk1 , · · · , vkd) ∈ Rd, uk ∈ I.

In the following, the property of one-sided sectorial local nondeterminism of Zj proved in

Lemma 3.3 plays an essential role in the proofs of Lemmas 3.6 and 3.7.

Lemma 3.6. Let the conditions in Theorem 3.2 hold and γ is the unique integer in 1, · · · , N
such that

γ−1∑
i=1

1

Hi

≤ d ≤
γ∑
i=1

1

Hi

. (3.21)

Then, for any x ∈ Rd, T = [a, a+ 〈h〉] ⊆ I with h > 0 small enough and any integer n ≥ 1, we

have

E[L(x, T )n] ≤ Chnβγ , (3.22)

where βγ = N − γ −Hγd+
∑γ
l=1Hγ/H l, C > 0 only depending on n, N, d, H and I.

Proof. By (3.19), for every interval T =
∏N
j=1[aj , aj + hj ] ⊆ I,

E[L(x, T )n] = (2π)−nd
∫
Tn

d∏
k=1

{
∫
Rn

exp
(
− ||

n∑
j=1

vjkX
H(uj)(uj)||αα

)
dVk}du, (3.23)

where Vk = (v1
k, · · · , vnk ) ∈ Rn, since X1, · · · , Xd are independent and identically distributed.

Denote

Jk :=

∫
Rn

exp
(
− ||

n∑
j=1

vjkX
H(uj)(uj)||αα

)
dVk

≤
∫
Rn

exp
(
−

N∑
l=1

||
n∑
j=1

vjkZl(u
j)||αα

)
dVk

≤
∫
Rn

exp
(
−

γ∑
l=1

||
n∑
j=1

vjkZl(u
j)||αα

)
dVk.

(3.24)

It is clear that, for all 1 ≤ l ≤ N , there is a permutation πl of {1, ..., n} satisfying

al ≤ tπl(1)
l ≤ tπl(2)

l ≤ · · · ≤ tπl(n)
l ≤ al + hl.



SHEN Guang-jun, et al. Local times of linear multifractional stable sheets 11

By Lemma 3.3, Lemma 3.4, for every 1 ≤ l ≤ N ,

||
n∑
j=1

vjkZl(u
j)||αα ≥ cn

n∑
j=1

|wjk,l|
α(u

πl(j)
l − uπl(j−1)

l )αHl(u
πl(j))

≥ cn
n∑
j=1

|wjk,l|
α(u

πl(j)
l − uπl(j−1)

l )αHl ,

(3.25)

here cn is a positive constant depending on n and

(w1
k,l, · · · , wnk,l) = (v

πl(1)
k , · · · , vπl(n)

k )Al,

Al = (aij) n× n is an lower triangle matrix with aii = 1 for all 1 ≤ i ≤ n.

From (3.21) and Lemma 4.5 in Xiao [24], we can find that there exist ρ1, · · · , ργ ≥ 1, such

that
γ∑
l=1

1

ρl
= 1,

Hld

ρl
< 1, ∀ l = 1, 2, · · · , γ

and

(1− 1

n
)

γ∑
l=1

Hld

ρl
≤ Hγd+ γ −

γ∑
l=1

Hγ

Hl
.

By (3.24) and (3.25), using the Hölder inequality and change of variables

wjk,l(u
πl(j)
l − uπl(j−1)

l )Hl = wjk,l,

we can see

Jk ≤
∫
Rn

γ∏
l=1

exp
(
− cn,1

n∑
j=1

|wjk,l|
α(u

πl(j)
l − uπl(j−1)

l )αHl
)
dVk

≤
γ∏
l=1

[∫
Rn

exp
(
− cn,2 ρl

n∑
j=1

|wjk,l|
α(u

πl(j)
l − uπl(j−1)

l )αHl
)
dVk

] 1
ρl

≤ cn,3
γ∏
l=1

n∏
j=1

1

(u
πl(j)
l − uπl(j−1)

l )Hl/ρl
,

(3.26)

where cn,1, cn,2, cn,3 are positive constants depending on n and γ ∈ {1, · · · , N}.
Combining (3.23), (3.24) with (3.26), we have

E[L(x, T )n] ≤ cn,4
∑

π1,··· ,πN

∫
Γ(π1,··· ,πN )

γ∏
l=1

n∏
j=1

1

(u
πl(j)
l − uπl(j−1)

l )Hl/ρl
du

≤ cn,5
γ∏
l=1

h
n(1−(1− 1

n )Hld/ρl)

l ·
N∏

l=γ+1

hnl .

(3.27)

Now we consider the special case when T = [a, a+ 〈h〉] is a cube, that is

h1 = · · · = hN = h.

By (3.27), we obtain that

E[L(x, T )n] ≤ C17h
n(N−(1− 1

n )
∑γ
l=1Hld/ρl) ≤ C18h

nβγ , (3.28)

where
∑γ
l=1

1
ρl

= 1, γ ∈ {1, · · · , N}, βγ = N − γ −Hγd+
∑γ
l=1Hγ/H l. This completes the

proof.
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Lemma 3.7. Let the conditions in Theorem 3.2 hold, γ is the unique integer in {1, · · · , N}
satisfying (3.21), then for any subintervals T = [a, a+ 〈h〉] ⊆ I with h > 0, any w, v ∈ Rd with

|w − v| ≤ 1,

E[
(
L(w, T )− L(v, T )

)n
] ≤ C|w − v|nκhn(βγ−Hγκ), (3.29)

where αγ =
∑γ
l=1

1
Hl
− d, κ ∈ (0, 1 ∧ αγ

2γ ), C > 0 only depending on n, κ, N, d, H and I.

Proof. Assume κ is a constant defined in Lemma 3.7, by elementary inequalities

|eix − 1| ≤ 21−κ|x|κ, ∀ x ∈ R

and triangle-type inequalities, we have
n∏
k=1

∣∣e−i〈xk,w〉 − e−i〈xk,v〉∣∣ ≤ 2n(1−κ)|w − v|nκ
∑ n∏

k=1

|xkjk |
κ, (3.30)

where
∑

is occupied by all the sequences (j1, · · · , jn) ∈ {1, · · · , d}n and xk, w, v ∈ Rd, k =

1, · · · , n.

Combining (3.20), (3.30) with Lemma 3.5, we get

E[(L(w, T )− L(v, T ))n]

≤ |w − v|nκ
∑∫

Tn
du

∫
Rnd

n∏
m=1

|xmjm |
κ exp

[
−||

n∑
k=1

〈xk, XH(uk)(uk)〉||αα

]
dx

= |w − v|nκ
∑∫

Tn
du

∫
Rnd

n∏
m=1

|xmjm |
κ

d∏
j=1

exp

[
−||

n∑
k=1

xkjX
H(uk)
j (uk)||αα

]
dx

≤ |w − v|nκ
∑∫

Tn
du

∫
Rnd

n∏
m=1

|xmjm |
κ

d∏
j=1

exp

[
−

N∑
l=1

||
n∑
k=1

xkjZl(u
k)||αα

]
dx

≤ |w − v|nκ
∑∫

Tn
du

∫
Rnd

n∏
m=1

|xmjm |
κ

d∏
j=1

exp

[
−

γ∑
l=1

||
n∑
k=1

xkjZl(u
k)||αα

]
dx

= |w − v|nκ
∑∫

Tn
du

d∏
j=1

∫
Rn

n∏
k=1

|xkj |κη
k
j exp

[
−

γ∑
l=1

||
n∑
k=1

xkjZl(u
k)||αα

]
dxj ,

(3.31)

where

ηkj =

{
1, if j = jk,

0, if j 6= jk,
(3.32)

xj = (x1
j , · · · , xnj ) ∈ Rn and

∑d
j=1 η

k
j = 1. Let M be defined by

M =

d∏
j=1

∫
Rn

n∏
k=1

|xkj |κη
k
j exp

[
−

γ∑
l=1

||
n∑
k=1

xkjZl(u
k)||αα

]
dxj . (3.33)

Similar to the proof of Lemma 3.6, by Lemma 3.3, Lemma 3.4, one can estimate the upper

bound of exp
[
−
∑γ
l=1 ||

∑n
k=1 x

k
jZl(u

k)||αα
]
. Since

∫
R x

ke−cx
α

dx < ∞, then use the same way

as in the proof of Lemma 3.6 and change of variables wkj,l(u
πl(k)
l − uπl(k−1)

l )Hl = wkj,l, where

(w1
j,l, · · · , wnj,l) = (x

πl(1)
j , · · · , xπl(n)

j )Al,

Al = (aij) n× n is an lower triangle matrix with aii = 1 for all 1 ≤ i ≤ n. Thus, there exists a
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constant C such that

M≤ C
γ∏
l 6=l0

n∏
k=1

1

|ukl − u
k−1
l |(Hld)/ρl

·
n∏
k=1

1

|ukl − u
k−1
l |κHl0

,

where ρl was defined in the proof of Lemma 3.6. Then, substitute the right hand side of (3.31)

by above upper bound of M, we have

E[(L(w, T )− L(v, T ))n]

≤ |w − v|nκ
γ∏
l 6=l0

h
n(1−(1− 1

n )Hld/ρl)

l h
−κHl0
l0

N∏
l=γ+1

hnl

≤ |w − v|nκhn(βγ−Hγκ).

(3.34)

This completes the proof.

Proof of Theorem 3.2 Note that, by Lemma 3.6 and Lemma 3.7, for every fixed interval

I ∈ A such that I ⊆ T , XH(u)(u) has local time L(x, T ) a.s., that is continuous for all x ∈ Rd.
To prove the joint continuity, observe that for all x, y ∈ Rd and s, t ∈ T with |t − s| < δ,

where δ > 0 is the same as in Lemma 3.2, then

E[(L(x, [a, s])− L(y, [a, t]))n]

≤ C (E[(L(x, [a, s])− L(x, [a, t]))n] + E[(L(x, [a, t])− L(y, [a, t]))n]) .

Hence the joint continuity of the local time of X follows from a multiparameter version of

Kolmogorov’s continuity theorem (see Khoshnevisan [12]).

�

It follows from Lemma 3.6 and Lemma 3.7 and Ehm [10] and Xiao [23] that we have the

following uniform Hölder conditions for the local time L(x, ·).

Theorem 3.3. Let d <
∑N
i=1

1
Hi
. Then there exists constant C > 0 independent of x ∈ Rd

such that for almost all u ∈ I,

lim sup
h→0

L(x, V (u, h))

ψu(h)
≤ C, (3.35)

where V (u, h) is the open or closed ball, ψu(h) = hβκ(u)(log log(1/h))N−βκ(u) and

βκ(u) = N − κ(u)−Hκ(u)d+
∑κ(u)
l=1

Hκ(u)(u)

Hl(u) .
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