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A parametric bootstrap approach for one-way

classification model with skew-normal random effects

YE Ren-dao1,∗ XU Li-jun1 LUO Kun2 JIANG Ling1

Abstract. In this paper, several properties of one-way classification model with skew-normal

random effects are obtained, such as moment generating function, density function and noncen-

tral skew chi-square distribution, etc. Based on the EM algorithm, we discuss the maximum

likelihood (ML) estimation of unknown parameters. For testing problem of fixed effect, a para-

metric bootstrap (PB) approach is developed. Finally, some simulation results on the Type I

error rates and powers of the PB approach are obtained, which show that the PB approach pro-

vides satisfactory performances on the Type I error rates and powers, even for small samples.

For illustration, our main results are applied to a real data problem.

§1 Introduction

One-way classification model is an important kind of data analysis methods, and it is often

used to compare the size of two or more factors. It is well-known that, the one-way classifi-

cation model is a special linear mixed model, which has been widely used in social sciences,

econometrics, population, medical sciences and market researches, etc. [1,2]. Usually for math-

ematical convenience, it is assumed that both random effect and error term follow the normal

distribution. However, due to the lack of robustness of normality assumption, the routine use

of it has been questioned by many authors [3,4,5,6]. When the practical data shows skewness

and multimodality, the parameter estimation and hypothesis test of the normal models will

not be able to get an accurate result [7]. Consequently, it is of both theoretical and practical

importance to develop the statistical models with flexible distribution assumptions.
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In the literature, many authors were interested in the parameter estimation and hypothesis

test of non-normal models. They considered the random effect or error term with non-normal

distribution, and the ML estimation of unknown parameters were obtained by different al-

gorithms, see Ghidey et al. [4], Lin and Lee [5], Arellano-Valle et al. [8], Lin [9], and Lachos

et al. [10]. Recently, Ye and Wang [11] considered the linear mixed model with skew-normal

random effects, and the F-tests for fixed effects and variance components had been obtained.

However, for some complex problems, an exact test approach still can not be developed.

In this paper, we consider the one-way classification model with skew-normal random effects

given by

Y = 1abµ+ (Ia ⊗ 1b)ε1 + ε0, (1)

where Y is an ab×1 random vector, µ is a real number of fixed effect, ε1 is an a×1 vector of ran-

dom effects, and ε0 is an ab× 1 vector of random errors. We assume that ε1 ∼ SNa(0, σ
2
1Ia, α),

ε0 ∼ Nab(0, σ
2
0Iab), and ε1 and ε0 are mutually independent, where SNm(µ∗,Σ, α) denotes the

m-dimensional skew-normal distribution, with location parameter µ∗, positive definite scale

parameter Σ, and skewness parameter α, and Nm(µ∗,Σ) denotes the m-dimensional normal

distribution, with mean vector µ∗ and covariance matrix Σ. In particular, when α = 0, this

model is reduced to the usual normal one-way classification model.

This paper is organized as follows. In Section 2, we discuss some properties of Y given in

(1), such as moment generating function (MGF), density function, mean vector, and covariance

matrix, etc. The noncentral skew chi-square distribution is defined and its density function is

obtained. The distribution of quadratic form of Y is given. In Section 3, an ML estimation

for skew-normal one-way classification model based on EM algorithm is obtained. In Section 4,

using the noncentral skew chi-square distribution, a PB approach for testing problem of fixed

effect µ in the skew-normal one-way classification model is developed. In Section 5, we present

simulation studies on the Type I error rates and powers of the PB test in different parameter

settings. In Section 6, we illustrate the proposed methods with a real data. The summary of

this paper is given in Section 7.

§2 Preliminaries

Let Mn×k be the set of all n × k matrices over the real field R and Rn = Mn×1. For any

B ∈ Mn×k, use B′ to denote the transpose. Let PB = B(B′B)−B′ and NB = In − PB . For

any nonnegative definite T ∈ Mn×n and m > 0, we use tr(T ) and ρ(T ) to denote the trace and

the inverse of the largest eigenvalue of T , respectively, and use Tm and T−m to denote the mth

nonnegative definite roots of T and T+, respectively. Also for B ∈ Mm×n and C ∈ Mp×q, use

B ⊗ C to denote the kronecker product of B and C.

From Azzalini and Valle [12] and Azzalini and Capitanio [13], we have the following defini-

tion.

Definition 2.1 The random vector V follows a multivariate skew-normal distribution, denoted
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by V ∼ SNn(µ
∗,Σ, α), if its density function is

fv(x;µ
∗,Σ, α) = 2ϕn(x;µ

∗,Σ)Φ(α′Σ−1/2(x− µ∗)), x ∈ Rn, (2)

where ϕn(x;µ
∗,Σ) is the n-dimensional normal density function with mean vector µ∗ and

covariance matrix Σ, and Φ(·) is the standard normal distribution function. �
According to Ye et al. [14], we can similarly have the following proposition.

Proposition 2.1 Suppose that the model Y is given in (1). We can get

(i) The MGF of Y is

MY (t) = 2 exp(t′µy +
t′Σyt

2
)Φ{σ1α

′(Ia ⊗ 1′b)t

(1 + α′α)1/2
}, t ∈ Rn,

where µy = 1abµ and Σy = σ2
0In + σ2

1(Ia ⊗ (1b1
′
b)).

(ii) The density function of Y is

fy(x;µy,Σy, α1) = 2ϕn(x;µy,Σy)Φ(α
′Σ−1/2

y (x− µy)), x ∈ Rn,

where α1 =
σ1Σ

−1/2
y (Ia⊗1b)α

[1+α′(Ia−σ2
1(Ia⊗1b)′Σ

−1
y (Ia⊗1b))α]1/2

. We denote Y ∼ SNn(µy,Σy, α1).

(iii) The mean vector and covariance matrix of Y are

E(Y ) = µy +

√
2

π

Σ
1/2
y α1

(1 + α′
1α1)1/2

, Cov(Y ) = Σ1/2
y

[
In − 2α1α

′
1

π(1 + α′
1α1)

]
Σ1/2

y . �

The proof of Proposition 2.1 is similar to that given in Ye et al. [14] and Wang et al. [15].

Proposition 2.2 Let V ∼ SNn(0, In, α). We have

V = δ|x0|+ (In − δδ′)1/2X1, (3)

where δ = α√
1+α′α

and x0 ∼ N(0, 1) is independent of X1 ∼ Nn(0, In). �
Corollary 2.1 Let Y = µ∗ +Σ1/2V , where V ∼ SNn(0, In, α). Then Y ∼ SNn(µ

∗,Σ, α). �
Proposition 2.3 Let Y ∼ Np(µ

∗,Σ) and X ∼ Nq(η,Ω). We obtain

ϕp(y|µ∗ +Ax,Σ)ϕq(x|η,Ω) = ϕp(y|µ∗ +Aη,Σ+AΩA′)

× ϕq(x|η + ΛA′Σ−1(y − µ∗ −Aη),Λ),
(4)

where Λ = (Ω−1 +A′Σ−1A)−1. �
The proofs of Proposition 2.2, Corollary 2.1 and Proposition 2.3 are given in Arellano-Valle

et al. [8], where the Corollary 2.1 is a direct consequence of the Proposition 2.2.

Proposition 2.4 Let X ∼ N(η, τ2). Then, for any real constant a it follows that

E[X|X > a] = η +
ϕ1

(
a−η
τ

)
1− Φ1

(
a−η
τ

)τ, (5)

E[X2|X > a] = η2 + τ2 +
ϕ1

(
a−η
τ

)
1− Φ1

(
a−η
τ

) (η + a)τ. � (6)

The proof of Proposition 2.4 is similar to that given in Johnson et al. [16].

In order to construct parameter testing method for model Y given in (1), we need to study

the distributions of quadratic forms of Y . The following definition and theorems have been

proved by Ye and Wang [11].

Definition 2.2 Let U ∼ SNm(v, Im, α). The distribution of U ′U is defined as the noncentral

skew chi-square distribution with degrees of freedom m, the noncentrality parameter λ = v′v,
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and the skewness parameters δ1 = α′v and δ2 = α′α, denoted by U ′U ∼ Sχ2
m(λ, δ1, δ2). �

Theorem 2.1 Let U ∼ SNm(v, Im, α) and T = U ′U ∼ Sχ2
m(λ, δ1, δ2) with λ = v′v, δ1 = α′v

and δ2 = α′α. Then the density function of T is given by

fT (x;λ, δ1, δ2) =
exp

{
−1

2 (λ+ x)
}

Γ
(
1
2

)
Γ
(
m−1
2

)
2m/2−1

h(x;λ, δ1, δ2), x > 0, (7)

where α0 = λ−1/2δ1
(1+δ2−δ21/λ)

1/2 and

h(x;λ, δ1, δ2) =
∫√(x)

−
√

(x)
exp(λ1/2s1)(x− s21)

m−3
2 Φ{α0(s1 − λ1/2)}ds1.

For the case that δ1 = 0, the density function of T can be written as

fT (x;λ) = e−λ/2
0F1

(
1

2
m;

1

4
λx

)
1

2m/2Γ
(
m
2

)e−x/2xm/2−1, x > 0, (8)

which is free to δ2 and is denoted by T ∼ χ2
m(λ), where 0F1(k1; k2) denotes the Bessel function

(Muirhead [17]). �
Theorem 2.2 For the model Y given in (1), let Q = Y ′AY/σ2 with symmetric A ∈ Mn×n,

m = r(A) , and σ2 = 1
m

[
σ2
0tr(A) + σ2

1tr(A(Ia ⊗ (1b1
′
b)))
]
. Then the necessary and sufficient

conditions under which Q ∼ Sχ2
m(λ, δ1, δ2), for some δ1 ∈ R including δ1 = 0, are:

(i) ΩA is idempotent of rank m,

(ii) λ = µ′
yAµy/σ

2,

(iii) δ1 = α′
1Ω

1/2Aµy/(dσ), and

(iv) δ2 = α′
1P1P

′
1α1/d

2,

where α1 =
σ1Σ

−1/2
y (Ia⊗1b)α

[1+α′(Ia−σ2
1(Ia⊗1b)′Σ

−1
y (Ia⊗1b))α]

1/2 , d = (1 + α′P2P
′
2α)

1/2, µy = 1abµ, Σy = σ2
0In +

σ2
1(Ia ⊗ (1b1

′
b)) = σ2Ω, and P = (P1, P2) is an orthogonal matrix in Mn×n such that

Ω1/2AΩ1/2 = P

(
Im 0

0 0

)
P ′ = P1P

′
1.

In particular, if δ1 = α′
1Ω

1/2Aµy = 0, then Q ∼ χ2
m(λ). And it holds if either µy = 0 or α1 = 0.

�

§3 ML estimation for skew-normal one-way classification model

In the skew-normal one-way classification model, the direct ML estimation approach is

useless because the number of unknown parameters is more than that of the normal one-way

classification model. Accordingly, the EM algorithm is used to estimate the parameters of

model (1) in this paper.

The EM algorithm is an iterative algorithm for the ML estimation of missing data models.

In particular, let y denote the observed data and t denote the missing data. Hence, the complete

data vector is (y, t).

In order to obtain the ML estimation of unknown parameters, model (1) can be rewritten

as

yj = µj + 1bε1j + ε0j , j = 1, 2, · · · , a, (9)



YE Ren-dao, et al. A parametric bootstrap approach for one-way classification... 427

where µj = 1bµ, ε1j ∼ SN(0, σ2
1 , α

∗) and ε0j ∼ Nb(0, σ
2
0Ib).

For the skew-normal random effect ε1j ∼ SN(0, σ2
1 , α

∗) , by Proposition 2.2 we can obtain

the following result

ε1j = σ1δtj + σ1(1− δ2)1/2Xj ,

where δ = α∗/
√
1 + α∗α∗, tj = |xj |, xj ∼ N(0, 1), Xj ∼ N(0, 1), and xj and Xj are mutually

independent. Therefore, the model (9) can be expressed as

yj = µj + 1bε1j + ε0j = µj + 1bσ1δtj + rj , (10)

where rj = 1bσ1(1− δ2)1/2Xj + ε0j and

rj ∼ Nb(0,Ψ), Ψ = σ2
0Ib + 1b1

′
bσ

2
1(1− δ2). (11)

By (10) and (11), it is clear that

yj |tj ∼ Nb(µj + 1bσ1δtj ,Ψ). (12)

Let θ = (µ, σ1, σ0)
′. By Proposition 2.3 and (12), it follows that the joint density function

of (y′j , tj)
′ can be given by

fyj ,tj (y
′
j , tj |θ, δ) = 2ϕb(yj |µj + 1bσ1δtj ,Ψ)ϕ(tj)II{tj > 0}

= 2ϕb(yj |µj , σ
2
0Ib + σ2

11b1
′
b)ϕ(tj |ηj , τ2j )II{tj > 0},

(13)

where ηj =
(1bσ1δ)

′Ψ−1(yj−µj)
1+(1bσ1δ)′Ψ−1(1bσ1δ)

, τ2j = 1
1+(1bσ1δ)′Ψ−1(1bσ1δ)

, and II is an indicator function.

By the above joint density function (13) and Proposition 2.4, the conditional density func-

tion, first order and second order origin moments of tj about yj can be obtained as follows.

ftj |yj
(tj |yj) = 2ϕ(tj |ηj , τ2j )II{tj > 0}, (14)

E[tj |yj ] = ηj +
ϕ(ηj/τj)

Φ(ηj/τj)
τj , (15)

E[t2j |yj ] = η2j + τ2j +
ϕ(ηj/τj)

Φ(ηj/τj)
τjηj , (16)

The complete-data log-likelihood function of model (9) is that

l(θ, δ) ∝ −1

2

a∑
j=1

ln |Ψ| − 1

2

a∑
j=1

(yj − µj)
′Σ−1(yj − µj)−

1

2

a∑
j=1

(tj − ηj)
2

τ2j
, (17)

where Σ = σ2
0Ib + σ2

11b1
′
b.

Theorem 3.1 For the model Y given in (1), the following steps can be used to estimate the

parameters µ, α∗, σ1 and σ0 :

E-step: Given yj and the parameters of the last iteration (θ∗, δ∗), using (15) and (16) to

compute t̂j and t̂2j for j = 1, 2, · · · , a, respectively.

t̂j = η̂j +
ϕ(η̂j/τ̂j)

Φ(η̂j/τ̂j)
τ̂j ,

t̂2j = η̂2j + τ̂2j +
ϕ(η̂j/τ̂j)

Φ(η̂j/τ̂j)
τ̂j η̂j ,

M-step: Based on the estimated parameters of E-step, update (θ̂, δ̂) by ∂l(θ,δ)
∂µ = 0 , which
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leads to

µ̂ =


a∑

j=1

1′b

[
Σ̂−1 + τ̂2j Ψ̂

−11bσ̂1δ̂(1bσ̂1δ̂)
′Ψ̂−1

]
1b


−1

×

a∑
j=1

{
1′b

[
Σ̂−1 + τ̂2j Ψ̂

−11bσ̂1δ̂(1bσ̂1δ̂)
′Ψ̂−1

]
yj − t̂j1

′
bΨ̂

−11bσ̂1δ̂
}
,

and

v̂ = argmax
v

l(µ̂, v) , with v = (σ1, σ0, α
∗)′,

where l(µ̂, v) is given in (17) evaluated at updated µj = 1bµ̂, tj = t̂j and t2j = t̂2j , j = 1, 2, · · · , a.
δ = α∗/

√
1 + α∗2, Ψ = σ2

0Ib + 1b1
′
bσ

2
1(1− δ2), Σ = σ2

0Ib + σ2
11b1

′
b, and ηj and τj are defined in

(13). �
By using R or Matlab, the M-step can be easily implemented. After the starting values are

given, the parameter estimates will be obtained until the convergence of parameters by repeating

E-step and M-step, where the starting values are often chosen to be the corresponding estimates

under the normal assumption.

Remark 3.1 Let lj = (0, · · · , 0, 1, 0, · · · , 0)′ be an a × 1 vector. ε1 = (ε11, ε12, · · · , ε1a)′ ∼
SNa(0, σ

2
1Ia, α) is given in (1). Thus, l′jε1 = ε1j ∼ SN(0, σ2

1 , α
∗), where

α∗ =
l′jα[

1 + α′(Ia − lj l′j)α
]1/2 .

In particular, when α = α21a, then ε1j ∼ SN(0, σ2
1 , α2/

√
[1 + α2

2(a− 1)]), j = 1, 2, · · · , a. �

§4 A parametric bootstrap approach

In this section, a PB approach (Efron et al. [18]) for testing problem of fixed effect µ in the

skew-normal one-way classification model given in (1) is developed. We are interested in testing

the following hypothesis

H0 : µ = d vs H1 : µ ̸= d (18)

By Theorem 2.2, we know under some conditions that

Q =
Y ′AY

σ2
∼ Sχ2

m(λ, δ1, δ2), (19)

where A = Ia ⊗ (1b1
′
b/b) , σ2 = σ2

0 + bσ2
1 , λ = µ′

yAµy/σ
2, µy = 1abµ, δ1 = α′

1Ω
1/2Aµy/(dσ),

δ2 = α′
1P1P

′
1α1/d

2, and Ω, d, P1, and α1 are defined in Theorem 2.2. In particular, when d = 0,

Q degenerate into chi-square distribution that

Q =
Y ′AY

σ2
∼ χ2

m.

Defined

Q∗ = σ2Q = Y ′AY ∼ σ2Sχ2
m(λ, δ1, δ2). (20)

If α, σ2
1 and σ2

0 are known, then Q∗ can be a statistic for hypothesis testing problem (18). The

null hypothesis H0 is rejected at significance level β whenever

Q∗ = Y ′AY > σ2Sχ2
m,β(λ, δ1, δ2),
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where Sχ2
m,β(λ, δ1, δ2) denotes the critical value of Sχ2

m(λ, δ1, δ2) distribution for significance

level β. However, the skewness parameter α and variances components σ2
1 and σ2

0 are unknown.

In this case, a test statistic can be obtained by replacing α, σ2
1 and σ2

0 with α̂, σ̂2
1 and σ̂2

0 in

Section 3, and is given by

Q∗ = Y ′AY ∼ σ̂2Sχ2
m(λ̂, δ̂1, δ̂2),

The PB approach involves sampling from the estimated models. That is, samples or sample

statistics are generated from parametric models with the parameters replaced by their estimates.

Under the null hypothesis H0 in (18), we can generate Q̃∗ as

Q̃∗ ∼ σ̂2Sχ2
m(λ̂, δ̂1, δ̂2). (21)

Theorem 4.1 For a given significance level β, the PB test rejects H0 in (18) when

p = Pr(Q̃∗ > Q∗ = Y ′AY ) < β, (22)

where Q̃∗ is defined in (21) and A = Ia ⊗ (1b1
′
b/b). �

For a given α, σ2
1 and σ2

0 , the above p-value does not depend on any unknown parameters.

Thus, it can be estimated using Monte Carlo simulation given in Algorithm 4.1.

Algorithm 4.1 For a given α, σ2
1 and σ2

0 :

Compute Q∗ = Y ′AY

For k = 1, 2, · · · , n
Generate U ∼ SNm(ν, Im, α) and T = U ′U ∼ Sχ2

m(λ̂, δ̂1, δ̂2) with λ̂ = ν′ν, δ̂1 = α′ν and

δ̂2 = α′α.

Compute Q̃∗, where Q̃∗ = σ̂2T

If Q̃∗ > Q∗, set Wk = 1

(end loop)

1/m
∑m

k=1 Wk is an estimate of p-value in (22) by using Monte Carlo simulation. �

§5 Simulation study

To evaluate the performance of the proposed PB approach, we intend to study the behavior

of Type I error rate and power in this section. In particular, we would like to see if the simulated

Type I error rates of the proposed test can maintain the nominal significance level.

In order to estimate the Type I error rates of the PB test, we have following two-step

simulation. Firstly, for a given parameter and sample size, we generate a sample from the

population, and compute the p-value by Algorithm 4.1. Then, repeat the Algorithm 4.1 for M

times, and the Type I error rates is obtained by the proportion of these M estimated p-value

less than the nominal level.

In the simulation, the data of Y are generated from model (1) with different choice of

parameters and sample sizes. To be specific, n and M are taken to be 2500, and a = 3, 4, 5,

b = 4, 8. The random effects ε1 are generated from the a-dimensional skew-normal distribution

with σ1 = 1, 2, 4, α = α∗1a and α∗ = 1/2, 1, 2. Meanwhile, the random errors ε0 are generated

independently as the standard normal distribution with σ0 = 1, 2, 4.
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Table 1: Simulated Type I error rates (H0 : µ = 0)

a b σ1 σ0 α∗
γ

0.025 0.05 0.075 0.1

3 4 2 2 1/2 0.036 0.056 0.082 0.104
1 0.042 0.068 0.086 0.102
2 0.042 0.070 0.076 0.098

3 4 2 4 1/2 0.030 0.058 0.078 0.106
1 0.032 0.050 0.076 0.102
2 0.028 0.052 0.070 0.086

3 8 2 4 1/2 0.034 0.054 0.078 0.104
1 0.046 0.060 0.084 0.114
2 0.038 0.062 0.082 0.094

3 8 4 4 1/2 0.046 0.068 0.080 0.112
1 0.032 0.050 0.072 0.084
2 0.034 0.066 0.084 0.114

4 4 2 2 1/2 0.036 0.062 0.074 0.098
1 0.034 0.054 0.064 0.074
2 0.028 0.046 0.076 0.086

4 4 4 2 1/2 0.032 0.058 0.078 0.092
1 0.038 0.048 0.072 0.086
2 0.028 0.052 0.080 0.094

4 8 2 2 1/2 0.040 0.058 0.072 0.086
1 0.032 0.050 0.068 0.082
2 0.034 0.050 0.080 0.082

4 8 4 2 1/2 0.024 0.042 0.080 0.098
1 0.044 0.060 0.070 0.086
2 0.034 0.052 0.088 0.098

5 8 1 1 1/2 0.024 0.048 0.066 0.088
1 0.036 0.046 0.060 0.082
2 0.036 0.050 0.068 0.086

5 8 2 2 1/2 0.026 0.042 0.062 0.074
1 0.026 0.046 0.060 0.072
2 0.038 0.046 0.060 0.076

5 8 2 4 1/2 0.036 0.050 0.060 0.072
1 0.034 0.048 0.065 0.085
2 0.038 0.046 0.060 0.080

5 8 4 4 1/2 0.038 0.058 0.078 0.098
1 0.040 0.054 0.074 0.09
2 0.036 0.068 0.084 0.100

5 4 4 2 1/2 0.038 0.066 0.084 0.102
1 0.042 0.068 0.082 0.112
2 0.036 0.061 0.079 0.097
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Table 2: Simulated powers of the test (σ0 = 2)

a b σ1 α∗ µ
γ

0.025 0.05 0.075 0.1

3 4 1 1/3 1 0.252 0.316 0.376 0.428
2 0.634 0.728 0.786 0.826
3 0.912 0.946 0.960 0.984

3 4 2 1/2 1 0.248 0.304 0.338 0.394
2 0.478 0.534 0.614 0.678
3 0.692 0.758 0.826 0.848

3 4 2 1 1 0.236 0.286 0.352 0.384
2 0.518 0.614 0.666 0.696
3 0.748 0.812 0.856 0.908

3 8 1 1/3 1 0.386 0.472 0.526 0.588
2 0.794 0.858 0.912 0.932
3 0.976 0.988 0.994 0.996

3 8 2 1/2 1 0.258 0.318 0.370 0.396
2 0.478 0.540 0.610 0.652
3 0.764 0.826 0.862 0.888

3 8 2 1 1 0.226 0.308 0.380 0.410
2 0.618 0.696 0.750 0.790
3 0.832 0.886 0.936 0.958

4 4 1 1/3 1 0.256 0.342 0.400 0.450
2 0.730 0.802 0.854 0.880
3 0.940 0.960 0.976 0.994

4 4 2 1 1 0.172 0.220 0.292 0.336
2 0.506 0.608 0.670 0.732
3 0.804 0.886 0.914 0.934

4 8 1 1/3 1 0.358 0.432 0.480 0.532
2 0.854 0.904 0.932 0.954
3 0.994 0.998 0.998 0.998

4 8 2 1 1 0.214 0.270 0.312 0.344
2 0.546 0.634 0.736 0.794
3 0.870 0.926 0.96 0.970

5 4 2 1/2 1 0.170 0.226 0.292 0.328
2 0.466 0.574 0.628 0.680
3 0.792 0.856 0.906 0.924

5 4 2 1 1 0.180 0.238 0.292 0.334
2 0.496 0.598 0.692 0.740
3 0.852 0.914 0.948 0.968

5 8 2 1/2 1 0.192 0.262 0.324 0.364
2 0.526 0.61 0.682 0.744
3 0.850 0.918 0.946 0.964
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Table 1 presents the estimated Type I error rates of the PB test for various combinations

of a, b, σ1, σ0 and α∗. And we can see that the Type I error rates of the PB test maintain

the various nominal level very well. Table 2 presents the estimated powers of the PB test for

various combinations of a, b, σ1, α∗ and µ. In case where µ departs from the null hypothesis

H0 : µ = 0, the powers raise significantly as the sample size increases.

§6 An illustrative example

The data set was obtained from a study of leaf area index (LAI) of robinnia pseudoscacia

in the Huaiping forest farm of Shannxi Province from June to October in 2010. The data

of LAI are given in Table 3 of Appendix and the frequency histogram of LAI is given in

Figure 1. For testing the normality of the data, the p-values from R output for Shapiro-

Wilk test, Kolmogorov-Smirnov test and Cramer-von Mises test are 0.0007, 0.0463 and 0.0098,

respectively. We can conclude that the LAI is not normally distributed at 5% significance

level. Also the chi-square goodness-of-fit test is used to test the null hypothesis that the LAI

is skew-normally distributed. The value of the test statistic χ2 = 5.0929 < χ2
0.05,2 = 5.9915, so

the null hypothesis is not rejected at 5% significance level. Hence, the distribution of LAI can

be considered approximately skew-normal. Based on the method of moment estimation, the

LAI is approximately distributed as SN(1.2730, 3.3060, 2.7411) and its density curve is given

in Figure 1.

Figure 1. Frequency histogram of the LAI with superimposed skew-normal density curve

Next, we assume that the model of LAI is written as

yj = µj + 1bε1j + ε0j , j = 1, 2, 3, 4. (23)

Using the ML estimation of Section 3, we can estimate µ as µ̂ = 2.6358. Under the null

hypothesis H0 : µ = 0, the p-value of the proposed PB test is calculated as 0.000. Therefore,

the null hypothesis H0 is rejected at 5% significance level.
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§7 Conclusion

In the paper, we have considered the one-way classification model with skew-normal random

effects. Then the MGF, density function and noncentral skew chi-square distribution are given.

Based on the EM algorithm, the ML estimation for unknown parameters is obtained. Further,

the PB approach for testing problem of fixed effect is developed. The simulation results show

that the PB approach provides satisfactory performances on the Type I error rates and powers,

even for small samples. In summary, the PB approach is suggested to be used for inference on

the fixed effect in the one-way classification model with skew-normal random effects.

§8 Appendix

Table 3: The observed values of LAI

Batch
LAI(y)

June(y1) July(y2) September(y3) October(y4)

1 4.87 3.32 2.05 1.50

2 5.00 3.02 2.12 1.46

3 4.72 3.28 2.24 1.55

4 5.16 3.63 2.56 1.27

5 5.11 3.68 2.67 1.26

6 5.03 3.79 2.61 1.37

7 5.36 3.68 2.42 1.87

8 5.17 4.06 2.58 1.75

9 5.56 4.13 2.56 1.81

10 4.48 2.92 1.84 1.98

11 4.55 3.05 1.94 1.89

12 4.69 3.02 1.95 1.71

13 2.54 2.78 2.29 1.29

14 3.09 2.35 1.94 1.34

15 2.79 2.40 2.20 1.29

16 3.80 3.28 1.56 1.10

17 3.61 3.45 1.40 1.04

18 3.53 2.85 1.36 1.08

19 2.51 3.05 1.60 0.86

20 2.41 2.78 1.50 0.70

21 2.80 2.72 1.88 0.82

22 3.23 2.64 1.63 1.19

23 3.46 2.88 1.66 1.24

24 3.12 3.00 1.62 1.14
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