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Local time and Tanaka formula of G-martingales

LIU Guo-min

Abstract. The objective of this paper is to study the local time and Tanaka formula of sym-

metric G-martingales. We introduce the local time of G-martingales and show that it belongs

to the G-expectation space L2
G(ΩT ). By a localization argument, we obtain the bicontinuous

modification of local time. Furthermore, we give the Tanaka formula for convex functions of

G-martingales.

§1 Introduction

Motivated by probabilistic interpretations for fully nonlinear PDEs and financial problems

with model uncertainty, Peng [13–15] systematically introduced the nonlinear G-expectation

theory. Under the G-expectation framework, Peng constructed the corresponding G-Brownian

motion, G-Itô’s stochastic calculus and G-stochastic differential equations (G-SDEs).Readers

can refer to [2, 4, 12] for further developments.

One of the most important notions under G-framework is the G-martingles, which are

defined as the processes satisfying martingale property through conditional G-expectation. The

representation theorem for G-martingales are obtained in [18–20]. The Lévy’s characterization

of G-martingales are investigated in [10, 21]. The developments of G-martingales have a deep

connection with the settlement of G-backward stochastic differential equations (G-BSDEs),

see [4].

This paper studies the local time and Tanaka formula of symmetric G-martingales. It

generalizes the results in [3, 9] where the G-Brownian motion case was considered. Compared

with the classical case, the integrand space for stochastic integral of G-martingales is not big

enough because of nonlinearity. So we first introduce a proper integrand space M̄2
G(0, T ) which is

bigger than the previous M2
G(0, T ) when the quadratic variation of G-martingales is degenerate.

Then, by proving some characterization results for M̄2
G(0, T ) and using the Krylov’s estimate

method as in [6], we construct the local time Lt(a) for G-martingales and show that Lt(a)
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belongs to the G-expectation space L2
G(Ωt). Moreover, with the help of a localization argument,

we prove that Lt(a) has a modification which is continuous in a and t. Finally, we give the

Tanaka formula for convex functions of G-martingales and state some basic properties of local

time.

The paper is organized as follows. In Section 2, we recall some basic notions and results of

G-expectation and G-martingales. In Section 3, we state the main results on local time and

Tanaka formula of G-martingales.

§2 Preliminaries

In this section, we review some basic notions and results ofG-expectation andG-martingales.

More relevant details can be found in [13–15].

2.1 G-expectation space

Let Ω be a given nonempty set and H be a linear space of real-valued functions on Ω such

that if X1,. . . ,Xd ∈ H, then φ(X1, X2, . . . , Xd) ∈ H for each φ ∈ Cb.Lip(Rd), where Cb.Lip(Rd)

is the space of bounded, Lipschitz functions on Rd. H is considered as the space of random

variables.

Definition 2.1. A sublinear expectation Ê on H is a functional Ê : H → R satisfying the

following properties: for each X,Y ∈ H,

(i) Monotonicity: Ê[X] ≥ Ê[Y ] if X ≥ Y ;

(ii) Constant preserving: Ê[c] = c for c ∈ R;

(iii) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ];

(iv) Positive homogeneity: Ê[λX] = λÊ[X] for λ ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space.

Set ΩT := C0([0, T ];Rd) the space of all Rd-valued continuous paths (ωt)t≥0 starting from

origin, equipped with the supremum norm. Denote by B(ΩT ) the Borel σ-algebra of ΩT and

Bt(ω) := ωt the canonical mapping. For each t ∈ [0, T ], we set Lip(Ωt) := {φ(Bt1 , . . . , Btk) :

k ∈ N, t1, . . . , tk ∈ [0, t], φ ∈ Cb.Lip(Rk×d)}.
Let G : S(d) → R be a given monotonic and sublinear function, where S(d) is the set of d×d

symmetric matrices. Peng constructed the sublinear G-expectation space (ΩT , Lip(ΩT ), Ê), and
under Ê, the canonical process Bt = (B1

t , · · · , Bd
t ) is called a d-dimensional G-Brownian motion.

The conditional G-expectation for X = φ(Bt1 , Bt2 −Bt1 , · · · , Btn −Btn−1) at t = tj , 1 ≤ j ≤ n

is defined by

Êtj [X] := ϕ(Bt1 , Bt2 −Bt1 , · · · , Btj −Btj−1),

where ϕ(x1, · · · , xj) = Ê[φ(x1, · · · , xj , Btj+1 −Btj , · · · , Btn −Btn−1)].
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For each p ≥ 1, we denote by Lp
G(Ωt) the completion of Lip(Ωt) under the norm ||X||p :=

(Ê[|X|p])1/p. The G-expectation Ê[·] and conditional G-expectation Êt[·] can be extended con-

tinuously to L1
G(ΩT ).

The following is the representation theorem for G-expectation.

Theorem 2.2 (see [1, 5]). There exists a family P of weakly compact probability measures on

(ΩT ,B(ΩT )) such that

Ê[X] = sup
P∈P

EP [X], for each X ∈ L1
G(ΩT ).

P is called a set that represents Ê.

Given P that represents Ê, we define the capacity

c(A) := sup
P∈P

P (A), for each A ∈ B(ΩT ).

A set A ∈ B(ΩT ) is said to be polar if c(A) = 0. A property is said to hold “quasi-surely” (q.s.)

if it holds outside a polar set. In the following, we do not distinguish between two random

variables X and Y if X = Y q.s.

Set

L(ΩT ) := {X ∈ B(ΩT ) : EP [X] exists for each P ∈ P}.
We extend the G-expectation to L(ΩT ), still denote it by Ê, by setting

Ê[X] := sup
P∈P

EP [X], for X ∈ L(ΩT ).

Then clearly, Lp
G(ΩT ) ⊂ L(ΩT ).

Definition 2.3. A real function X on ΩT is said to be quasi-continuous if for each ε > 0, there

exists an open set O with c(O) < ε such that X|Oc is continuous.

Definition 2.4. We say that X : ΩT 7→ R has a quasi-continuous version if there exists a

quasi-continuous function Y : ΩT 7→ R such that X = Y , q.s.

We have the following characterization result of the space Lp
G(Ωt), which can be seen as a

counterpart of Lusin’s theorem in the nonlinear expectation theory.

Theorem 2.5. For each p ≥ 1, we have

Lp
G(Ωt) = {X ∈ B(Ωt) : lim

N→∞
Ê[|X|pI|X|≥N ] = 0 and X has a quasi-continuous version}.

Definition 2.6. A process is a family of random variables X = (Xt)t∈[0,T ] such that for all

t ∈ [0, T ], Xt ∈ L1
G(ΩT ). We say that process Y is a modification of process X if for each

t ∈ [0, T ], Xt = Yt, q.s.

More generally, we can consider the process (Xt)t∈[0,T ] taking values in Banach space E, i.e.,

for each t ∈ [0, T ], Xt : ΩT → E is measurable. The following is the Banach-valued Kolmogorov

criterion for continuous modification with respect to capacity.

Lemma 2.7. Let (Xt)t∈[0,T ] be a process taking values in Banach space E. Assume that there

exist positive constants α, β and c such that

Ê[|Xt −Xs|α] ≤ c|t− s|1+β .
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Then X admits a continuous modification X̃ such that

Ê

[(
sup
s̸=t

|X̃t − X̃s|
|t− s|γ

)α]
< ∞,

for every γ ∈ (0, β/α).

Now we give the definition of G-martingales.

Definition 2.8. A process {Mt} is called a G-martingale if Mt ∈ L1
G(Ωt) and Ês[Mt] = Ms for

any s ≤ t. If {Mt} and {−Mt} are both G-martingales, we call {Mt} a symmetric G-martingale.

Remark 2.9. IfM is a symmetric G-martingale, then under each P , it is a classical martingale.

In the following, we give the stochastic calculus with respect to a kind of martingales as

well as its quadratic variation process. In this paper, we always assume that M is a symmetric

martingale satisfying:

(H) Mt ∈ L2
G(Ωt) for each t ≥ 0 and there exists a nonnegative constant Λ > 0 such that

Êt[|Mt+s −Mt|2] ≤ Λs, for each t, s ≥ 0. (1)

Remark 2.10. For Mt ∈ L2
G(Ωt), by the G-martingale representation theorem (see, e.g.,

[18,20]), Mt can be represented as the integral of G-Brownian motion. From this, we know that

Mt is continuous.

For each T > 0 and p ≥ 1, we define

Mp,0
G (0, T ) :={η =

N−1∑
j=0

ξj(ω)I[tj ,tj+1)(t) : N ∈ N, 0 ≤ t0 ≤ t1 ≤ · · · ≤ tN ≤ T,

ξj ∈ Lp
G(Ωtj ), j = 0, 1 · · · , N}.

For each η ∈ Mp,0
G (0, T ), set the norm ∥η∥Mp

G
:= (Ê[

∫ T

0
|ηt|pdt])

1
p and denote by Mp

G(0, T ) the

completion of Mp,0
G (0, T ) under ∥ · ∥Mp

G
.

For η ∈ M2,0
G (0, T ), define the stochastic integral with respect to M by

I(η) =

∫ T

0

ηtdMt :=
N−1∑
j=0

ξtj (Mtj+1 −Mtj ) : M2,0
G (0, T ) → L2

G(ΩT ).

The proof of following lemma is the same as that of Lemma 3.5 in Chap. III of [15], so we omit

it.

Lemma 2.11. For each η ∈ M2,0
G (0, T ), we have

Ê[|
∫ T

0

ηtdMt|2] ≤ ΛÊ[
∫ T

0

|ηt|2dt]. (2)

By the above lemma, we can extend the integral continuously to M2
G(0, T ). Indeed, for

η ∈ M2
G(0, T ), there exists a sequence {ηn} ⊂ M2,0

G (0, T ) such that ηn → η in M2
G(0, T ). By

Lemma 2.11,
∫ T

0
ηnt dMt is a Cauchy sequence in L2

G(ΩT ), we define∫ T

0

ηtdMt := L2
G − lim

n→∞

∫ T

0

ηnt dMt.
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It’s easy to see
∫ t

0
ηsdMs is a symmetric G-martingale and (2) still holds.

Next we consider the quadratic variation of M . Let πN
t = {tN0 , ..., tNN} be a partition of [0, t]

and denote

µ(πN
t ) := max{|tNj+1 − tNj | : j = 0, 1, · · · , N − 1}.

Consider
N−1∑
j=0

(MtNj+1
−MtNj

)2 =

N−1∑
j=0

(M2
tNj+1

−M2
tNj
)− 2

N−1∑
j=0

MtNj
(MtNj+1

−MtNj
)

= M2
t − 2

N−1∑
j=0

MtNj
(MtNj+1

−MtNj
).

Letting µ(πN
t ) → 0, the right side converges to M2

t − 2
∫ t

0
MsdMs in L2

G(ΩT ). So

N−1∑
j=0

(MtNj+1
−MtNj

)2−→M2
t − 2

∫ t

0

MsdMs in L2
G(ΩT ).

We call this limit the quadratic variation of M and denote it by ⟨M⟩t.

Remark 2.12. Since M satisfies (H), by a standard approximation argument, we can deduce

that (Mt)0≤t≤T ∈ M2
G(0, T ). Thus the integral

∫ t

0
MsdMs is meaningful.

By the definition of ⟨M⟩t, it is easy to obtain, for each t, s ≥ 0,

Êt[|⟨M⟩t+s − ⟨M⟩t|] = Êt[⟨M⟩t+s − ⟨M⟩t] = Êt[M
2
t+s −Mt

2] = Êt[|Mt+s −Mt|2] ≤ Λs. (3)

Remark 2.13. Note that ⟨M⟩t is q.s. defined, and under each P ∈ P, it is also the classical

quadratic variation ⟨M⟩Pt of martingale M .

Theorem 2.14 (B-D-G inequality). There exists some constant C > 0 such that

Ê[ sup
0≤t≤T

|
∫ t

0

ηsdMs|2] ≤ CÊ[
∫ T

0

|ηt|2d⟨M⟩t].

§3 Main results

We first introduce a bigger integrand space for the stochastic calculus of G-martingales M .

This space plays an important role in the construction of local time.

For p ≥ 1 and η ∈ Mp,0
G (0, T ), we define a new norm ||η||M̄p

G
= (Ê[

∫ T

0
|ηt|p d⟨M⟩t])

1
p and

denote the completion of Mp,0
G (0, T ) under the norm ||·||M̄p

G
by M̄p

G(0, T ).

We have the following result concerning the relationship between two spaces Mp
G(0, T ) and

M̄p
G(0, T ).

Lemma 3.1. We have

||η||M̄p
G
≤ Λ

1
p ||η||Mp

G
for each η ∈ Mp,0

G (0, T ), and Mp
G(0, T ) ⊂ M̄p

G(0, T ). (4)

If moreover there exists a constant 0 < λ ≤ Λ such that Êt[|Mt+s − Mt|2] ≥ λs, then the

quadratic variation of M is non-degenerate, i.e., Êt[⟨M⟩t+s − ⟨M⟩t] ≥ λs, which implies

||η||M̄p
G
≥ λ

1
p ||η||Mp

G
for each η ∈ Mp,0

G (0, T ), and Mp
G(0, T ) = M̄p

G(0, T ).
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Proof. We only prove (4) since the proof for the second part is similar. We only need to show

||η||M̄p
G
≤ Λ

1
p ||η||Mp

G
for ηt(ω) =

∑N−1
j=0 ξj(ω)I[tj ,tj+1)(t) ∈ Mp,0

G (0, T ). By the sub-linearity of

Ê, we have

Ê[
∫ T

0

|ηt|p d⟨M⟩t] = Ê[
N−1∑
j=0

|ξj |p(⟨M⟩tj+1 − ⟨M⟩tj )]

≤ Ê[
N−1∑
j=0

|ξj |p(⟨M⟩tj+1 − ⟨M⟩tj − Λ(tj+1 − tj))] + ΛÊ[
N−1∑
j=0

|ξj |p(tj+1 − tj)]

(5)

Note that

Ê[
N−1∑
j=0

|ξj |p(⟨M⟩tj+1 − ⟨M⟩tj − Λ(tj+1 − tj))] ≤
N−1∑
j=0

Ê[|ξj |p(⟨M⟩tj+1 − ⟨M⟩tj − Λ(tj+1 − tj))]

=
N−1∑
j=0

Ê[|ξj |pÊtj [⟨M⟩tj+1 − ⟨M⟩tj − Λ(tj+1 − tj)]]

≤ 0.

Combining this with (5), we get the disired result.

The following counterexample shows that M̄p
G(0, T ) is really bigger than Mp

G(0, T ).

Example 3.2. Let p = 1 and Mt ≡ 0. Then ||η||M̄p
G
= 0, and thus, every progressive measurable

process belongs to M̄1
G(0, T ). But such a process may not be in M1

G(0, T ), see [6].

For η ∈ M̄2,0
G (0, T ), by a similar analysis as in Proposition 4.5 in Chap. III of [15], we have

Ê[(
∫ T

0

ηtdMt)
2] = Ê[

∫ T

0

|ηt|2 d⟨M⟩t].

Then the definition of integral
∫ T

0
ηtdMt can be extended continuously to M̄2

G(0, T ). Moreover,

on M2
G(0, T ), this definition coincides with the one in Section 1.

In the following, C always denotes a generic constant which is free to vary from line to line.

By a standard argument, we can obtain a regular version of the stochastic integral.

Proposition 3.3. For η ∈ M̄2
G(0, T ), there exists a modification of

∫ t

0
ηsdMs such that t →∫ t

0
ηsdMs is continuous.

Proof. Denote I(η)t =
∫ t

0
ηsdMs. We can take a sequence ηn ∈ M̄2,0

G (0, T ) such that ηn → η in

M̄2
G(0, T ). It is easy to see that t →

∫ t

0
ηns dMs is continuous. By the B-D-G inequality,

Ê[ sup
0≤t≤T

|I(ηn)t − I(ηm)t|2] ≤ CÊ[
∫ T

0

|ηn − ηm|2d⟨M⟩t]. (6)

From the Markov inequality (see [1]), for each a > 0,

Ê[ sup
0≤t≤T

|I(ηn)t − I(ηm)t| ≥ a] ≤ 1

a2
Ê[ sup

0≤t≤T
|I(ηn)t − I(ηm)t|2]. (7)

Combining (6) and (7), and using the Borel-Cantelli lemma (see [15]), one can extract a sub-

sequence I(ηnk)t converging q.s. uniformly. We denote this limit by Yt, and it is a continuous
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modification of I(η)t.

Remark 3.4. Henceforth, we will only consider the continuous modification of
∫ t

0
ηsdMs.

Let us state some characterization results for the space M̄p
G(0, T ), which are important for

our future discussion.

Lemma 3.5. Assume X ∈ M̄p
G(0, T ). Then for each φ ∈ CLip(R), we have φ(Xt)0≤t≤T ∈

M̄p
G(0, T ).

Proof. We can find a sequence Xn
t =

∑Nn−1
j=0 ξnj (ω)I[tnj ,tnj+1)

(t), where ξj ∈ Lp
G(Ωtnj

), such that

Xn → X under the norm ||·||M̄p
G
. Note that φ(ξnj (ω)) ∈ Lp

G(Ωtnj
) by Theorem 2.5, then we have

φ(Xn
t ) =

Nn−1∑
j=0

φ(ξnj )I[tnj ,tnj+1)
(t) ∈ M̄p,0

G (0, T ).

Now the desired result follows from the observation that

Ê[
∫ T

0

|φ(Xt)− φ(Xn
t )|pd⟨M⟩t] ≤ Lp

φÊ[
∫ T

0

|Xt −Xn
t |pd⟨M⟩t] → 0, as n → ∞,

where Lφ is the Lipschitz constant of φ.

Proposition 3.6. Assume η ∈ M̄p
G(0, T ). Then

Ê[
∫ T

0

|ηt|pI{|ηt|>N}d⟨M⟩t] → 0, as N → 0.

Proof. It suffices to prove the case that ηt =
∑n−1

j=0 ξjI[tj ,tj+1)(t) ∈ Mp,0
G (0, T ), where ξj ∈

Lp
G(Ωtj ). We take bounded, continuous functions φN such that I{|x|>N} ≤ φN ≤ I{|x|>N−1}.

Then by Theorem 2.5,

Ê[
∫ T

0

|ηt|pI{|ηt|>N}d⟨M⟩t] = Ê[
n−1∑
i=1

|ξj |pI{|ξj |>N}(⟨M⟩tj+1 − ⟨M⟩tj )]

≤
n−1∑
i=1

Ê[|ξj |pφN (ξj)(⟨M⟩tj+1 − ⟨M⟩tj )]

=
n−1∑
i=1

Ê[|ξj |pφN (ξj)Êtj [⟨M⟩tj+1 − ⟨M⟩tj ]]

≤ Λ
n−1∑
i=1

Ê[|ξj |pI{|ξj |>N−1}](tj+1 − tj) → 0, as N → ∞.

Recall that we always assume that (Mt)t≥0 is a symmetric G-martingale satisfying (H). The

following Krylov’s estimate can be used to show that a kind of processes belong to M̄p
G(0, T ).

Theorem 3.7. (Krylov’s estimate) [8, 11, 17] There exists some constant C depending on Λ

and T such that, for each p ≥ 1 and Borel function g,

Ê[
∫ T

0

|g(Mt)|d⟨M⟩t] ≤ C(

∫
R
|g(x)|pdx)1/p.
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Proof. We outline the proof for the convenience of readers. For any P ∈ P, (Mt)t≥0 is a

martingale. By Hölder’s inequality,

EP [

∫ T

0

|g(Mt)|d⟨M⟩t] ≤ C1(EP [

∫ T

0

|g(Mt)|pd⟨M⟩t])1/p, (8)

where C1 = (Ê[⟨M⟩T ])(p−1)/p. Let LP
t (a) be the corresponding local time at a of M under P .

By the classical Tanaka formula (see, e.g., [16]),

LP
T (a) = |MT − a| − |M0 − a| −

∫ T

0

sgn(Mt − a)dMt, P -a.s.

Taking expectation on both sides, we get

0 ≤ EP [L
P
T (a)] = EP [|MT − a|]− |M0 − a| ≤ EP [|MT −M0|] ≤ Ê[|MT −M0|].

Applying the occupation time formula under P , we obtain

EP [

∫ T

0

|g(Mt)|pd⟨M⟩t] = EP [

∫
R
|g(a)|pLP

T (a)da] =

∫
R
|g(a)|pEP [L

P
T (a)]da ≤ C2

∫
R
|g(a)|pda,

(9)

where C2 = Ê[|MT −M0|]. Combining (8) and (9), we have

EP [

∫ T

0

|g(Mt)|d⟨M⟩t] ≤ C(

∫
R
|g(a)|pda)

1
p .

Note that C is independent of P , the desired result follows by taking supremum over P ∈ P in

the above inequality.

Lemma 3.8. Assume φ′, φ are Borel measurable and φ′ = φ a.e. Then for each p ≥ 1, we have

φ′(M·) = φ(M·) in M̄p
G(0, T ), i.e., ||φ′(M·)− φ(M·)||M̄p

G
= 0.

Proof. By Theorem 3.7, we get Ê[
∫ T

0
|φ′ − φ|p(Mt)d⟨M⟩t] ≤ C∥φ′ − φ∥pLp(R) = 0.

The following is a kind of dominated convergence result for G-martingales.

Proposition 3.9. Assume (φn)n≥1 is a sequence of Borel measurable functions such that φn

is linear growth uniformly, i.e., |φn(x)| ≤ C(1 + |x|), n ≥ 1 for some constants C. If φn → φ

a.e., then

lim
n→∞

Ê[
∫ T

0

|φn(Mt)− φ(Mt)|2d⟨M⟩t] = 0.

Proof. By Lemma 3.8, without loss of generality, we may assume |φ(x)| ≤ C(1 + |x|). For any
N > 0, we have

Ê[
∫ T

0

|φn(Mt)− φ(Mt)|2d⟨M⟩t] ≤Ê[
∫ T

0

|φn(Mt)− φ(Mt)|2I{|Mt|≤N}d⟨M⟩t]

+ Ê[
∫ T

0

|φn(Mt)− φ(Mt)|2I{|Mt|>N}d⟨M⟩t].
(10)

According to Theorem 3.7, we can find a constant C ′ such that

Ê[
∫ T

0

|φn(Mt)− φ(Mt)|pI{|Mt|≤N}d⟨M⟩t] ≤ C ′
∫
{|x|≤N}

|φn(x)− φ(x)|pdx,

which converges to 0, as n → ∞ by the Lesbesgue’s dominated convergence theorem. On

the other hand, note that Mt = Êt[MT ], by an approximation argument, we have (Mt)t≤T ∈
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M2
G(0, T ) ⊂ M̄2

G(0, T ). Then, by the linear growth condition on φn and φ, and Proposition 3.6,

we get

Ê[
∫ T

0

|φn(Mt)− φ(Mt)|2I{|Mt|>N}d⟨M⟩t] ≤ CÊ[
∫ T

0

(1 + |Mt|)2I{|Mt|>N}d⟨M⟩t] → 0,

as N → 0.

First letting n → ∞ and then letting N → ∞ in (10), we get the desired result.

By the Krylov’s estimate and Proposition 3.9, we can show that M̄2
G(0, T ) contains a lot of

processes that we may interest in. Such kind of processes are important for the construction of

local time.

Proposition 3.10. For each Borel measurable function φ of linear growth, we have

(φ(Mt))t≤T ∈ M̄2
G(0, T ).

Proof. We take a sequence of Lipschitz continuous functions (φn)n≥1, such that φn converges

to φ a.e. and |φn(x)| ≤ C(1 + |x|). Then by Proposition 3.9, we have

lim
n→∞

Ê[
∫ T

0

|φn − φ|2(Mt)d⟨M⟩t] = 0.

Since (φn(Mt))t≤T ∈ M̄2
G(0, T ) for each n by Lemma 3.5, we derive that (φ(Mt))t≤T

∈ M̄2
G(0, T ), and this completes the proof.

Now we can define the local time of G-martingale M . For each P ∈ P, by the classical

Tanaka formula under P ,

|Mt − a| = |M0 − a|+
∫ t

0

sgn(Ms − a)dMs + LP
t (a), P -a.s., (11)

where LP
t (a) is the local time of martingale Mt at a under P . According to Proposition 3.10,

we have (sgn(Ms − a))s≤t ∈ M̄2
G(0, t). This implies that

∫ t

0
sgn(Ms − a)dMs ∈ L2

G(Ωt). We

define the local time for G-martingale M by

Lt(a) := |Mt − a| − |M0 − a| −
∫ t

0

sgn(Ms − a)dMs ∈ L2
G(Ωt).

Then (11) gives that

Lt(a) = LP
t (a), P -a.s. (12)

The local time always possesses a bicontinuous modification.

Theorem 3.11. There exists a modification of the process {Lt(a) : t ∈ [0, T ], a ∈ R} such that

Lt(a) is bicontinuous, i.e., the map (a, t) → Lt(a) is continuous.

Proof. It suffices to prove that M̂a
t :=

∫ t

0
sgn(Ms − a)dMs has such kind of modification. Let

N > 0 be given. For each integer n ≥ 1, we define stopping time

τN = inf{s ≥ 0 : |Ms −M0|n + ⟨M⟩
n
2
s ≥ N}.

Denote M̄t = MτN∧t. Under each P ∈ P, from the classical optional sampling theorem, M̄t is

a martingale. We denote the correponding local time of M̄ by L
P

t (a). Then by classical B-D-G

inequality,

EP [|L
P

T (a)|n] ≤ Cn(|M̄T − M̄0|n + |⟨M̄⟩PT |
n
2 ) ≤ CnN,
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where Cn is a constant depending on n and may vary from line to line. For x < y, from

occupation formula under P and Hölder’s inequality, we have

EP [ sup
0≤t≤T

|
∫ t

0

sgn(M̄u − x)dM̄u −
∫ t

0

sgn(M̄u − y)dM̄u|2n]

≤ CnEP [|
∫ T

0

I[x,y)(M̄t)d⟨M̄⟩Pt |n]

≤ CnEP [|
∫ y

x

L
P

T (a)da|n]

≤ Cn(y − x)nEP [
1

y − x

∫ y

x

|LP

T (a)|nda]

≤ CnN(y − x)n.

Note that, M̂a
t∧τN =

∫ t

0
sgn(M̄u − a)dM̄u, P -a.s. Thus,

Ê[ sup
0≤t≤T

|M̂x
t∧τN − M̂y

t∧τN |2n] ≤ CnN(y − x)n.

Applying Lemma 2.7 to

a → M̂a
·∧τN ∈ E := C([0, T ];R),

we obtain that M̂a
t∧τN has a bicontinuous version for each N , which implies that M̂a

t has a

bicontinuous version.

Now we give the Tanaka formula for convex functions of G-martingales.

Theorem 3.12. Let f be a convex function such that left derivative f ′
− satisfies the linear

growth condition. Then

f(Mt)− f(M0) =

∫ t

0

f ′
−(Ms)dMs +

1

2

∫
R
Lt(a)df

′
−(a), q.s. (13)

where df ′
− is the Lebesgue-Stieltjes measure of f ′

−. Moreover, the integral
∫
R Lt(a)df

′
−(a) belongs

to L1
G(Ωt).

Proof. According to Proposition 3.10, we have (f ′
−(Ms))s≤t ∈ M̄2

G(0, t). Note that, under each

P ∈ P,
∫ t

0
f ′
−(Ms)dMs is also the stochastic integral with respect to martingale Mt and Lt(a)

is the local time of Mt. By the classical Tanaka formula for martingales, we have

f(Mt)− f(M0) =

∫ t

0

f ′
−(Ms)dMs +

1

2

∫
R
Lt(a)df

′
−(a), P -a.s.

Since the four terms in the above identity both q.s. defined, we deduce that the above formula

holds q.s.

Since convex function f is continuous, we know that f(Mt) is quasi-continuous. Moreover,

the linear growth condition of f ′
− implies that |f(x)| ≤ C(1 + |x|2) by Problem 3.6.21 (6.46)

in [7]. Thus,

Ê[|f(Mt)|I{|f(Mt)|>N}] ≤ CÊ[(1 + |Mt|2)I{|Mt|2>N
C −1}] → 0, as N → ∞.

Then from Theorem 2.5, we deduce that f(Mt) ∈ L1
G(Ωt), which, together with (13), implies∫

R Lt(a)df
′
−(a) ∈ L1

G(Ωt).
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Remark 3.13. For G-Brownian motion, the moments of every order and the quadratic varia-

tion are both finite. So in the case that M is a G-Brownian motion, the similar proof can give

a better version for Proposition 3.9, 3.10 and Theorem 3.12 where the linear growth condition

on the corresponding functions is replaced by the polynomial growth condition.

Finally, we list some useful properties of local time, which follow directly from applying the

classical ones under each P ∈ P.

Proposition 3.14. We have

(i) The measure dLt(a) grows only when M = a:
∫
R+

I{Mt ̸=a}dLt(a) = 0, q.s.;

(ii) Occupation time formua: for each bounded or positive Borel measurable function g, we

have
∫ T

0
g(Mt)d⟨M⟩t =

∫
R g(a)LP

T (a)da, q.s.;

(iii) For the bicontinuous version of Lt(a), the following representation hold:

Lt(a) = lim
ε↓0

1

ε

∫ t

0

I[a,a+ε)(Ms)d⟨M⟩t = lim
ε↓0

1

2ε

∫ t

0

I(a−ε,a+ε)(Ms)d⟨M⟩t, q.s.
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[3] M Hu, X Ji, G Liu. Lévy’s martingale characterization and reflection principle of G-Brownian

motion, J Math Anal Appl, accepted.

[4] M Hu, S Ji, S Peng, Y Song. Backward stochastic differential equations driven by G-Brownian

motion, Stochastic Process Appl, 2014, 124(1): 759-784.

[5] M Hu, S Peng. On representation theorem of G-expectations and paths of G-Brownian motion,

Acta Math Appl Sin Engl Ser 2009, 25(3): 539-546.

[6] M Hu, F Wang, G Zheng. Quasi-continuous random variables and processes under the G-

expectation framework, Stochastic Process Appl, 2016 126(8): 2367-2387.

[7] I Karatzas, S Shreve. Brownian motion and stochastic calculus, Springer Science & Business

Media, 2012.



LIU Guo-min. Local time and Tanaka formula of G-martingales 479

[8] N V Krylov. Controlled diffusion processes, Springer-Verlag, Berlin, 1980.

[9] Q Lin. Local time and Tanaka formula for the G-Brownian motion, J Math Anal Appl, 2013,

398(1): 315-334.

[10] Q Lin. General martingale characterization of G-Brownian motion, Stoch Anal Appl, 2013, 31(6):

1024-1048.

[11] A V Mel’nikov. Stochastic equations and Krylov’s estimates for semimartingales, Stochastics 10

(1983) 81–102.

[12] E Osuka. Girsanov’s formula for G-Brownian motion, Stochastic Process Appl, 2013, 123(4),

1301-1318.

[13] S Peng. G-expectation, G-Brownian motion and related stochastic calculus of Itô type, Stochastic
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