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On growth of meromorphic solutions of some kind of

non-homogeneous linear difference equations

ZHENG Xiu-Min∗ ZHOU Yan-Ping

Abstract. In this paper, we investigate the growth of meromorphic solutions of some kind of

non-homogeneous linear difference equations with special meromorphic coefficients. When there

are more than one coefficient having the same maximal order and the same maximal type, the

estimates on the lower bound of the order of meromorphic solutions of the involved equations

are obtained. Meanwhile, the above estimates are sharpened by combining the relative results

of the corresponding homogeneous linear difference equations.

§1 Introduction and main results

In this paper, we use the basic notations of Nevanlinna’s value distribution theory (see e.g.

[8, 10, 14]). In addition, we use the notation σ(f) to denote the order of a meromorphic function

f(z) in the whole complex plane.

Recently, the research on the properties of meromorphic solutions of complex difference

equations has become a subject of great interest from the viewpoint of Nevanlinna theory and

its difference analogues. In particular, many scholars investigated the properties of meromorphic

solutions of the homogeneous linear difference equation

Ak(z)f(z + ηk) + · · ·+A1(z)f(z + η1) +A0(z)f(z) = 0 (1.1)

and its special case

Ak(z)f(z + k) + · · ·+A1(z)f(z + 1) +A0(z)f(z) = 0, (1.2)

where k ∈ N+, ηj(j = 1, 2, · · · , k) are distinct non-zero complex constants, and obtained some

results on the growth and value distribution of meromorphic solutions of (1.1) or (1.2).

Firstly, when the coefficients of (1.2) are polynomials or transcendental entire functions

respectively, Chiang and Feng [6] obtained the following Theorems 1.A and 1.B.
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Theorem 1.A ([6]) Let Aj(z)(j = 0, 1, · · · , k) be polynomials such that there exists an

integer l(0 ≤ l ≤ k) so that

deg(Al) > max
0≤j≤k

j ̸=l

{deg(Aj)}

holds. Suppose f(z) is a meromorphic solution to (1.2), then we have σ(f) ≥ 1.

Theorem 1.B ([6]) Let Aj(z)(j = 0, 1, · · · , k) be entire functions such that there exists

an integer l(0 ≤ l ≤ k) such that

σ(Al) > max
0≤j≤k

j ̸=l

{σ(Aj)}.

If f(z) is a meromorphic solution to (1.2), then we have σ(f) ≥ σ(Al) + 1.

Obviously, the conditions in Theorems 1.A and 1.B show that there exists only one coefficient

of (1.2) having the highest degree or the maximal order. Further, when there are more than

one coefficient of (1.1) or (1.2) having the highest degree or the maximal order, Chen [5] and

Laine-Yang [11] obtained the following Theorems 1.C and 1.D respectively.

Theorem 1.C ([5]) Let Aj(z)(j = 0, 1, · · · , k) be polynomials such that A0(z)Ak(z) ̸≡ 0

and satisfy

deg(A0 +A1 + · · ·+Ak) = max
0≤j≤k

{deg(Aj)} ≥ 1,

then every finite order meromorphic solution f(z)( ̸≡ 0) of (1.2) satisfies σ(f) ≥ 1.

Theorem 1.D ([11]) Let Aj(z)(j = 0, 1, · · · , k) be entire functions of finite order such

that among those having the maximal order σ = max
0≤j≤k

{σ(Aj)}, exactly one has its type strictly

greater than the others. Then for any meromorphic solution of (1.1), we have σ(f) ≥ σ + 1.

Later, Liu-Mao [12] considered the case where there is more than one coefficient of (1.2)

having the maximal order and the maximal type, and obtained the following Theorem 1.E.

Theorem 1.E ([12]) Let Aj(z) = Bj(z)e
Pj(z)(j = 0, 1, · · · , k), where Pj(z) = αjnz

n +

· · ·+ αj0 are polynomials with degree n(≥ 1), Bj(z)( ̸≡ 0) are entire functions of σ(Bj) < n. If

αjn(j = 0, 1, · · · , k) are distinct complex numbers, then every meromorphic solution f(z)( ̸≡ 0)

of (1.2) satisfies σ(f) ≥ max
0≤j≤k

{σ(Aj)}+ 1.

In addition, Liu-Mao [12] also discussed the growth of meromorphic solutions of the special

case of the non-homogeneous linear difference equation

Ak(z)f(z + ηk) + · · ·+A1(z)f(z + η1) +A0(z)f(z) = Ak+1(z), (1.3)

where k ∈ N+, ηj(j = 1, 2, · · · , k) are distinct non-zero complex constants.

Similar to Theorem 1.E, Huang-Chen-Li [9] considered (1.3), and obtained the following

Theorem 1.F.

Theorem 1.F ([9]) Suppose that Aj(z)(j = 0, 1, · · · , k + 1) are meromorphic functions

satisfying σ = max
0≤j≤k+1

{σ(Aj)} > 0. Denote I∗ = {j ∈ {0, 1, · · · , k + 1} : σ(Aj) = σ} and

suppose that Aj(z) = Bj(z)e
ajz

σ

(j ∈ I∗), where aj ∈ C \ {0}(j ∈ I∗) and Bj(z)(j ∈ I∗) are



438 Appl. Math. J. Chinese Univ. Vol. 4, No. 4

meromorphic functions with finite order σ(Bj) < σ(j ∈ I∗). If the constants aj(j ∈ I∗) are

distinct, then each non-trivial meromorphic solution f(z) of (1.3) satisfies σ(f) ≥ σ.

Noting the non-zero complex constants aj(j ∈ I∗) are required to be distinct in Theorem

1.F,(which is similar in [12]) we consider to improve the conditions, that is, admit some of

aj(j ∈ I∗) are the same. Under this condition, Beläıdi-Habib [1] considered the case of complex

linear differential equations. Inspired by the above results, we proceed to consider (1.3), and

obtain the following Theorem 1.1 and Corollaries 1.1, 1.2 under more general conditions.

For your convenience, we denote

I = {0, 1, · · · , k} = I1 ∪ I2 ∪ I3 ∪ I4,

where cj(j ∈ I) are real constants, and

I1 = {j ∈ I : cj > 1}, I2 = {j ∈ I : 0 < cj < 1},
I3 = {j ∈ I : cj < 0}, I4 = {j ∈ I : cj = 1}.

Theorem 1.1 Suppose that Aj(z) = Bj(z)e
bjz(j ∈ I), Ak+1(z) = Bk+1(z)e

az, where

Bj(z)(j ∈ I ∪ {k + 1}) are meromorphic functions satisfying max
j∈I∪{k+1}

{σ(Bj)} < 1, a and

bj(j ∈ I) are non-zero complex constants satisfying bj = cja(j ∈ I). If there exists an integer

s(∈ I1 ̸= Ø) such that cs > cj(j ∈ I1 \ {s}), or exists an integer l(∈ I3 ̸= Ø) such that

cl < cj(j ∈ I3 \ {l}), and Bj(z) ̸≡ 0(j = s, l, k + 1), then every meromorphic solution f(z) of

(1.3) satisfies σ(f) ≥ 1.

Corollary 1.1 Suppose that the conditions in Theorem 1.1 hold, and Bj(z)(j ∈ I∪{k+1})
are entire functions. Then every meromorphic solution f(z) of (1.3) satisfies σ(f) ≥ 2, except

at most one meromorphic solution f0(z) satisfying 1 ≤ σ(f0) < 2.

Corollary 1.2 Suppose that Aj(z) = Bj(z)e
Pj(z)(j ∈ I), Ak+1(z) = Bk+1(z)e

P (z), where

Pj(z) = bjnz
n+ · · ·+bj1z+bj0(j ∈ I), P (z) = anz

n+ · · ·+a1z+a0 are polynomials with degree

n(≥ 1) and bjn = cjan(j ∈ I), Bj(z)(j ∈ I ∪ {k + 1}) are meromorphic functions satisfying

max
j∈I∪{k+1}

{σ(Bj)} < n. If there exists an integer p(∈ I1 ̸= Ø) such that cp > cj(j ∈ I1 \ {p}),

or exists an integer q(∈ I3 ̸= Ø) such that cq < cj(j ∈ I3 \ {q}), and Bj(z) ̸≡ 0(j = p, q, k + 1),

then every meromorphic solution f(z) of (1.3) satisfies σ(f) ≥ n.

On the other hand, we consider the difference operators ∆jf(j ∈ N+) instead of the shift

operators f(z + ηj)(j ∈ N+) in (1.3), and consider the growth of meromorphic solutions of

the corresponding non-homogeneous linear difference equation. Here, for a non-zero complex

constant c, the difference operators ∆jf(j ∈ N+) are defined as follows (see e.g. [2]),

∆f(z) = ∆1f(z) = f(z + c)− f(z),

∆j+1f(z) = ∆(∆jf(z)) = ∆jf(z + c)−∆jf(z), j ∈ N+.

By combining the reasoning method in Theorem 1.1 and the application of Lemma 2.2 and

Remark 2.1, we obtain the following Theorem 1.2 and Corollary 1.3.

Theorem 1.2 Suppose that Aj(z)(j ∈ I ∪{k+1}) are defined as in Theorem 1.1. If 0 ∈ I1



ZHENG Xiu-Min, et al. On growth of meromorphic solutions of linear difference equations 439

and c0 > cj(j ∈ I1 \ {0}), or 0 ∈ I3 and c0 < cj(j ∈ I3 \ {0}), and B0(z)Bk+1(z) ̸≡ 0, then

every meromorphic solution f(z) of the difference equation

Ak(z)∆
kf(z) + · · ·+A1(z)∆f(z) +A0(z)f(z) = Ak+1(z) (1.4)

satisfies σ(f) ≥ 1.

Corollary 1.3 Suppose that Aj(z)(j ∈ I ∪ {k + 1}) are defined as in Corollary 1.2. If

0 ∈ I1 and c0 > cj(j ∈ I1 \ {0}), or 0 ∈ I3 and c0 < cj(j ∈ I3 \ {0}), and B0(z)Bk+1(z) ̸≡ 0,

then every non-trivial meromorphic solution f(z) of (1.4) satisfies σ(f) ≥ n.

Wu-Zheng [13] also discussed the corresponding homogeneous linear difference equation to

(1.4), and obtained the following Theorem 1.G.

Theorem 1.G ([13]) Let dj ∈ C(j = 0, 1, · · · , k) such that d0 ̸= dj and |d0| ≥ |dj |(j =

1, 2, · · · , k), hj(z)( ̸≡ 0)(j = 0, 1, · · · , k) be meromorphic functions with order less than n, then

every meromorphic solution f(z)( ̸≡ 0) of the difference equation

hk(z)e
dkz

n

∆kf(z) + · · ·+ h1(z)e
d1z

n

∆f(z) + h0(z)e
d0z

n

f(z) = 0

satisfies σ(f) ≥ n+ 1.

By combining Theorem 1.G, we consider the growth of meromorphic solutions of (1.4)

further, and obtain the following Corollary 1.4.

Corollary 1.4 Suppose that the conditions in Theorem 1.2 hold, and ci ̸= cj(i ̸= j), then

every meromorphic solution f(z) of (1.4) satisfies σ(f) ≥ 2, except at most one meromorphic

solution f0(z) satisfying 1 ≤ σ(f0) < 2.

§2 Lemmas for proofs of main results

Lemma 2.1 ([3]) Suppose that P (z) = (α+βi)zn+· · · is a polynomial with degree n(≥ 1),

ω(z)( ̸≡ 0) is a meromorphic function with σ(ω) < n. Let g(z) = ω(z)eP (z), z = reiθ, δ(P, θ) =

α cosnθ − β sinnθ, then for any given ε > 0, there exists a set H ⊂ [0, 2π) that has linear

measure zero, such that for any θ ∈ [0, 2π)\(H0 ∪H), there is r0 = r0(θ, ε)(> 0), such that for

r > r0, we have

(i) if δ(P, θ) > 0, then exp{(1− ε)δ(P, θ)rn} < |g(reiθ)| < exp{(1 + ε)δ(P, θ)rn};
(ii) if δ(P, θ) < 0, then exp{(1 + ε)δ(P, θ)rn} < |g(reiθ)| < exp{(1− ε)δ(P, θ)rn};

where H0 = {θ ∈ [0, 2π) : δ(P, θ) = 0} is a finite set.

Lemma 2.2 ([6]) Let f(z) be a meromorphic function of finite order σ, and let η1, η2(η1 ̸=
η2) be two arbitrary complex numbers. Let ε(> 0) be given, then there exists a subset E ⊂
(1,+∞) with finite logarithmic measure such that for all |z| = r /∈ [0, 1] ∪ E, we have

exp{−rσ−1+ε} ≤
∣∣∣f(z + η1)

f(z + η2)

∣∣∣ ≤ exp{rσ−1+ε}.
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Remark 2.1 By Lemma 2.2, we have that

∣∣∣∣∆jf(z)

f(z)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
j∑

i=0

Ci
j(−1)j−if(z + ic)

f(z)

∣∣∣∣∣∣∣∣∣ ≤
j∑

i=0

Ci
j

∣∣∣∣f(z + ic)

f(z)

∣∣∣∣
≤

j∑
i=0

Ci
j exp{rσ−1+ε} = 2j exp{rσ−1+ε}, j ∈ N+.

Lemma 2.3 ([7]) Let f(z) be a meromorphic function, c be a non-zero complex constant,

then we have that for r → ∞,

(1 + o(1))T (r − |c|, f) ≤ T (r, f(z + c)) ≤ (1 + o(1))T (r + |c|, f).
Therefore, it follows that σ(f(z + c)) = σ(f), µ(f(z + c)) = µ(f).

Lemma 2.4 ([4]) Let f(z) be a meromorphic function with σ(f) = σ < ∞, then for any

given ε(> 0), there exists a subset E ⊂ [0,+∞) having finite linear measure such that for all z

satisfying |z| = r ̸∈ [0, 1] ∪ E and sufficiently large r , we have

exp{−rσ+ε} ≤ |f(z)| ≤ exp{rσ+ε}.

§3 Proofs of main results

Proof of Theorem 1.1 On the contrary, we suppose that σ(f) < 1.

Denote α = max
j∈I∪{k+1}

{σ(Bj)}, then α < 1. Denote H0 = {θ ∈ [0, 2π) : δ(az, θ) = 0}, then

H0 is a finite set. For any θ ∈ [0, 2π)\H0, we denote

δs = δ((cs − 1)az, θ), δl = δ((cl − 1)az, θ),

δ1 = max
j∈I1\{s}

{δ((cj − 1)az, θ)}, δ3 = max
j∈I3\{l}

{δ((cj − 1)az, θ)},

then δs ̸= 0, δl ̸= 0, δ1 ̸= 0, δ3 ̸= 0. In the following, we divide the proof into two cases.

Case (1) If there exists an integer l(∈ I3 ̸= Ø) such that cl < cj(j ∈ I3 \ {l}).
It follows by Lemma 2.1 that for any given ε(0 < ε < min{ δl−δ3

δl+2δ3
, 1 − α, 1 − σ(f)}), there

exists a set H1 ⊂ [0, 2π) with linear measure zero such that for any θ ∈ [0, 2π)\(H0 ∪ H1),

there is r0 = r0(θ, ε)(> 0) such that for |z| = r > r0, the conclusions in Lemma 2.1 hold for

Bj(z)e
(cj−1)az, j ∈ I \ I4.

Now, we can choose a ray arg z = θ1 ∈ [0, 2π) \ (H0 ∪H1) such that δ(−az, θ1) > 0. Clearly,

δ((cj − 1)az, θ1) = (1− cj)δ(−az, θ1), j ∈ I.

If j ∈ I1, then δ((cj − 1)az, θ1) < 0; if j ∈ I2, then 0 < δ((cj − 1)az, θ1) < δ(−az, θ1); if

j ∈ I3 \ {l}, then 0 < δ(−az, θ1) < δ((cj − 1)az, θ1) ≤ δ3 < δl. Therefore, it follows by Lemma

2.1 that for the above ε, there is r1 = r1(θ1, ε)(> 1) such that for all z satisfying |z| = r > r1

and arg z = θ1, we have

|Bl(z)e
(cl−1)az| ≥ exp{(1− ε)δlr}; (3.1)
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|Bj(z)e
(cj−1)az| ≤ exp{(1− ε)δ((cj − 1)az, θ1)r} < 1, j ∈ I1; (3.2)

|Bj(z)e
(cj−1)az| ≤ exp{(1 + ε)δ((cj − 1)az, θ1)r}

≤ exp{(1 + ε)δ(−az, θ1)r}, j ∈ I2; (3.3)

|Bj(z)e
(cj−1)az| ≤ exp{(1 + ε)δ((cj − 1)az, θ1)r} ≤ exp{(1 + ε)δ3r}, j ∈ I3 \ {l}. (3.4)

It follows by Lemma 2.2 that for the above ε, there exists a subset E1 ⊂ (1,+∞) with finite

logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we have

exp{−rσ(f)−1+ε} ≤
∣∣∣ f(z + ηi)

f(z + ηj)

∣∣∣ ≤ exp{rσ(f)−1+ε}, (3.5)

where i, j ∈ I, i ̸= j, ηi = 0 when i = 0, and ηj = 0 when j = 0.

Since σ(f) < 1, then by Lemma 2.3, we have

σ(f(z + ηj)) = σ(
1

f(z + ηj)
) = σ(f) < 1, j ∈ I \ {0}.

It also follows by Lemma 2.4 that for the above ε, there exists a subset E2 ⊂ [0,+∞) with

finite linear measure such that for all z satisfying |z| = r ̸∈ [0, 1] ∪ E2 and r → ∞, we have

|Bj(z)| ≤ exp{rα+ε}, j ∈ I ∪ {k + 1}, (3.6)

and

exp{−rσ(f)+ε} ≤
∣∣∣ 1

f(z + ηj)

∣∣∣ ≤ exp{rσ(f)+ε}, (3.7)

where j ∈ I, and ηj = 0 when j = 0.

We divide (1.3) by f(z + ηl) to get

|Bl(z)e
(cl−1)az| ≤

∑
j∈I1

|Bj(z)e
(cj−1)az|

∣∣∣f(z + ηj)

f(z + ηl)

∣∣∣+ ∑
j∈I2

|Bj(z)e
(cj−1)az|

∣∣∣f(z + ηj)

f(z + ηl)

∣∣∣
+

∑
j∈I3\{l}

|Bj(z)e
(cj−1)az|

∣∣∣f(z + ηj)

f(z + ηl)

∣∣∣+ ∑
j∈I4

|Bj(z)|
∣∣∣f(z + ηj)

f(z + ηl)

∣∣∣
+
∣∣∣ Bk+1(z)

f(z + ηl)

∣∣∣. (3.8)

Then by substituting (3.1)-(3.7) into (3.8), we deduce that for all z satisfying arg z = θ1 and

|z| = r ̸∈ [0, r1] ∪ (E1 ∪ E2), we get

exp{(1− ε)δlr} ≤ |Bl(z)e
(cl−1)az|

≤ O(1) exp{rσ(f)−1+ε}+O(1) exp{(1 + ε)δ(−az, θ1)r} exp{rσ(f)−1+ε}

+O(1) exp{(1 + ε)δ3r} exp{rσ(f)−1+ε}+O(1) exp{rα+ε} exp{rσ(f)−1+ε}

+exp{rα+ε} exp{rσ(f)+ε}

≤ exp{(1 + 2ε)δ3r}, (3.9)

a contradiction.

Case (2) If there exists an integer s(∈ I1 ̸= Ø) such that cs > cj(j ∈ I1 \ {s}).
It follows by Lemma 2.1 that for any given ε(0 < ε < min{ δs−δ1

δs+2δ1
, 1 − α, 1 − σ(f)}), there

exists a set H2 ⊂ [0, 2π) with linear measure zero such that for any θ ∈ [0, 2π)\(H0 ∪ H2),

there is r0 = r0(θ, ε)(> 0) such that for |z| = r > r0, the conclusions in Lemma 2.1 hold for
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Bj(z)e
(cj−1)az, j ∈ I \ I4.

Now, we can choose a ray arg z = θ2 ∈ [0, 2π) \ (H0 ∪H2) such that δ(−az, θ2) < 0. Clearly,

δ((cj − 1)az, θ2) = (1− cj)δ(−az, θ2), j ∈ I.

If j ∈ I1\{s}, then 0 < δ((cj−1)az, θ2) ≤ δ1 < δs; if j ∈ I2∪I3, δ((cj−1)az, θ2) < 0. Therefore,

it follows by Lemma 2.1 that for the above ε, there is r2 = r2(θ2, ε)(> 1) such that for all z

satisfying |z| = r > r2 and arg z = θ2, we have

|Bs(z)e
(cs−1)az| ≥ exp{(1− ε)δsr}; (3.10)

|Bj(z)e
(cj−1)az| ≤ exp{(1 + ε)δ((cj − 1)az, θ2)r}

≤ exp{(1 + ε)δ1r}, j ∈ I1 \ {s}; (3.11)

|Bj(z)e
(cj−1)az| ≤ exp{(1− ε)δ((cj − 1)az, θ)r} < 1, j ∈ I2 ∪ I3. (3.12)

We divide (1.3) by f(z + ηs) to get

|Bs(z)e
(cs−1)az|

≤
∑

j∈I1\{s}

|Bj(z)e
(cj−1)az|

∣∣∣f(z + ηj)

f(z + ηs)

∣∣∣+ ∑
j∈I2∪I3

|Bj(z)e
(cj−1)az|

∣∣∣f(z + ηj)

f(z + ηs)

∣∣∣
+

∑
j∈I4

|Bj(z)|
∣∣∣f(z + ηj)

f(z + ηs)

∣∣∣+ ∣∣∣ Bk+1(z)

f(z + ηs)

∣∣∣. (3.13)

Then by substituting (3.5)-(3.7) and (3.10)-(3.12) into (3.13), we deduce that for all z satisfying

arg z = θ2 and |z| = r ̸∈ [0, r2] ∪ (E1 ∪ E2), we have

exp{(1− ε)δsr} ≤ |Bl(z)e
(cs−1)az|

≤ O(1) exp{(1 + ε)δ1r} exp{rσ(f)−1+ε}+O(1) exp{rσ(f)−1+ε}

+O(1) exp{rα+ε} exp{rσ(f)−1+ε}+ exp{rα+ε} exp{rσ(f)+ε}

≤ exp{(1 + 2ε)δ1r}, (3.14)

a contradiction.

Therefore, we have σ(f) ≥ 1.

The proof of Theorem 1.1 is complete.

Proof of Corollary 1.1 We consider the homogeneous linear difference equation

Bk(z)e
ckazf(z + ηk) + · · ·+B1(z)e

c1azf(z + η1) +B0(z)e
c0azf(z) = 0, (3.15)

where k, ηj(j = 1, 2, · · · , k), Bj(z)(j = 0, 1, · · · , k), cj(j = 0, 1, · · · , k) and a are defined as in

Theorem 1.1.

Case (1) If there exists an integer l(∈ I3 ̸= Ø) such that cl < cj(j ∈ I3 \ {l}), then we

rewrite (3.15) as follows:

Bl(z)e
(cl−cm)azf(z + ηl) +

∑
j∈I1∪I2

Bj(z)e
(cj−cm)azf(z + ηj)

+
∑

j∈I3\{l}
Bj(z)e

(cj−cm)azf(z + ηj) +
∑
j∈I4

Bj(z)e
(1−cm)azf(z + ηj) = 0, (3.16)

where m ∈ I1 and cm ≥ cj(j ∈ I1 \ {m}). (If the above m are more than one, we can choose

any one of them arbitrarily. )
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Case (2) If there exists an integer s(∈ I1 ̸= Ø) such that cs > cj(j ∈ I1 \ {s}), then we

rewrite (3.15) as follows:

Bs(z)e
(cs−cn)azf(z + ηs) +

∑
j∈I1\{s}

Bj(z)e
(cj−cn)azf(z + ηj)

+
∑

j∈I2∪I3

Bj(z)e
(cj−cn)azf(z + ηj) +

∑
j∈I4

Bj(z)e
(1−cn)azf(z + ηj) = 0, (3.17)

where n ∈ I3 and cn ≤ cj(j ∈ I1 \ {n}). (If the above n are more than one, we can choose any

one of them arbitrarily.)

It follows by the conditions in Theorem 1.1 that for both Case (1) and Case (2), there is

only one coefficient, Bl(z)e
(cl−cm)az in (3.16) or Bs(z)e

(cs−cn)az in (3.17), having the maximal

type, that is, the conditions in Theorem 1.D hold. Therefore, it follows by Theorem 1.D that

every meromorphic solution f(z)( ̸≡ 0) of (3.15) satisfies σ(f) ≥ 2.

Let f1(z) and f2(z) be two distinct meromorphic solutions of (1.3), and satisfy σ(fi) <

2, i = 1, 2, then f1(z)−f2(z)( ̸≡ 0) is a meromorphic solution of the corresponding homogeneous

equation (3.15) and satisfies σ(f1−f2) < 2, which is a contradiction with the fact σ(f1−f2) ≥ 2.

Thus, every meromorphic solution f(z) satisfies σ(f) ≥ 2, except at most one meromorphic

solution f0(z) satisfying σ(f0) < 2. It follows by Theorem 1.1 that σ(f0) ≥ 1. Therefore, every

meromorphic solution f(z) satisfies σ(f) ≥ 2, except at most one meromorphic solution f0(z)

satisfying 1 ≤ σ(f0) < 2.

The proof of Corollary 1.1 is complete.

Proof of Corollary 1.2 We use the similar reasoning method as the one in Theorem 1.1 to

prove as follows.

On the contrary, we suppose that σ(f) < n.

Denote β = max
j∈I∪{k+1}

{σ(Bj)}, then β < n. For any θ ∈ [0, 2π)\H∗
0 , we denote

δp = δ((cp − 1)P (z), θ), δq = δ((cq − 1)P (z), θ),

δ∗1 = max
j∈I1\{p}

{δ((cj − 1)P (z), θ)}, δ∗3 = max
j∈I3\{q}

{δ((cj − 1)P (z), θ)},

where H∗
0 = {θ ∈ [0, 2π) : δ(P (z), θ) = 0} is a finite set.

Case (1) If there exists an integer q(∈ I3 ̸= Ø) such that cq < cj(j ∈ I3 \ {q}), then we

can choose a ray arg z = θ3 ∈ [0, 2π) \ (H∗
0 ∪H3) such that δ(−P (z), θ3) > 0, and Lemma 2.1

holds, where H3 ⊂ [0, 2π) has linear measure zero. For all z satisfying |z| = r and arg z = θ3,

we rewrite (3.1)-(3.4) as follows:

|Bq(z)e
(cq−1)bnz

n(1+o(1))| ≥ exp{(1− ε)δqr
n}; (3.18)

|Bj(z)e
(cj−1)bnz

n(1+o(1))| ≤ exp{(1− ε)δ((cj − 1)P (z), θ3)r
n} < 1, j ∈ I1; (3.19)

|Bj(z)e
(cj−1)bnz

n(1+o(1))| ≤ exp{(1 + ε)δ((cj − 1)P (z), θ3)r
n}

≤ exp{(1 + ε)δ(−P (z), θ3)r
n}, j ∈ I2; (3.20)

|Bj(z)e
(cj−1)bnz

n(1+o(1))| ≤ exp{(1 + ε)δ((cj − 1)P (z), θ3)r
n}

≤ exp{(1 + ε)δ∗3r
n}, j ∈ I3 \ {q}. (3.21)
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Thus, similar as the proof of Theorem 1.1, we have

exp{(1− ε)δqr
n} ≤ exp{(1 + 2ε)δ∗3r

n},
a contradiction.

Case (2) If there exists an integer p(∈ I1 ̸= Ø) such that cp > cj(j ∈ I1 \ {p}), then we

can choose a ray arg z = θ4 ∈ [0, 2π) \ (H∗
0 ∪H4) such that δ(−P (z), θ4) < 0, and Lemma 2.1

holds, where H4 ⊂ [0, 2π) has linear measure zero. For all z satisfying |z| = r and arg z = θ4,

we rewrite (3.10)-(3.12) as follows:

|Bp(z)e
(cp−1)bnz

n(1+o(1))| ≥ exp{(1− ε)δpr
n}; (3.22)

|Bj(z)e
(cj−1)bnz

n(1+o(1))| ≤ exp{(1 + ε)δ((cj − 1)P (z), θ4)r
n}

≤ exp{(1 + ε)δ∗1r
n}, j ∈ I1 \ {p}; (3.23)

|Bj(z)e
(cj−1)bnz

n(1+o(1))| ≤ exp{(1− ε)δ((cj − 1)P (z), θ4)r
n} < 1, j ∈ I2 ∪ I3. (3.24)

Thus, similar as the method of proof of Theorem 1.1, we have

exp{(1− ε)δqr
n} ≤ exp{(1 + 2ε)δ∗1r

n},
a contradiction.

Therefore, we have σ(f) ≥ n.

The proof of Corollary 1.2 is complete.

Proof of Theorem 1.2 On the contrary, we suppose that σ(f) < 1. We divide (1.4) by f(z)

to get

−A0(z) = Ak(z)
∆kf(z)

f(z)
+ · · ·+A1(z)

∆f(z)

f(z)
− Ak+1(z)

f(z)
. (3.25)

By Remark 2.1, we have∣∣∣∣∆jf(z)

f(z)

∣∣∣∣ ≤ O(exp{rσ(f)−1+ε}), j ∈ I \ {0}. (3.26)

Case (1) If 0 ∈ I3 and c0 < cj(j ∈ I3 \ {0}), then we can choose a ray arg z = θ5 ∈
[0, 2π) \ H5 such that δ(−az, θ5) > 0, and Lemma 2.1 holds, where H5 ⊂ [0, 2π) has linear

measure zero. By combining (3.1)-(3.4) (where we take θ5 instead of θ1), (3.6)-(3.7), and

(3.25)-(3.26), we have for all z satisfying arg z = θ5, |z| = r ̸∈ [0, 1] ∪ (E1 ∪ E2) and r → ∞,

exp{(1− ε)δ0r} ≤ exp{(1 + 2ε)δ3r}, (3.27)

where δ0 = δ((c0 − 1)az, θ). By a similar reasoning method as the one in Theorem 1.1, we can

get a contradiction from (3.27).

Case (2) If 0 ∈ I1 and c0 > cj(j ∈ I1 \ {0}), then we can choose a ray arg z = θ6 ∈
[0, 2π) \ H6 such that δ(−az, θ6) < 0, and Lemma 2.1 holds, where H6 ⊂ [0, 2π) has linear

measure zero. By combining (3.6)-(3.7), (3.10)-(3.12), and (3.25)-(3.26), we have for all z

satisfying arg z = θ6, |z| = r ̸∈ [0, 1] ∪ (E1 ∪ E2) and r → ∞,

exp{(1− ε)δ0r} ≤ exp{(1 + 2ε)δ1r}, (3.28)

where δ0 = δ((c0 − 1)az, θ). By a similar reasoning method as the one in Theorem 1.1, we can

get a contradiction from (3.28).

Therefore, we have σ(f) ≥ 1.
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The proof of Theorem 1.2 is complete.

Proofs of Corollaries 1.3 and 1.4 The proofs of Corollaries 1.3 and 1.4 are similar as the

ones of Corollaries 1.2 and 1.1 respectively.
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[2] Bergweiler W, Langley J K. Zeros of differences of meromorphic functions, Math Proc Cambridge

Philos Soc, 2007, 142(1): 133-147.

[3] Cao C L, Chen Z X. Growth and zeros of meromorphic solution of some kind of linear differential

equation with entire coefficients, Acta Math Sin, 2002, 25(1): 123-131. (in Chinese)

[4] Chen Z X. Growth of solution of some kind of second order differential equations with entire

coefficients, Chinese Ann Math, 1999, 20A(1): 7-14. (in Chinese)

[5] Chen Z X. Growth and zeros of meromorphic solution of some linear difference equations, J Math

Anal Appl, 2011, 373: 235-241.

[6] Chiang Y M, Feng S J. On the Nevanlinna characteristic of f(z+η) and difference equations in

the complex plane, Ramanujan J, 2008, 16: 105-129.

[7] Goldberg A A, Ostrovskii I V. The Distribution of Values of Meromorphic Functions, Nauka,

Moscow, 1970. (in Russian)

[8] Hayman W K. Meromorphic Functions, Clarendon Press, Oxford, 1964.

[9] Huang Z B, Chen Z X, Li Q. The properties of the meromorphic solutions of some difference

equations, Complex Var Elliptic Equ, 2013, 58: 1023-1036.

[10] Laine I. Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.

[11] Laine I, Yang C C. Clunie theorems for difference and q-difference polynomials, J London Math

Soc, 2007, 76: 556-566.

[12] Liu H F, Mao Z Q. On the meromorphic solutions of some linear difference equations, Adv.

Difference Equ, 2013, 2013, Article ID 133: 1-12.

[13] Wu S Z, Zheng X M. Growth of solutions of some kinds of linear difference equations, Adv

Difference Equ, 2015, 2015, Article ID 142: 1-11.

[14] Yang L. Value Distribution Theory, Springer-Verlag, Berlin, 1993, and Science Press, Beijing,

1982.

Institute of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China.

Email: zhengxiumin2008@sina.com


