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Learning and Uniform Explosion Strategy
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Abstract. Population-based algorithms have been used in many real-world problems. Bat

algorithm (BA) is one of the states of the art of these approaches. Because of the super bat,

on the one hand, BA can converge quickly; on the other hand, it is easy to fall into local

optimum. Therefore, for typical BA algorithms, the ability of exploration and exploitation is

not strong enough and it is hard to find a precise result. In this paper, we propose a novel

bat algorithm based on cross boundary learning (CBL) and uniform explosion strategy (UES),

namely BABLUE in short, to avoid the above contradiction and achieve both fast convergence

and high quality. Different from previous opposition-based learning, the proposed CBL can

expand the search area of population and then maintain the ability of global exploration in

the process of fast convergence. In order to enhance the ability of local exploitation of the

proposed algorithm, we propose UES, which can achieve almost the same search precise as that

of firework explosion algorithm but consume less computation resource. BABLUE is tested

with numerous experiments on unimodal, multimodal, one-dimensional, high-dimensional and

discrete problems, and then compared with other typical intelligent optimization algorithms.

The results show that the proposed algorithm outperforms other algorithms.

§1 Introduction

Optimization computation is an important topic in applied mathematics and computation

mathematics [1-3]. For some complex optimization problems, in which the explicit information

about optimization object function is unavailable or untrustworthy, or optimization function is

nondifferentiable, derivative-free optimization methods become the most suitable way to solve

this problem [4-8].
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Therefore, the researchers have to invent new derivative-free optimization methods by ab-

stracting and modeling some natural phenomena to solve complex optimization problems in

applied mathematics and computation mathematics [9-12].

Typical derivative-free optimization methods are population-based algorithms, such as Ant

colony algorithm [13-14], particle swarm optimization algorithm [15], simulated annealing algo-

rithm and others [16-20]. Population-based algorithms usually generate a set of initial solutions

randomly, and then approximate the optimal solution to the problem until the termination

condition is satisfied.

Bat algorithm (BA) is a novel population-based algorithm that simulates biological char-

acteristics about the ultrasonic searching and predation of prey of bats in the natural world.

It was first proposed by Yang X. S [21] in 2010. BA has the advantages of simple model, fast

convergence, potential parallelism and distributed characteristics. However, the BA also has

the problems of falling into the local optimal and missing the exact global solution.

In order to balance the exploration and exploitation of BA, we present a novel bat algorithm

based on cross boundary learning (CBL) and uniform explosion strategy (UES) to achieve both

fast convergence and solution quality with less computation resource.

The paper is organized as follows: Section 2 describes related works about bat algorithm.

Detailed explanation about BABLUE is in section 3. Experimental results are in section 4.

Final conclusion of the work is in section 5.

§2 Related works

2.1 Bat algorithm

BA is a random search algorithm constructed by simulating bats in the natural world to

search, locate and prey by means of ultrasonic waves. It simulates the using of ultrasound of

bats for basic detection and localization and connects them with the optimized target function.

The bionic principle is that the bats are mapped to points in the search space. The search

and optimization process is simulated as bat individuals searching for prey and moving process.

The objective function of solving the problem is measured as the bat’s location. In the iterative

process, bat that has a better location will replace bat with poor location, which is the same

as survival of the fittest.

The optimization mechanism of the original bat algorithm is defined as:

The frequency of the pulse used when bats search for prey is:

fi = fmin + rand(fmax − fmin). (1)

Where fi is the pulse frequency used by the bat i. fmin and fmax is the pulse frequency

range, and rand is a random factor that is uniformly distributed on [0,1].

The speed at which a bat searches for prey is determined by equation 2:

vtid = v
(t−1)
id + fi(x

(t−1)
id − x∗

d) (2)
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Where subscript d denotes the dimension of the search space, vtid and v
(t−1)
id denote the

flight speeds of the bat i at t− 1 and t respectively, x
(t−1)
id denotes the position of bat i at time

t− 1, and x∗
d represents the best position in the bat population up to the t iterations so far.

The bats’ space location is updated as follows:

xt
id = x

(t−1)
id + vtid. (3)

The frequencies and intensities of the pulses emitted during the bat searching for a prey are:

r
(t+1)
i = r0i [1− e−γt]. (4)

A
(t+1)
i = αAt

i. (5)

Local search: a new solution for each bat is generated locally using random walk:

xnew = xold + εAt. (6)

Where ε ∈[-1, 1] is a random number, while At is the average loudness of all the bats at

this time.

When searching for preys, bats launch the pulse with lower frequency and larger sound

intensity. When the prey is discovered, it gradually reduces the pulse sound intensity and

increases the pulse emission frequency. The pulse frequency r and the pulse intensity A simulate

the search characteristics of bats. Where r0i denotes the initial pulse frequency, r
(t+1)
i denotes

the pulse frequency of the bat at time t+1, γ is the pulse frequency increasing coefficient, which

is a constant larger than zero, A
(t+1)
i represents the sound intensity of the bat firing pulse at

time t, and α is the attenuation coefficient of the pulse sound intensity, which is a constant on

[0,1]. The process of BA is given in Figure 1.

Figure 1: The process of BA
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2.2 Improved algorithms

One of the key advantages of standard BA is that it can provide very quick convergence

at an early stage by switching from exploration to exploitation [22]. This makes it an efficient

algorithm for applications when a quick solution is needed.

However, if we allow the algorithm to switch to exploitation stage too quickly by varying

A and r too quickly, it may lead to stagnation after some initial stage and will fall into local

optimal.

In order to improve the performance, many methods and strategies, such as Lévy flights,

chaotic maps and differential operator, have been attempted to increase the diversity of the

solution and thus to enhance the performance, which produced a few good variants of bat al-

gorithm [23-27].

Yilmaz S extended the bat algorithm with a good combination of subtle variations of loud-

ness and pulse emission rates [28]. Exploration and exploitation mechanisms of BA are improved

by three modifications, inertia weight factor modification, adaptive frequency modification and

scout bee modification.

Mirjalili S developed a discrete version of bat algorithm to solve discrete problems [29].

They proposed a v-shaped transfer function and in addition, there is a real application of the

proposed method in optical engineering called optical buffer design at the end of the paper.

Xie J presented DLBA using Lévy flights and differential operator [30]. A differential oper-

ator is introduced to accelerate the convergence speed of proposed algorithm and Lévy flights

trajectory can ensure the diversity of the population against premature convergence and make

the algorithm effectively jump out of local minima.

Afrabandpey H presented a chaotic bat algorithm using chaotic maps for optimization tasks

[31] and their approach is based on the substitution of the random number generator (RNG)

with chaotic sequences for parameter initialization.

These above works have solved the problem of falling into the local optimal easily; however,

it costs lots of resource to get a precise result. So, in this paper, we present new methods called

cross boundary learning (CBL) and uniform explosion strategy (UES). CBL is used to increase

the diversity of the solution and UES is used to enhance the performance on exploitation with

less computation resource.

2.3 Fireworks explosion algorithm

Our work is also related to the Fireworks Explosion Algorithm (FEA).

FEA is a meta-heuristic algorithm that simulates the explosion of a bubble in a fireworks

explosion by Tan [32]. When the fireworks explode, the sparks released are scattered in a

circular neighborhood with the explosion point as the center. If the neighborhood is regarded

as a local region of the problem, and the sparks produced by explosion are regarded as the

points in the region, then the explosion is similar to the exploration of the local area. This kind

of exploration is equivalent to local search of the area near the explosion point in the solution



484 Appl. Math. J. Chinese Univ. Vol. 34, No. 4

space.

FEA algorithm balances the ability of exploration and exploitation adaptively according to

the fitness value of the current fireworks population [33]. However, the proposed algorithm needs

to enhance the ability of exploitation by exploding. We propose a different uniform explosion

strategy to maximize the local search capability of the algorithm under the low consumption

of resources.

2.4 Motivation and contribution of this work

For typical bat algorithms, the ability of exploration and exploitation is not strong enough

and it is hard to find a precise result. This paper presents a novel bat algorithm based on cross

boundary learning (CBL) and uniform explosion strategy (UES) to avoid the above contradic-

tion and achieve both fast convergence and high quality.

Difference from previous opposite-based learning, Cross boundary learning (CBL) expands

the search area, and therefore makes the population more diverse. In this way, the proposed

algorithm (BABLUE) has a higher possibility to find a better solution in each iteration than

previous opposite-based learning.

Furthermore, the computing cost of the proposed Cross boundary learning (CBL) as shown

in equation 8 is the same level as previous opposite-based learning as shown in equation 7.

Eventually, the proposed algorithm (BABLUE) has better search ability while keeps the fast

search speed.

The proposed Uniform explosion strategy (UES) has two characteristics or advantages. The

first one is that UES does not simplify brow the idea of FEA. In FEA, there are a number

of fireworks. Some of the fireworks have large radius and some of them have small radius,

which means the population can jump out the local optimum. The proposed UES adopts FEA

operation with one firework to enhance the random flying process, in which the flying center

is super bat and the flying radius is the explosion radius of the single-firework. Because our

UES adopts only a single- firework, it is easy to fall into local optimum. To solve this problem,

we proposed UES to adaptively change the explosion radius of the single-firework, as shown in

equation 12, 13 and 14.

The second one is computation cost. If we simply use the original FEA explosion strategy, as

shown in equation 9, the number of newly generated sparks after explosion is very large, which

result in very high computational overhead. The original FEA explosion strategy may result in

a deviated distribution. In order to reduce the cost, a new explosion strategy is proposed, as

shown in equation 10, in which the generated sparks number is determined by the dimensions

of problem and the sparks positions are uniformly distributed. With UES, BABLUE can stably

find better solution in each iteration.
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§3 The proposed BABLUE Algorithm

In view of the strong local exploration capability of fireworks algorithm, we present a new

USE into the bat algorithm, so that the bat algorithm can still maintain the convergence

efficiency in the late stage of convergence. At the same time, in order to solve the problem

of premature convergence of the bat algorithm, we add a new CBL mechanism to the bat

algorithm, generate cross boundary population according the center of the best and worst bat

in the generation, select the elite individuals from the original population and the opposite

population, increase the diversity of the algorithm and make the algorithm converge to the

global optimum faster.

Based on this, this paper proposes a novel bat algorithm based on cross boundary learning

and uniform explosion strategy (BABLUE). The algorithm uses the CBL and UES to make the

new algorithm perform well both in global and local search. The experiments show that the

accuracy and speed of the algorithm are improved.

3.1 Cross boundary learning

In 2005, Professor Tizhoosh first proposed the concept of opposition-based learning [34]. He

believes that the intelligent algorithm is based on the value of the random guess as the initial

population, and then get close to the optimal solution gradually, and eventually find or close

to the optimal solution. So the random guess value has a great influence on the algorithm. If

the random guess value is close to the optimal solution, the algorithm may converge quickly,

but if it is far or far opposite, the algorithm is very tricky and will cost more time. In the

process of searching, if we search for the current solution and the opposite solution at the same

time and choose a better solution as a guess solution, will greatly improve the efficiency of the

algorithm. In fact, according to the probability theorem, there is a probability of 0.5 that the

current solution is far more than the optimal solution than its opposite solution.

The formula for opposite-based learning is as follows:

X∗
ij = aj(t) + bj(t)−Xij(t) (7)

where aj(t) = min(Xij(t)), bj(t) = max(Xij(t)), i=1,2,...,ps, j=1,2,...,D. Xij(t) is a pop-

ulation of i solutions in the j dimension of the component, X∗
ij is the opposite solution corre-

sponding to Xij(t), aj(t) and bj(t) are the minimum value and the maximum value of the j-th

dimension of the current search area, ps is the size of the population, D is the dimension of the

problem, t is the iteration.

For bat algorithm with opposite learning, in the beginning of evaluation, the opposite learn-

ing works well. However, because of the existence of super bat, after ten or dozens of generations,

the population is clustered around the super bat and the search boundary narrows drastically.

In previous algorithms [35-38], the search boundary narrows as the number of iterations

increases. Based on equation 7, the boundary of the opposite population is the same as original

population; therefore the range that can be searched by the opposite population also decreases

with the number of iterations increasing. As we have mentioned before, the super bat makes
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the search boundary narrows drastically, that means the search range of opposition learning

also decreases drastically. After a few iterations, the algorithm loses the diversity and is easy

to fall into the local optimum.

In the proposed new Cross Boundary Learning model, we present a new Cross Boundary

equation 8 which makes the search area of the opposite population and original population

symmetrical about the center of the best and worst bats of the current generation. Therefore,

the opposite population still has enough difference from the original population. When the

super bat makes the search boundary narrows drastically, this model can prevent other bats

from coming near the super bat too early. So the whole bat algorithm keeps diversity, avoids

precocity and avoids the local optimum.

X∗
ij = k(Xbest +Xworst)−Xij(t) (8)

X∗
ij is the opposite solution corresponding to Xij(t), Xbest and Xworst are the best position

and the worst position in the current generation. In our previous experiments on the opposition-

based learning bat algorithm, we found that for most test functions, k=1/2 is better, therefore,

at equation 8 we choose the opposition based learning model with k=1/2.

From Figure 2, we can find that when equation 8 is used, the bat can be allowed to jump out

of the current search boundary and the cross boundary Learning search area can be expanded

to avoid falling into the local optimum.

(a) (b)

Figure 2: methods (a) The method proposed in this paper:across boundary searching
area, (b)previous method:one boundary limited searching area

3.2 Uniform explosion strategy

In the local search process of bat algorithm, the average loudness of all bats is used as

perturbation step in equation 6. For each bat, the search direction is certain, which means the

ability of local search is not strong enough. Thus, it is hard for bat algorithm to find the optimal

solution. To solve this problem, we looked for inspiration from other meta-heuristic algorithms

and found that the explosion direction of the FEA was random in the whole search space, and
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that this type of explosion was very suitable for localized searches on a small scale. So we

introduced the explosive strategy of the fireworks explosion algorithm into the local search of

bat algorithm.

In this paper, we use the explosion strategy for local search during the random walk of

the bats. However, we found that the explosion radius and the number of explosive sparks is

adjusted adaptively according to the fitness value of the current fireworks population, which

was used to balance the global search capabilities and local search capabilities of the algorithm.

In this essay, we only need to use the explosion strategy to improve the local search ability of

the algorithm, so the explosion strategy and explosion radius of the original FEA will not be

applicable. In order to solve this problem, we propose a new uniform sampling-based (grid)

explosive strategy and a new adaptive adjusted explosion radius formula in sections 2.3 and

2.4.

In the new algorithm, the explosion is around the best bat. We can see from formula 9 that

the number of explosion sparks Si is large when f(xi) is small. This results in increasing the

computational complexity of the algorithm and reducing the speed of the algorithm.

Si = M × ymax − f(xi) + ε∑N
i=1 ymax − f(xi) + ε

(9)

Therefore, in order to avoid complicating the process of random walking, and to allow the

algorithm to find the similar solution in a limited time, we propose a new uniform sampling

based (grid) explosion strategy, which divides the search space into multiple regions, and create

a spark in each region. Then, we find the best spark from these sparks and compare it to the

best bat and get the new best bat.

We specify that the explosive sparks in each area are on the axis of a dimension, so in fact

we can produce sparks from the explosion point along the axis of each dimension. Figure 3

shows the sparks generated in the two-dimensional search space and the regional division of the

search space. At the same time, in order to reduce the computational complexity, we adopt

different strategies for searching the high and low latitudes. The specific methods of explosion

are as figure 3.

The distance between the explosion center and sparks is divided into three cases: r/3, 2r/3

and r. For the explosion point i, the positions of sparks are:

x∗
i = xi + ri �

−→
bk(k = 1, 2, ...,m) (10)

Where xi is the current position of the explosion point, x∗
i is the position of sparks, ri (j =

1,2,3) is the explosion radius and r1 = r, r2 = r/3, r3 = 2r/3 , r is the maximum radius of the

current generation of explosions,
−→
bk indicates the direction of the explosion, and m is the total

number of all directions after the explosion of point i. For the low-dimensional search space

(D≤5), we choose to explode along the positive and negative directions of the coordinate axis,

that is, the total number of the explosion directions is 2D. For the high-dimensional search

space (D>5), in order to reduce the resource consumption of the algorithm, we randomly select

three groups of D / 5 directions different from each other in the direction of D dimensions,

and choose the opposite direction to join the group, constitute 6D / 5 directions. For the first



488 Appl. Math. J. Chinese Univ. Vol. 34, No. 4

Figure 3: Sparks and search area division

group, we use r1 as the explosion radius to generate sparks. Similarly, for the other two groups,

we use r2 and r3 as their explosion radius.

Compared to random walk searching in a single direction, UES can effectively search the

neighborhood area of bat and find a better solution by uniform exploding in multiple directions.

UES enhances the local search ability of bat algorithm and avoids the late stagnation of the

algorithm.

3.3 Adaptive radius based on bat population error

In FEA, by setting different explosion radius to maintain the balance between global search

and local search, the fireworks population is exploratory and productive. The algorithm pro-

posed in this paper is to add the explosion strategy to the random flight of bats to enhance

the local search capability of the algorithm. However, the random walk of a bat is based on

best bat of the population, this leads to the fitness is small so that the explosion radius is close

to 0 by using (11) to calculate the radius of the explosion, which can’t achieve the purpose of

enhancing the local search.

Ai = Â× f(xi)− ymin + ε∑N
i=1 f(xi)− ymin + ε

(11)

Therefore, the formula of the explosion radius of the traditional FEA algorithm is not

applicable to the algorithm in this paper. Instead, we propose a new explosion radius formula

using the sigmoid function to adjust the explosion radius adaptively:

r =
1

100(1 + e
(ln 9+10)∗t

N −10)
(12)

Where N is the total iteration number of the algorithm and t is the current iteration number

of the algorithm. After testing the typical test functions, we find that the performances of some

functions are not as good as expected by adjusting the explosion radius according to the number

of iterations. We found from the data that different test functions have different degrees of

convergence at different iterations, but according to our formula, the radius of the explosion is
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the same for the same iterations, which leads to a problem that the explosion radius is too large

for functions that has fast convergence rate. Therefore, we make the following adjustments to

the explosion radius formula:

r =
1

1 + e−(fmax−fmin)
− 0.5 (13)

r =

0.01, r > 0.01

r, r ≤ 0.01
(14)

Where fmax and fmin respectively represent the fitness value of the optimal location and

the worst location of the current population. We add a threshold of 0.01 for r because the

gap between the optimal position and the worst position is huge for the first few generations,

which leads to a larger r calculated by the explosion radius formula. Therefore, after manually

adjusting the threshold and comparing the experimental results, we chose a more appropriate

threshold of 0.01.

The process of obtaining a new local solution using UES for local search is as follows:

Firstly, the explosion radius is calculated according to equation 13 and 14, then the direction

vector
−→
bk is obtained by using the explosion method proposed in section 3.2; secondly, the

position of the sparks are calculated according to equation 10; Finally, the optimal spark is

selected as the new position of the bat.

3.4 BABLUE algorithm

The idea in the article is to present a Cross Boundary Learning of each bat population

of generations to obtain the cross boundary population, in order to increase the diversity of

the population. Then, different from the original bat population and the opposite population,

elite selection strategy is adopted to obtain a new and better population. Finally, local search

is conducted by random perturbations of the explosion strategy to improve the quality and

accuracy of the solution. The implementation process of the algorithm is as Figure 4.

§4 Experiment and Analysis

BABLUE is compared with other typical intelligent optimization algorithms with numerous

experiments. In order to clearly present the experiments, this section is divided into 6 sub-

sections as follows.

Section 4.1 describes the experimental parameters for the proposed algorithm. Section 4.2

describes the benchmark functions for experiment and the execution times. Section 4.3 shows

the experimental results on unimodal problems. Section 4.4 shows the experimental results on

high dimensions problem, Section 4.5 is the comparison of two different explosion radius we

proposed as shown in equation 12, 13, and 14. Finally, in Section 4.6, we apply the proposed

algorithm for 0-1 knapsack problem to demonstrate that BABLUE is also valid on discrete

problems.
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Figure 4: The process of BABLUE

4.1 Experimental parameters

In order to verify the performance of the algorithm proposed in this paper, twelve standard

test functions are selected for testing. There is no exact theoretical standard for the various

parameters involved in bat algorithm. The parameter values set in this paper are determined

by the experience gained from repeated tests, and the specific parameters are shown in Table

1. The termination condition of the algorithm is the maximum number of the fitness function

estimates (FEs). The FEs is the number of iterations multiplied by the population size. For

different test functions, the population size is different.

Table 1: Parameters of simulation experiment.

Name N fmin fmax A0
i r0i α γ

BA 40 0 100 (1,2) (0,1) 0.9 0.9
BABLUE 40 0 100 (1,2) (0,1) 0.9 0.05

4.2 Benchmark function and execution times

The experimental environment is as follows, system: window10; CPU: Intel(R) Core(TM)

i5-5287U 2.90GHz; RAM: 8GB; programming tool: Matlab R2016a.

12 standard benchmark functions are selected in the experiment, where f1-f10 has the u-

niquely determined optimal solution, and f11 and f12 has multiple global optimal solutions.

Specific parameters of benchmark function are shown in Table 2. Function f1-f8 uses fixed pre-

cision (Tol=10e-5) as the termination condition to compare with DLBA, and f9-f12 uses FEs
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Table 2: Parameters of Benchmark Function.

Funs Name x d Global Optimal
f1 Sphere [-10,10] 30 0
f2 Schwefel 2.22 [-10,10] 20 0
f3 Eggcrate [-2π,2π] 2 0
f4 Ackley [-30,30] 5 0
f5 Griewank [-600,600] 5 0
f6 Salomon [-5,5] 5 0
f7 Rastrigin [-5.12,5.12] 5 0
f8 Zakharov [-10,10] 5 0
f9 Schaffer [-100,100] 2 -1
f10 Rosenbrock [-2.048,2.048] 16 0
f11 Shubert [-10,10] 2 -186.7309
f12 Branin [-10,10] 2 0.3979

as the termination condition.

Figure 5 shows the execution time of f1-f12 benchmark function under Tol. Because of the

complex terrain of f10 and f11, it takes more time and more iterations to calculate than other

benchmark functions. For the other functions, BABLUE can find the optimal solution of the

problem quickly (execution time less than 50ms).

Figure 5: Execution time of f1-f12 using BABLUE

4.3 Comparison of experimental results

Four improved algorithms (IBA [28], DLBA [30], DGOBA [39], MBA [40]) based on bat

algorithm were selected for comparison experiments.

IBA uses inertia weigh factor and adaptive frequency to improve exploration and exploita-

tion mechanisms. MBA improves the random walk by changing the values of some but not all
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Table 3: Comparison between IBA, MBA, DLBA and BABLUE on f1 to f8 under
Tol.

Function Method
Fitness Iteration

Min Mean Max std Min Mean Max

f1

MBA 0.0457 0.0928 0.1991 0.0296 200 200 200
IBA 0.1216 0.2270 0.4229 0.0588 200 200 200

DGOBL 2.0469e−06 5.9867e−06 9.7871e−06 2.2377e−06 7 11.4 30
DLBA 4.3057e−08 4.8036e−06 9.9616e−06 3.0206e−06 10 17.6 26

BABLUE 9.1425e−32 2.8675e−06 9.8524e−06 2.8143e−06 4 5.6 17

f2

MBA 0.3217 10.6952 43.3804 11.7661 200 200 200
IBA 0.6836 9.3901 517.3636 53.3170 200 200 200

DGOBL 4.7646e−21 0.5555 55.5416 5.5541 20 68.24 200
DLBA 5.6676e−07 6.3309e−06 9.8893e−06 2.4887e− 06 21 29.4 37

BABLUE 0 1.1951e−06 9.8005e−06 2.3883e−06 4 11.54 42

f3

MBA 1.5069e−06 0.5695 9.4884 2.2645 35 188 200
IBA 4.2949e−05 1.9009 9.5041 3.8143 200 200 200

DGOBL 1.7542e−08 0.1205 9.4926 0.9784 4 25.87 200
DLBA 6.2347e−09 3.9335e−06 9.9702e−06 2.7721e−06 6 10 20

BABLUE 0 3.3481e−07 8.6771e−06 1.2404e−06 2 5.02 99

f4

MBA 0.0151 8.2271 15.1285 3.9637 200 200 200
IBA 0.1331 0.5062 0.8400 0.1522 200 200 200

DGOBL 0 8.8047e−06 1.1924e−04 1.3589e−05 16 49.33 200
DLBA 4.7174e−07 6.4097e−06 9.9609e−06 2.7119e−06 16 25.6 39

BABLUE 0 5.4327e−07 9.9253e−06 1.7881e−06 3 8.32 70

f5

MBA 0.7759 6.6939 20.7067 4.0156 200 200 200
IBA 0.0717 1.6400 6.0631 1.1971 200 200 200

DGOBL 6.5512e−08 5.0445e−07 4.4773e−06 6.5777e−07 4 6.12 13
DLBA 1.3818e−07 5.0103e−06 9.9300e−06 2.7734e−06 11 18.4 56

BABLUE 0 3.5668e−07 1.8532e−06 5.4339e−07 3 4.67 9

f6

MBA 0.0999 0.2479 0.3999 0.0759 200 200 200
IBA 0.0326 0.0992 0.0999 0.0067 200 200 200

DGOBL 0 0.0180 0.3999 0.0687 11 50.8 200
DLBA 7.7849e−07 6.5729e−06 9.9749e−06 2.7119e−06 18 46 114

BABLUE 0 3.13607e−07 4.3495e−06 9.6401e−07 3 16.2 173

f7

MBA 0.1287 13.3862 37.0362 6.5959 200 200 200
IBA 1.9512 9.1300 17.7209 3.3527 200 200 200

DGOBL 0 0.9646 32.8143 4.2927 11 45.12 200
DLBA 5.9998e−08 4.4705e−06 9.8569e−06 2.8144e−06 15 33 87

BABLUE 0 3.6086e−09 1.0776e−07 1.4023e−08 3 14.17 119

f8

MBA 1.9797e-04 0.0022 0.0145 0.0023 200 200 200
IBA 0.0087 0.0496 0.0946 0.0202 200 200 200

DGOBL 2.3859e−07 3.3729e−06 9.9865e−06 2.4986e−06 4 6 14
DLBA 6.6507e−09 3.8869e−06 9.6984e−06 2.7544e−06 10 15.1 23

BABLUE 0 1.6883e−06 8.3333e−06 2.2891e−06 3 4.92 11
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dimensions of the candidate solution. DGOBA applies the dynamic opposite learning to avoid

falling into the local optimum. DLBA uses Lévy flights and differential operator to accelerate

the convergence speed and jump out of local minima. BABLUE presents CBL and UES to

avoid local optimum and enhance the exploitation ability.

Table 3 is a comparison of the experimental results between IBA, MBA, DGOBL, DLBA

and the proposed algorithm on the f1-f8 test function. Each function runs 100 times indepen-

dently. The data of DLBA comes from [30]. Bold and underline indicate that BABLUE is

better.

As can be seen from Table 3 and Figure 6, BABLUE iterates at least twice for a given search

Figure 6: mean iteration of IBA, MBA, DGOBA, DLBA and BABLUE under TOL

Table 4: Comparison between BA, DGOBA and BABLUE on F9 and F10 under
FEs.

Function Method
Fitness

Min Mean Max std

f9

BA -0.99028 -0.51499 -0.75061 0.14281
DGOBA(K=1/2) -1 -1 -1 0

BABLUE -1 -1 -1 0

f10

BA 39.6319 245.5212 95.3728 47.0705
DGOBA(K=1/2) 13.3684 13.6007 13.8818 0.11311

BABLUE 0.3356 0.64723 2.3822 0.39925

accuracy, while DLBA iterates at least four times. From the mean of the data, BABLUE per-

formes better than DLBA, IBA and MBA on the six test functions. For the f1 and f4 functions,

BABLUE performes slightly worse than the DLBA, but its optimal solution performs better

than DLBA. As for the number of iterations, the average number of iterations of BABLUE is

less than that of DLBA for eight functions, indicating that the convergence speed of BABLUE



494 Appl. Math. J. Chinese Univ. Vol. 34, No. 4

is faster than that of DLBA. From the average number of iterations, we calculate that the con-

vergence rate of BABLUE is 28% - 304% faster than DLBA, with an average increase of 187%.

However, comparing the maximum number of iterations, we find that BABLUE is greater than

DLBA over the four functions. Therefore, we analyzed the data in detail and found that in

100 independent experiments, only for one time the iteration is large. Considering the random

characteristics of the algorithm, we think this situation is reasonable, and will not affect the

algorithm optimization results.

For the test function f9-f12, we compare BABLUE with BA and DGOBA. Each function

runs 30 times independently, and the termination condition is FEs=8000. The results are shown

in Table 4 and Table 5.

From Table 4, we can see that for f9 function, the performance of BABLUE and DGOBA is

(a) (b)

Figure 7: Optimization curve (a) Optimization curve of f9 function (b) Optimization
curve of f10 function

flat and better than BA, but for f10 rosenbrock function, the search results and the accuracy of

BABLUE are far higher than DGOBA. This shows that BABLUE still has a good optimization

result on the function of narrow valley terrain similar to f10. Figure 7 respectively represents

the optimization results of f9 and f10 on three algorithms. From the figure we can see that

BABLUE is obviously faster than BA in search speed, and slightly faster than DGOBA.

The f11 and f12 function has multiple global optimal solutions and local optimal solutions

in the solution space and is extremely easy to fall into local optima. Table 5 shows the optimal

results on f11 and f12 for BABLUE, BA and DGOBA respectively. Success rate indicates the

success rate of the algorithm in finding the global optimal solution (the error does not exceed

1.0e-05). From Table 5 we can see that for different opposite learning strategies (different k

values), the success rate of their optimization is different. When k = rand, the performance is

best. However, the success rate of BABLUE is obviously higher than that of DGOBA, and even

reaches 100% on the f12 function. It proves that our method can perfectly search the global

optimal solution. The experimental results show that BABLUE has better searching ability on

the function with multiple global optimal solutions and local optimal solutions.
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Table 5: Comparison between BA, DGOBA and BABLUE on f11 and f12 under
FEs.

Function Method Min Mean Max std

f11

BA -177.167 -186.729 34.9748 36.6%
DGOBA(K=1/2) -155.8219 -186.7309 45.0706 63.3%

DGOBA(K=RAND) -179.1524 -186.7309 20.7310 86%
BABLUE -182.5203 -186.7309 16.0226 93.3%

f12

BA 0.47681 0.39793 0.43019 33.3%
DGOBA(K=1/2) 0.68392 0.39789 0.71343 66.7%

DGOBA(K=RAND) 0.5025 0.39789 0.0148 96%
BABLUE 0.39789 0.39789 3.6688e−06 100%

4.4 Performance on high dimensions

Table 6: Comparison between BA, DLBA and BABLUE under High Dimensions.

Function Method
Fitness

Min Mean Max std

f1(D = 1024)
BA 18463.4895 19752.2669 21239.2311 567.2789

DLBA 2.6379e−109 4.7374e−87 2.0386e−85 2.8903e−86
BABLUE 0 0 0 0

f5(D = 128)
BA 2587.3876 2811.4065 2966.5672 93.9686

DLBA 0 0 0 0
BABLUE 0 0 0 0

f7(D = 320)
BA 4468.5904 4723.4462 5008.5711 131.1882

DLBA 0 0 0 0
BABLUE 0 0 0 0

f8(D = 256)
BA 7503.3931 8256.6130 11506.7920 613.3756

DLBA 2.6689e−94 5.1209e−69 2.5602e−67 3.6207e−68
BABLUE 0 0 0 0

In order to test the effect of the proposed algorithm at high latitudes, we selected four

test functions f1, f5, f7 and f8 to perform the experiment with a termination condition of

FEs = 8000 and compared with DLBA in [30]. The data of BA and DLBA data from [30]

and the experimental results are shown in Table 6. The bold and underline indicate that the

experimental results are optimal. From the table we can see that BABLUE still has good

search ability even at high latitudes, the accuracy is far higher than BA. Compared with

DLBA, BABLUE can find the optimal solution more accurately on the f1 and f8 functions. The

experimental results show that the proposed algorithm BABLUE possesses strong exploration

capability both in low latitude and high latitude, and the precision of finding the optimal result

is very high.
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4.5 Experiment of radius

To verify that formula 13, 14 used in 2.4 is superior to formula 12, we carried out experiments

on two step length methods on F4, F7 and F10 under the same experimental parameters, and

operated 50 times respectively. Success rate represents the probability of searching for extreme

point 0 on F4 and F7. The results of the experiment are as follows:

As can be seen from Table 7, it is better to use formula 13 and 14 to calculate the explosion

Table 7: Comparison between different radius.

Function Method
Fitness

Success rate
Min Mean Max std

f4
Radius in (12) 0 6.0226e−05 0.0030 4.2580e−04 90%

Radius in (13)(14) 0 0 0 0 100%

f7
Radius in (12) 0 1.4431e−13 5.7394e−12 8.2808e−13 92%

Radius in (13)(14) 0 0 0 0 100%

f10
Radius in (12) 0.3175 0.7050 1.9503 0.3836 -

Radius in (13)(14) 0.2829 0.6177 1.8226 0.3163 -

radius. It proves that it is better to dynamically change the radius with the difference of bat

populations than to change the radius dynamically with the number of iterations.

4.6 0-1 knapsack problem

In order to verify whether the proposed algorithm is equally valid in discrete problems, we

selected several 0-1 knapsack questions to experiment with, so we discretized the bat positions

according to the sigmoid function.

xt
id =

1, ifrand < sig(xt
id)

0, else
(15)

xt
id =

1

1 + e−xt
id

(16)

Since the 0-1 knapsack problem is discrete, the explosion along the blast radius is no longer

applicable. We divide the sparks generated by the explosion into three groups, taking d / 5,

2d / 5, 3d / 5 dimensions respectively from d dimensions. For the first group, each spark has

an inverse of the value of one dimension, resulting in d / 5 sparks, for the second group, each

spark reverses the value of the two dimensions to produce d / 5 sparks, In the third group,

each spark reverses the values of the three dimensions, resulting in d / 5 sparks. The process

is shown as Figure 8.

Five typical backpack problem data sets are used, as shown in Table 8. The data of IBBA,

BBA and BPSO come from [26] and the experimental results are shown in Table 9.

It can be seen from Table 9 that the algorithm proposed in this paper (BABLUE) still has

good searching ability on the 0-1 knapsack problem, and the average value is better than IBBA,



YONG Jia-shi, et al. A Novel Bat Algorithm based on Cross Boundary Learning... 497

Table 8: Five typical backpack problem data.

Number Dim Parameters (w,p,C) Opt

K1 10
w = (95, 4, 60, 32, 23, 72, 80, 62, 65, 46), p = (55, 10, 47,

5, 4, 50, 8, 61, 85, 87), C = 269
295

K2 20
w = (92, 4, 43, 83, 84, 68, 92, 82, 6, 44, 32, 18, 56, 83, 25,

96, 70, 48, 14, 58), p = (44, 46, 90, 72, 91, 40, 75, 35, 8, 54,
78, 40, 77, 15, 61, 17, 75, 29, 75, 63), C =878

1024

K3 50

w = (80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,
59, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,
30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25,15, 10, 10, 10, 4, 4, 2,
1), p = (220, 208, 198, 192, 180, 180, 165, 162, 160, 158, 155,
130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 100, 98, 96,
95, 90, 88, 82, 80, 77,75, 73, 72, 70, 69, 66, 65, 63, 60, 58, 56,
50, 30, 20, 15, 10, 8, 5, 3, 1), C = 1000

3103

K4 80

w = (40,27, 5, 21, 51, 16, 42, 18, 52, 28, 57, 34, 44, 43, 52,
55, 53, 42, 47, 56, 57, 44, 16, 2, 12, 9, 40, 23, 56, 3, 39, 16, 54,
36, 52, 5, 53, 48, 23, 47, 41, 49, 22, 42, 10, 16, 53, 58,40, 1, 43,
56, 40, 32, 44, 35, 37, 45, 52, 56, 40, 2, 23, 49, 50, 26, 11, 35,
32, 34, 58, 6, 52, 26, 31, 23, 4, 52, 53, 19), p = (199, 194, 193,
191, 189, 178, 174, 169, 164, 164, 161, 158, 157, 154, 152, 152,
149, 142, 131, 125, 124, 124, 124, 122, 119, 116, 114, 113, 111,
110, 109, 100, 97, 94, 91, 82,82, 81, 80, 80, 80, 79, 77, 76, 74,
72, 71, 70, 69, 68, 65, 65, 61, 56, 55, 54, 53, 47, 47, 46, 41, 36,
34, 32, 32, 30, 29, 29, 26, 25, 23, 22, 20, 11, 10, 9, 5, 4, 3, 1),
C = 1173

5183

K5 100

w = (54, 95, 36, 18, 4, 71, 83, 16, 27, 84, 88, 45, 94, 64,
14, 80, 4, 23, 75, 36, 90, 20, 77, 32, 58, 6, 14, 86, 84, 59, 71, 21,
30, 22, 96, 49, 81, 48, 37, 28, 6, 84, 19, 55,88, 38, 51, 52, 79,
55, 70, 53, 64, 99, 61, 86, 1, 64, 32, 60, 42, 45, 34, 22, 49, 37,
33, 1, 78, 43, 85, 24, 96, 32, 99, 57, 23, 8, 10, 74, 59, 89, 95, 40,
46, 65, 6, 89, 84, 83,6, 19, 45, 59, 26, 13, 8, 26, 5, 9), p = (297,
295, 293, 292, 291, 289, 284, 284, 283, 283, 281, 280, 279, 277,
276, 275, 273, 264, 260, 257, 250, 236, 236, 235, 235,233, 232,
232, 228, 218, 217, 214, 211, 208, 205, 204, 203, 201, 196, 194,
193, 193, 192, 191, 190, 187, 187, 184, 184, 184, 181, 179, 176,
173, 172, 171, 160, 128, 123, 114,113, 107, 105, 101, 100, 100,
99, 98, 97, 94, 94, 93, 91, 80, 74, 73, 72, 63, 63, 62, 61, 60, 56,
53, 52, 50, 48, 46, 40, 40, 35, 28, 22, 22, 18, 15, 12, 11, 6, 5),
C = 3818

15170

(a) (b) (c)

Figure 8: (a) First Group (b) Second group (c) Third group
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Table 9: Comparison between BPSO, BBA, IBBA and BABLUE under 0-1 knapsack
problem.

Algorithm Metric
0-1 knapsack problem datasets

K1 K2 K3 K4 K5

BABLUE

Mean 295 1024 3091.94 5178.72 15164.76
Std 0 0 5.0402 4.6556 8.7308
Max 295 1024 3103 5183 15170
Min 295 1024 3078 5167 15141

IBBA

Mean 295 1024 3085.7 5134.27 15051.6
Std 0 0 7.32097 34.7453 35.6122
Max 295 1024 3103 5178 15170
Min 295 1024 3073 5063 15046

BBA

Mean 295 1024 3003.2 4410.67 12942.7
Std 0 0 27.3526 95.5894 256.52
Max 295 1024 3049 4663 13445
Min 295 1024 2944 4251 12489

BPSO

Mean 295 956.167 2851.13 3987.77 10089.2
Std 0 23.0563 37.0328 99.9616 238.369
Max 295 1016 2956 4164 10491
Min 295 913 2774 3812 9671

BBA and BPSO, which proves that the algorithm in this paper is still applicable to the discrete

problem.

§5 Conclusion

In order to solve the problem that the bat algorithm is easy to fall into the local optimum

and the late convergence rate is slow, this paper presents a Uniform Explosion strategy of the

local operation. This strategy allows the bat to enhance the local search ability in the random

disturbance process and can fly more accurately toward the optimal solution.

At the same time, we add the Cross Boundary Learning strategy, which increases the search

range through the original population and the opposite population at the beginning of the al-

gorithm, avoiding the premature convergence of the algorithm into a local optimum.

In addition, in the explosion strategy, because we chose a single point to explode, in order

to avoid unnecessary calculation and reduce the running time of the algorithm, we did not

use the explosion radius and the number of sparks formula of the original fireworks algorithm,

instead, we used a new explosion along the axis, applied the sigmoid function and adjust the

explosion radius according to the optimal value and the maximum difference of each generation

population.

Through the simulation experiments on 12 typical benchmark functions, the results show

that the proposed algorithm is effective and feasible. BABLUE is better than BA in terms of

convergence speed and precision, and also shows good performance in single solution, multi-

solution, high-dimensional and discrete problems. Compared to other improved bat algorithms,
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BABLUE also improved to a certain extent, with significant performance advantages.

In future work, we will accelerate the proposed algorithm for CAD/CAM/Graphics/Multimedia

applications [41-49]. We also try to extend the proposed approach to other areas of science and

engineering, such as social computing and collaboration [50-55].
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