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An Augmented Lagrangian based Semismooth Newton

Method for a Class of Bilinear Programming Problems

HE Su-xiang LIU Yan WANG Chuan-mei

Abstract. This paper proposes a semismooth Newton method for a class of bilinear program-

ming problems (BLPs) based on the augmented Lagrangian, in which the BLPs are reformulated

as a system of nonlinear equations with original variables and Lagrange multipliers. Without

strict complementarity, the convergence of the method is studied by means of theories of semis-

mooth analysis under the linear independence constraint qualification and strong second order

sufficient condition. At last, numerical results are reported to show the performance of the

proposed method.

§1 Introduction

Bilinear programming has nonlinearities such that the optimization problem reduces to a

linear programming if one of the two variable sets that cause nonlinearities is fixed. And bilinear

programming is a subset of nonconvex quadratic programming. Although bilinear programming

can be regarded as an extension of linear programming and quadratic programming from its

form, bilinear programming has its own wide range of applications in economics, control theory,

engineering, management and so on (see [3,7,11,15,16]).

Up until now, the various types of bilinear programming have been studied, such as disjoint

bilinear programming, jointly constrained bilinear programming, generalized bilinear program-

ming, bilinear integer programming and so on. And many corresponding methods have been

proposed for solving them. For example, the cutting plane technique is a kind of classical

approaches for solving bilinear programming, in which the feasible set or objective function

is iteratively refined by means of linear inequalities (see [12, 24, 29]). The branch and bound

method is also popular for solving bilinear programming, which covers many delicate techniques
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for bounding operation (see [1-3]). Especially, the reformulation-linearization technique is de-

veloped in [23] for general bilinear programs, which is a provably convergent branch-and-bound

algorithm. And the global optimization algorithm which is a Lagrangian relaxation based

approach is suggested in [27] for bilinear programming problems with application in pooling

problems.

Motivated by the significance of the augmented Lagrangian method, this paper aims at

studying a class of constrained bilinear programming problems of the form below

min F (x, y) = cTx+ dT y

s.t. gi(x, y) = αi + βT
i x+ γT

i y + xTHiy ≤ 0, i = 1, · · · , p,
(1)

where x ∈ ℜn, y ∈ ℜm, c ∈ ℜn, d ∈ ℜm, αi ∈ ℜ, βi ∈ ℜn, γi ∈ ℜm, Hi ∈ ℜn×m, i = 1, · · · , p,
n ≤ m and the bilinearities occur in the constrained functions. And problem (1) plays an

important role in operations research. The characterizations of linear independent constrain-

t qualification, and the the optimality conditions of problem (1) have the special structure.

Moreover, noticing that the augmented Lagrange method is a kind of efficient method for solv-

ing constrained optimization problems and the corresponding values of Lagrange multipliers

for constraints are important in sensitivity analysis (see [9,13,18,21,22]), we are interested in

presenting a novel method for problem (1) by employing the well-known augmented Lagrangian

that is a core in the augmented Lagrange method.

In this paper, problem (1) is reformulated as a semismooth system of nonlinear equations

with original variables and the Lagrange multipliers based on the favorable properties of the

augmented Lagrangian and the special structure of problem (1). In view of the better per-

formance of semismooth Newton method (see [17,19,20,28]), an augmented Lagrangian based

semismooth Newton method is presented to solve the system of equations. Furthermore, with-

out strict complementarity, the convergence analysis is developed for the proposed method

under the linear independent constraint qualification and the strong second order sufficient

condition. Specifically, by applying the theories of semismooth analysis, the sequence of solu-

tions generated by the method is proven to superlinearly converge to the K-K-T solution to

problem (1) whenever the controlling parameter in the augmented Lagrangian is larger than a

threshold. We can find that the idea of the proposed method is different from that of the aug-

mented Lagrange method, in which the augmented Lagrangian function is minimized and the

Lagrange multipliers are updated alternatively, and the linear convergence results are obtained

with the strict complementarity condition and without the strict complementarity condition,

respectively (see [4,10,26]).

The remainder of this paper is organized as follows. In Section 2, we characterize the K-K-T

condition, the linear independent constraint qualification, and the strong second order sufficient

condition for problem (1) and recall the basic results from semismooth analysis. Section 3

presents a semismooth Newton method for problem (1) based on the augmented Lagrangian, and

carries out the convergence analysis of the developed method without strict complementarity. In

Section 4, the preliminary numerical results for the novel method are reported. The concluding

remarks are provided in the last section.
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§2 Preliminaries

This section serves as a preparation for the convergence analysis of the semismooth Newton

method proposed in the next section. This section firstly presents the representations of the

K-K-T condition, linear independent constraint qualification and strong second order sufficient

condition for problem (1), which are characterized in the specific form corresponding to problem

(1). And then some well-known results for semismooth vector-valued functions are recalled.

Let z = (xT , yT )T , ξ = (cT , dT ), ζi = (βT
i , γT

i ). Then problem (1) can be written as

minF (z) = ξz

s.t. gi(z) = αi + ζiz + xTHiy ≤ 0, i = 1, . . . , p.

Furthermore, let

z̃ =

 x

y

1

 and Gi =

 0 Hi βi

HT
i 0 γi

βT
i γT

i 2αi

 .

Then problem (1) is simplified as

min F (z) = ξz

s.t. gi(z) =
1
2 z̃

TGiz̃ ≤ 0, i = 1, · · · , p.
(2)

Hence the classical Lagrangian function of problem (1) can be expressed as

L(x, y, λ) = ξz +
1

2

p∑
i=1

λiz̃
TGiz̃,

where λi is Lagrange multiplier related to constraint 1
2 z̃

TGiz̃ (i = 1, · · · , p). And from

∇gi(z) = ∇z(
1

2
z̃TGiz̃) =

(
βi +Hiy

γi +HT
i x

)
,

and

∇2gi(z) = ∇2
z(
1

2
z̃TGiz̃) =

(
0n×n Hi

HT
i 0m×m

)
, i = 1, · · · , p,

we get

∇zL(x, y, λ) =

(
c

d

)
+
∑p

i=1 λi

(
βi +Hiy

γi +HT
i x

)
,

and

∇2
zzL(z, λ) =

(
0n×n

∑p
i=1 λiHi∑p

i=1 λiH
T
i 0m×m

)
.

Assume that (z̄, λ̄) ∈ ℜn+m ×ℜp is a K-K-T solution to problem (1), where z̄ is a local

minimizer of problem (1). Define

I1(z̄, λ̄) = {i|λ̄i > 0, i = 1, . . . , p} = {1, . . . , r} (r ≤ p),

I0(z̄, λ̄) = {i|ẑTGiẑ = 0, i = 1, . . . , p} = {1, . . . , r1} (r ≤ r1 ≤ p),



HE Su-xiang, et al. An Augmented Lagrangian based Semismooth Newton Method for... 449

where ẑ = (z̄T , 1)T . Therefore, the K-K-T condition of problem (1) can be written as
c+

∑r
i=1 λ̄i(βi +Hiȳ) = 0,

d+
∑r

i=1 λ̄i(γi +HT
i x̄) = 0,

ẑTGiẑ = 0, i ∈ I0(z̄, λ̄),

λ̄i = 0, i ∈ {1, · · · , p}\I1(z̄, λ̄).
And the linear independence constraint qualification condition of problem (1) is described

as the following set of vectors{(
β1 +H1ȳ

γ1 +HT
1 x̄

)
, . . . ,

(
βr1 +Hr1 ȳ

γr1 +HT
r1 x̄

)}
,

which is linearly independent.

Furthermore, the strong second-order sufficient condition of problem (1) is stated as follows.

For any d̂ ∈ ℜn+m (d̂ ̸= 0) satisfying

(
βi +Hiȳ

γi +HT
i x̄

)T

d̂ = 0, i = 1, . . . , r, it holds that

d̂T∇2
zzL(z̄, λ̄)d̂ = d̂T

(
0n×n

∑r
i=1 λ̄iHi∑r

i=1 λ̄iH
T
i 0m×m

)
d̂ > 0.

For the convenience of statement, we now denote the aforementioned K-K-T condition, the

linear independence constraint qualification and the strong second-order sufficient condition as

(A), (B) and (C), respectively. Next we list some results for semismooth vector-valued functions.

Let X and Y be two finite dimensional real vector spaces. Let Ψ : X → Y be a local-

ly Lipschitz continuous function. Then Ψ is almost everywhere F(Fréchet)-differentiable by

Rademacher’s theorem (see Theorem 3.1.6 in [8]). We denote DΨ by the set of F-differentiable

points of Ψ and JΨ(x) by the F-derivative of Ψ at x for x ∈ DΨ. Then, the Bouligand

subdifferential of Ψ at x ∈ X, denoted by ∂BΨ(x), is

∂BΨ(x) :=

{
lim
k→∞

JΨ(xk)
∣∣xk ∈ DΨ, x

k → x

}
.

The Clark generalized Jacobian of Ψ at x is the convex hull of ∂BΨ(x) introduced in [5], i.e.,

∂Ψ(x) := conv{∂BΨ(x)},
where conv{∂BΨ(x)} means the convex hull of ∂BΨ(x). The concept of semismoothness was

first introduced in [14] and was extended in [20] to vector-valued functions.

Definition 2.1 Suppose that Ψ : X → Y is a locally Lipschitz continuous function. Ψ is said

to be semismooth at x ∈ X if Ψ is directionally differentiable at x, and for any △x ∈ X and

V ∈ ∂Ψ(x+△x) with △x → 0,

Ψ(x+△x)−Ψ(x)− V (△x) = o(∥△x∥).
Furthermore, Ψ is said to be strongly semismooth at x ∈ X if Ψ is semismooth at x and, for

any △x ∈ X and V ∈ ∂Ψ(x+△x) with △x → 0,

Ψ(x+△x)−Ψ(x)− V (△x) = O(∥△x∥2).
The following lemma on the Bouligand-subdifferential of composite functions are useful in

analyzing the properties of system of equations in Section 3, which are proved in Lemma 2.1 of

Ref. [25].
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Lemma 2.2 Let F : X → Y be a continuously differentiable function on an open neighborhood

Ξ of x̄ ∈ X and Φ : ΞY ⊆ Y → X ′ be a locally Lipschitz continuous function on an open set

ΞY containing ȳ := F (x̄), where X ′ is a finite-dimensional real vector space. Suppose that Φ

is directionally differentiable at every point in ΞY and that JF (x̄) : X → Y is onto. Then it

holds that

∂B(Φ ∗ F )(x̄) = ∂BΦ(ȳ)JF (x̄),

where “ ∗ ” stands for the composite operation.

The following result is Debreu Theorem in Debreu (1952) (see [6]), which will be used in

the analysis on properties of the augmented Lagrangian given in the next section.

Lemma 2.3. Let A ∈ ℜn,n be a symmetric matrix and B ∈ ℜr,n, Then By = 0 (y ∈ ℜn\{0})
implies that yTAy > 0 if and only if there exists a real number M̄ > 0 such that A+MBTB is

positive definite for any M > M̄ .

The following lemma can be obtained from the definition of semismooth function.

Lemma 2.4. Define ϕ(a) = [a]+ = max{a, 0}, where a ∈ ℜ. Then it holds that ∂ϕ(a) = {0}
for a < 0; ∂ϕ(a) = [0, 1] for a = 0; and ∂ϕ(a) = {1} for a > 0.

§3 Semismooth Newton method and its convergence

This section provides the system of equations based on the augmented Lagrangian of problem

(1), whose solution is just the K-K-T solution to problem (1), and presents a semismooth

Newton method for the system of equations. Moreover, without strict complementarity, the

convergence analysis of the semismooth Newton method is discussed under the assumptions of

the three conditions (A), (B) and (C) given in Section 2.

It follows from Ref. [22] that the augmented Lagrangian for problem (1) can be expressed

as

Lρ(x, y, λ) = Lρ(z, λ) = cTx+ dT y +
1

2ρ
(∥[λ+ ρg(z)]+∥2 − ∥λ∥2),

where ρ > 0 is a controlling parameter, and g(z) = (g1(z), . . . , gp(z))
T . And the basic steps

in the corresponding augmented Lagrangian method consist of obtaining the solution zk to

minz∈ℜn+m Lρ(z, λ
k) and updating the current Lagrange multiplier λk by λk+1 = [λk+ρg(zk)]+

at the kth iteration. Furthermore, according to the K-K-T condition, we can obtain that

[λ̄+ ρg(z̄)]+ = λ̄ and

∇zLρ(z̄, λ̄) =

(
c

d

)
+

p∑
i=1

[λ̄i + ρgi(z̄)]+

(
βi +Hiȳ

γi +HT
i x̄

)
= ∇zL(z̄, λ̄) = 0.

Hence, finding the K-K-T solution to problem (1) is equivalent to solving the following system

of equations:

∇zLρ(z, λ) = 0,

λ− [λ+ ρg(z)]+ = 0.
(3)
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Let

Φ(Z) =

(
∇zLρ(Z)

λ− [λ+ ρg(z)]+

)
,

where Z = (zT , λT )T . Then the system (3) implies Φ(Z̄) = 0. And it follows from Ref. [20]

that Φ(Z) is semismooth at (z, λ) with λ + ρg(z) = 0 and Φ(Z) is smooth at (z, λ) with

λ + ρg(z) ̸= 0, which means that Φ(Z) is semismooth at K-K-T point (z̄, λ̄) of problem (1) if

the strict complementarity does not hold, i.e., r < r1. That is, to obtain K-K-T point (z̄, λ̄) to

problem (1) from (3), we just need to solve the semismooth equation below

Φ(Z) = 0. (4)

We now present the corresponding semismooth Newton algorithm for solving system (4), in

which the merit function θ(Z) = ∥Φ(Z)∥2 is used for the line search.

Algorithm 3.1.

Step 1 Choose η ∈ (0, 1), ζ̄ ∈ (0, 1
2 ), and ϵ ∈ (0, 1) being small enough. Let Z0 = (z0, λ0) ∈

ℜn+m ×ℜp be an any point and set k := 0.

Step 2 If ∥Φ(Zk)∥ < ϵ, then stop and the approximate K-K-T solution Zk of problem (1) is

obtained; Otherwise, select Vk ∈ ∂Φ(Zk).

Step 3 Compute the Newton direction dk by

Vkd
k = −Φ(Zk).

Step 4 Let lk be the smallest nonnegative integer l satisfying

θ(Zk)− θ(Zk + ηldk) ≥ 2ζ̄ηlθ(Zk),

and let αk = ηlk .

Step 5 Set Zk+1 = Zk + αkd
k, k := k + 1, and return to Step 2.

We now state and prove two useful propositions below before the convergence of Algorithm

3.1 is developed.

Proposition 3.1. Suppose that conditions (A)-(C) hold. Then there exists a constant ρ̄ > 0

such that any element in πz∂(∇zLρ)(z̄, λ̄) is positive definite when ρ > ρ̄, where πz∂(∇zLρ)(z̄, λ̄)

denotes the projection of ∂(∇zLρ)(z̄, λ̄) onto the space ℜn+m.

Proof. From

∇zLρ(z, λ) =

(
c

d

)
+

p∑
i=1

[λi + ρgi(z)]+

(
βi +Hiy

γi +HT
i x

)
,

for any △z ∈ ℜn+m, we have

(πz∂(∇zLρ)(z, λ))(△z)

=

p∑
i=1

[λi + ρgi(z)]+

(
0 Hi

HT
i 0

)
(△z) +

ρ

p∑
i=1

ωi

(
βi +Hiy

γi +HT
i x

)(
βi +Hiy γi +HT

i x
)
(△z),
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where πz∂(∇zLρ)(z, λ) denotes the projection of ∂(∇zLρ)(z, λ) onto the space ℜn+m, and

ωi ∈ ∂([.]+), i = 1, . . . , p. Then from Lemma 2.4, we have

(πz∂(∇zLρ)(z̄, λ̄))(△z)

=

(
0

∑r
i=1 λ̄iHi∑r

i=1 λ̄iH
T
i 0

)
(△z) + ρ

r∑
i=1

∇gi(z̄)∇gi(z̄)
T (△z) +

+ρ

r1∑
i=r+1

ω̄i∇gi(z̄)∇gi(z̄)
T (△z)

= ∇2
zzL(z̄, λ̄)(△z) + ρ

r∑
i=1

∇gi(z̄)∇gi(z̄)
T (△z) +

+ρ

r1∑
i=r+1

ω̄i∇gi(z̄)∇gi(z̄)
T (△z),

where ω̄i ∈ ∂([0]+) = [0, 1], i = r + 1, . . . , r1.

From condition (C) and Lemma 2.3, one has that there exist ρ̄ > 0 and µ0 > 0 such that

whenever ρ > ρ̄, it holds that

∇2
zzL(z̄, λ̄) + ρ

r∑
i=1

∇gi(z̄)∇gi(z̄)
T ≽ µ0I.

For any Uρ ∈ πz∂(∇zLρ)(z̄, λ̄),

Uρ ≽ ∇2
zzL(z̄, λ̄) + ρ

r∑
i=1

∇gi(z̄)∇gi(z̄)
T ,

so we have Uρ ≽ µ0I for any ω̄i ∈ [0, 1] and ρ > ρ̄. That is, the conclusion holds.

The next proposition demonstrates the nonsingularity of every element in the Clarke gen-

eralized differential of Φ(Z) at Z̄.

Proposition 3.2. Suppose that conditions (A)-(C) hold. Then any element V̄ρ ∈ ∂Φ(Z̄) is

nonsingular whenever ρ > ρ̄, where ρ̄ is defined in Proposition 3.1.

Proof. For any element Vρ(Z) ∈ ∂Φ(Z), by computing, we obtain

Vρ(Z) =


∇2

zzL(z, λ) + ρ
∑p

i=1 θi∇gi(z)∇gi(z)
T θ1∇g1(z) · · · θp∇gp(z)

−ρθ1∇g1(z)
T 1− θ1 · · · 0

...
...

. . .
...

−ρθp∇gp(z)
T 0 · · · 1− θp

 ,

where θi ∈ ∂([.]+), ∇gi(z) =

(
βi +Hiy

γi +HT
i x

)
, i = 1, . . . , p. Let ∇g(r)(z) = (∇g1(z), . . . ,∇gr(z))

and ∇g(r+1,r1)(z) = (∇gr+1(z), . . . ,∇gr1(z)). Then it follows from Lemma 2.4 that for any

element V̄ρ ∈ ∂Φ(Z̄),

V̄ρ =


A1 A2 A3 0

−ρAT
2 0 0 0

−ρAT
3 0 D 0

0 0 0 I

 ,



HE Su-xiang, et al. An Augmented Lagrangian based Semismooth Newton Method for... 453

where A1 ∈ πz∂(∇zLρ)(z̄, λ̄), A2 = ∇g(r)(z̄), A3 = ∇g(r+1,r1)(z̄)diagr+1≤i≤r1(θ̄i),

D = diagr+1≤i≤r1(1− θ̄i), I ∈ ℜ(p−r1)×(p−r1) is an identity, and θ̄i ∈ [0, 1], i = r + 1, . . . , r1.

We now consider the partition of the matrix V̄ρ in the form below

V̄ρ =

(
Aρ 0
0 I

)
,

where

Aρ =

 A1 A2 A3

−ρAT
2 0 0

−ρAT
3 0 D

 .

It follows from the property of partitioned matrix that V̄ρ is nonsingular if Aρ is nonsingular.

Hence, next we devote to proving the nonsingularity of Aρ from the two cases below.

Case 1. Suppose that θ̄i ̸= 1 for any i ∈ {r + 1, . . . , r1}, which implies that the diagonal

matrix D is nonsingular and positive definite. Suppose that u = (uT
1 , u

T
2 , u

T
3 )

T ∈ ℜm+n+r1 ,

where u1 ∈ ℜm+n, u2 ∈ ℜr, and u3 ∈ ℜr1−r. Let Aρu = 0, i.e.,

Aρu =

 A1 A2 A3

−ρAT
2 0 0

−ρAT
3 0 D


 u1

u2

u3

 = 0,

which means that

A1u1 +A2u2 +A3u3 = 0, (5)

−ρAT
2 u1 = 0, (6)

−ρAT
3 u1 +Du3 = 0. (7)

According to the singularity of D, the formula (7) can be written as

u3 = ρD−1AT
3 u1. (8)

Multiply both sides of formula (5) on left by uT
1 , we have

uT
1 A1u1 + uT

1 A2u2 + uT
1 A3u3 = 0.

Therefore, it follows from formula (6) and formula (8) that

uT
1 A1u1 + ρ(AT

3 u1)
TD−1(AT

3 u1) = 0. (9)

Since A1 is positive definite from Propositions 3.1 whenever ρ > ρ̄ and D−1 is positive definite,

we have

uT
1 A1u1 ≥ 0, (AT

3 u1)
TD−1(AT

3 u1) ≥ 0.

By formula (9), it holds that u1 = 0 and AT
3 u1 = 0. Consequently, from formula (8), we have

u3 = 0.

Hence, formula (5) reduces to A2u2 = 0. Furthermore, the linear independence constraint

qualification condition means that A2 is full of column rank, so we have u2 = 0. That is, the

matrix Aρ is nonsingular.

Case 2. Suppose that there exists j ∈ {r + 1, . . . , r1} such that θ̄j = 1. For convenience of

statement, we might as well assume that j = r + 1, i.e., θ̄r+1 = 1. Hence, Aρ can be expressed
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as

Aρ =


A1 A2 ∇gr+1(z̄) A4

−ρAT
2 0 0 0

−ρ∇gr+1(z̄)
T 0 0 0

−ρAT
4 0 0 D̂

 ,

where A4 = (∇gr+2(z̄), . . . ,∇gr1(z̄))diagr+2≤i≤r1(θ̄i), D̂ = diagr+2≤i≤r1(1− θ̄i).

Suppose that u = (uT
1 , u

T
2 , u3, u

T
4 )

T ∈ ℜm+n+r1 , where u1 ∈ ℜm+n, u2 ∈ ℜr, u3 ∈ ℜ1 and

u3 ∈ ℜr1−(r+1). Let Aρu = 0. That is,

A1u1 +A2u2 +∇gr+1(z̄)u3 +A4u4 = 0, (10)

−ρAT
2 u1 = 0, (11)

−ρ∇gr+1(z̄)
Tu1 = 0, (12)

−ρAT
4 u1 + D̂u4 = 0. (13)

Since D̂ is nonsingular and positive definite from the definition of D̂, it follows from the formula

(13) that

u4 = ρD̂−1AT
4 u1. (14)

Multiplying both sides of formula (10) on left by uT
1 , we have

uT
1 A1u1 + uT

1 A2u2 + uT
1 ∇gr+1(z̄)u3 + uT

1 A4u4 = 0.

Combined formula (11), formula (12) and formula (14), it holds that

uT
1 A1u1 + ρ(AT

4 u1)
T D̂−1(AT

4 u1) = 0. (15)

Since A1 is positive definite from Propositions 3.1 whenever ρ > ρ̄ and D̂−1 is positive definite,

we have

uT
1 A1u1 ≥ 0, (AT

4 u1)
TD−1(AT

4 u1) ≥ 0.

By formula (15), it holds that u1 = 0 and AT
4 u1 = 0. Further, from formula (14), we have

u4 = 0.

Hence, formula (10) reduces to A2u2 +∇gr+1(z̄)u3 = 0, i.e.,

(A2 ∇gr+1(z̄))

(
u2

u3

)
= 0.

Moreover, the linear independence constraint qualification condition means that (A2 ∇gr+1(z̄))

is full of column rank, so we have u2 = 0, and u3 = 0. That is, the matrix Aρ is nonsingular

whenever ρ > ρ̄.

Suppose that there exist more than one index in {r+1, . . . , r1}, say ji ∈ {r+1, . . . , r1} such

that θ̄ji = 1, where i ∈ {1, . . . , r1 − r}. Then the conclusion that the matrix Aρ is nonsingular

whenever ρ > ρ̄ can also be obtained by the similar analysis to the above proof process.

The proof is completed.

Corollary 3.1. If conditions (A)-(C) hold, then there exist ϵ > 0 and positive constant c such

that for any Z ∈ S(Z̄, ϵ) and Vρ ∈ ∂Φ(Z), Vρ is nonsingular and ∥V −1
ρ ∥ ≤ c whenever ρ > ρ̄,

where S(Z̄, ϵ) = {Z ∈ ℜn+m+p|∥Z − Z̄∥ ≤ ϵ}.

Proof. From Proposition 3.2, any element V̄ρ ∈ ∂Φ(Z̄) is nonsingular under conditions (A)-(C)
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if ρ > ρ̄. Hence the conclusion is true by Lemma 2.6 in Ref. [20].

Corollary 3.1 shows that Algorithm 3.1 is well defined if Z0 is close to Z̄ enough. Further-

more, the following theorem indicates that the sequence generated by Algorithm 3.1 converges

to the K-K-T solution Z̄ to problem (1), whose proof can be regarded as an application of

Theorem 4.3 in Ref. [19].

Theorem 3.1. Suppose that conditions (A)-(C) hold. If the sequence {Zk} is generated by

Algorithm 3.1, then {Zk} converges to the K-K-T solution Z̄ superlinearly and αk eventually

becomes 1 whenever ρ > ρ̄.

Proof. Firstly, we need to prove that for some δ ∈ (0, 1), there exists ϵ̂ > 0 such that for any

Z ∈ S(Z̄, ϵ̂), it holds that

∥Z + d− Z̄∥ ≤ δ∥Z − Z̄∥, and ∥Φ(x+ d)∥ ≤ δ∥Φ(x)∥, (16)

where d is the solution to Vρd = −Φ(Z) and Vρ ∈ ∂Φ(Z).

By Corollary 3.1, we know that there exists ϵ > 0 such that d = −V −1
ρ Φ(Z) is well defined

for Z ∈ S(Z̄, ϵ) whenever ρ > ρ̄. Since Φ(Z) is semismooth, for ϵ > 0 being small enough, we

have

Φ(Z)− Φ(Z̄)− Φ′(Z̄;Z − Z̄) = o(∥Z − Z̄∥), (17)

Vρ(Z − Z̄)− Φ′(Z̄;Z − Z̄) = o(∥Z − Z̄∥), (18)

where Φ′(Z̄;Z − Z̄) is the directional derivative of Φ(Z) at Z̄ in the direction Z − Z̄ (see [5]).

Then it follows from (17), (18) and Corollary 3.1 that

∥Z + d− Z̄∥

= ∥Z − Z̄ − V −1
ρ Φ(Z)∥

= ∥V −1
ρ (Vρ(Z − Z̄)− Φ(Z))∥

≤ ∥V −1
ρ ∥

[
∥Vρ(Z − Z̄)− Φ′(Z̄;Z − Z̄)∥+ ∥Φ(Z)− Φ(Z̄)− Φ′(Z̄;Z − Z̄)∥

]
= o(∥Z − Z̄∥),

which implies that for some δ ∈ (0, 1), there exists ϵ̄ ∈ (0, ϵ) such that for any Z ∈ S(Z̄, ϵ̄), one

gets

∥Z + d− Z̄∥ ≤ δ∥Z − Z̄∥. (19)

By (17), for the above δ ∈ (0, 1), there exists ϵ̂ ∈ (0, ϵ̄) such that if Z ∈ S(Z̄, ϵ̂), we have

∥Φ(Z)− Φ(Z̄)− Φ′(Z̄;Z − Z̄) ≤ δ∥Z − Z̄∥. (20)

For any Z ∈ S(Z̄, ϵ̂), by (19) and Corollary 3.1, we obtain

∥Z − Z̄∥ ≤ ∥Z + d− Z̄∥+ ∥d∥

≤ δ∥Z − Z̄∥+ c∥Φ(Z)∥,
which means that

∥Z − Z̄∥ ≤ c

1− δ
∥Φ(Z)∥. (21)

Since Φ(Z) is semismooth at Z̄, one has

∥Φ′(Z̄;Z + d− Z̄)∥ ≤ L∥Z + d− Z̄∥,



456 Appl. Math. J. Chinese Univ. Vol. 34, No. 4

where L is the Lipschitz constant of Φ(Z) around Z̄. And from (19), (20) and (21), it holds

that

∥Φ(Z + d)∥ ≤ ∥Φ′(Z̄, Z + d− Z̄)∥+ δ∥Z + d− Z̄∥

≤ (L+ δ)∥Z + d− Z̄∥

≤ (L+ δ)δ∥Z − Z̄∥

≤ cδ(L+ δ)

1− δ
∥Φ(Z)∥,

which means that if Z ∈ S(Z̄, ϵ̂), it holds that ∥Φ(Z + d)∥ ≤ δ∥Φ(Z)∥ for δ ∈ (0, 1) being small

enough whenever ρ > ρ̄. That is, (16) is true.

We now turn to discuss the convergence of the sequence {Zk}. It follows from (16) that

there exists ϵ̃ ∈ (0, ϵ̂) such that for some Z k̄ with ∥Z k̄ − Z̄∥ ≤ ϵ̃, it is true that

∥Z k̄ + dk̄ − Z̄∥ ≤ 1

2
∥Z k̄ − Z̄∥, (22)

∥Φ(Z k̄ + dk̄)∥ ≤
√
1− 2ζ̄∥Φ(Z k̄)∥,

where dk̄ ∈ ∂BΦ(Z
k̄).

Hence,

θ(Z k̄ + dk̄) = ∥Φ(Z k̄ + dk̄)∥2

≤ (1− 2ζ)∥Φ(Z k̄)∥2

= (1− 2ζ)θ(Z k̄).

That is,

θ(Z k̄)− θ(Z k̄ + dk̄) ≥ 2ζθ(Z k̄).

Then by Step 4 of Algorithm 3.1, we have αk̄ = 1. Let Z k̄+1 = Z k̄ + dk̄. In view of (22), one

has

∥Z k̄+1 − Z̄∥ ≤ 1

2
∥Z k̄ − Z̄∥ ≤ ∥Z k̄ − Z̄∥ ≤ ϵ̃.

By induction of the above arguments, for any k ≥ k̄, it holds that

∥Zk+1 − Z̄∥ ≤ 1

2
∥Zk − Z̄∥ ≤ ∥Zk − Z̄∥ ≤ ϵ̃, (23)

and

αk = 1, (24)

where Zk+1 = Zk + dk, and V k
ρ dk = −Φ(Zk) (V k

ρ ∈ ∂Φ(Zk).

From condition (B), we know that Z̄ is the unique solution of Φ(Z) = 0. And by Step 4 of

Algorithm 3.1, {θ(Zk)} converges to zero. Hence, the sequence {Zk} generated by algorithm

3.1 converges to Z̄ superlinearly. Combined (23) and (24), the conclusion is drawn.

§4 Numerical experiments

We compile program in Matlab language based on Algorithm 3.1 and test some randomly

generated problems. The numerical experiments are implemented in the Matlab R2014a running

environment on the computer with processor of Intel CORETMi3-2310M@2.10GHz, and memory

capacity of 2 Gb.
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In the experiments, we set ρ = 104, η = 0.1 and ζ̄ = 0.3; the stopping precision is set

as ϵ = 10−5 in Step 2 of Algorithm 3.1; the initial point Z0 is chosen to be the vector whose

entries are all ones; and the matrices and vectors in problem (1) are generated randomly by rand

function in Matlab. We report the numerical results for seven problems in Table 4.1, in which

n, m, p, IT, FN, θ0 and θ∗ represent the dimensional number of x, the dimensional number

of y, the number of constraints, the number of iterations, the number of θ(Z) evaluations, the

initial value of θ(Z) and the final value of θ(Z), respectively.

Table 4.1. Numerical results

(n,m, p) IT FN θ0 θ∗

(50,80,40) 14 16 1.2106e+03 7.2123e-06

(80,100,20) 20 21 4.6000e+04 3.4532e-06

(100,50,40) 27 28 3.0058e+05 4.2468e-06

(150,170,30) 35 39 2.9940e+06 2.3089e-06

(180,180,60) 47 52 3.7721e+06 1.6328e-06

(200,240,100) 63 65 2.1137e+07 2.3875e-06

(260,300,200) 81 97 2.7083e+08 3.5213e-06

(320,350,270) 99 105 3.2301e+06 3.1208e-06

Remark. From the preliminary numerical results shown in Table 4.1, we know that the

proposed method is feasible and promising for solving problem (1).

§5 Conclusions

A semismooth Newton method for solving a class of bilinear programming problems is ex-

plored based on the well-known augmented Lagrangian in this paper. The particular forms of

the optimality conditions are characterized according to the special structure of this class prob-

lems. By means of the favourable properties of the augmented Lagrangian, this class of bilinear

programming problems is transformed to a semismooth system of nonlinear equations, and a

semismooth Newton algorithm is presented for solving this system. Without strict complemen-

tarity, the semismooth Newton method is proven to be superlinearly convergent under the linear

independent constraint qualification and strong second order sufficient condition whenever the

controlling parameter in the augmented Lagrangian is larger than a threshold. The preliminary

numerical experiments are conducted to demonstrate the effectiveness of the proposed method.

In our future work, the program need to be improved to enhance the performance of the method

and we also consider to apply this method in some practical problems.
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