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Asymptotics of estimators for nonparametric multivariate

regression models with long memory

WANG Li-hong WANG Ming

Abstract. In this paper, a nonparametric multivariate regression model with long memory

covariates and long memory errors is considered. We approximate the nonparametric multi-

variate regression function by the weighted additive one-dimensional functions. The local linear

smoothing and least squares method are proposed for the one-dimensional regression estimation

and the weight parameters estimation, respectively. The asymptotic behaviors of the proposed

estimators are investigated.

§1 Introduction

In recent years long memory time series analysis has become an important tool for analyzing

long range dependent data, see, e.g. [3], [9] and [30]. The recent monographs of [4] and [17]

contain numerous additional references. In this article we will consider the estimation of a long

memory nonparametric multivariate regression model.

Because of the poor convergence rate of the nonparametric multivariate regression esti-

mation, known as “the curse of dimensionality”, various dimension reduction methods using

nonparametric or semiparametric analysis of time series, such as varying coefficient models,

partially linear additive models, flexible semiparametric models, the popular LASSO type ap-

proach, have been pursued in the literature for independent or short range dependent processes,

see, for example, [1], [7], [8], [12], [13], [14], [15], [22], [24], [25], [26], [35], and [36]. However, to

the best of our knowledge, the dimension reduction methods are not yet sufficiently developed

for long memory time series. This is the issue we intend to address in the current paper.

Specifically, we consider the stationary random process (Yt, Xt) ∈ R × Rp, p ≥ 1, t =

1, 2, · · · , and assume the availability of the data {Yt, Xt, t = 1, · · · , n}, for estimating the

regression function m(x) = E(Yt|Xt = x). Without loss of generality we assume that EYt = 0,

otherwise we replace Yt by Yt − 1
n

∑n
t=1 Yt.
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[22] proposed a semiparametric estimation method for estimating the regression func-

tion m(x) = E(Yt|Xt = x) under short range dependent assumption of the process (Yt, Xt).

They approximated the multivariate regression function m(x) by an affine combination of one-

dimensional marginal regression functions. The weight parameters involved in the approxi-

mation are estimated by least squares on the basis of the first-stage Nadaraya-Watson kernel

estimates of the marginal regressions. It is shown that the convergence rate of the estimators

does not depend on the dimension and thus the curse of dimensionality is avoided. The advan-

tages of the method are also demonstrated by Monte Carlo simulation and real data examples.

Due to its good performance, we shall follow this approach for the long memory processes in this

paper, but apply the local linear smoothing method instead of Nadaraya-Watson kernel method

for the first-stage nonparametric regression estimation. One motivation of using the local linear

regression smoothers is that they repair the drawbacks of Nadaraya-Watson method. See [10]

for additional discussion.

The local linear regression estimator has been studied extensively in the literature for time

series models due to its superiority in function estimation. Asymptotic properties of the es-

timator under the conditions of independence as well as weak dependence are investigated,

see, for example, [2], [5], [6], [10], [11], [20], [23], [27], [32] and [33]. [28] studied the nature

of the asymptotic distributions for the local linear estimators of the regression models with

independent designs and Gaussian-subordinated stationary long range dependent errors. [21]

considered the local linear estimator of the conditional medians for stationary long memory lin-

ear time series models. [34] investigated the local linear estimation for a stationary long memory

nonparametric spatio-temporal regression model.

Let mj(xj) = E(Yt|Xtj = xj), j = 1, · · · , p. We approximate m(x) = E(Yt|Xt = x) by

mw(x) =

p∑
j=1

wjmj(xj)

with some weights wj , j = 1, · · · , p, where x = (x1, · · · , xp)
T . To allow for the conditional het-

eroscedasticity, define the errors as σ(Xt)εt := Yt−mw(Xt) and σj(Xt)ηt := Yt−mj(Xtj), j =

1, · · · , p, t = 1, 2, · · · . That is,
Yt = mw(Xt) + σ(Xt)εt, t = 1, 2, · · · , (1)

and

Yt = mj(Xtj) + σj(Xt)ηt, j = 1, · · · , p, t = 1, 2, · · · (2)

We assume that the processes {εt, t = 1, 2, · · · } and {ηt, t = 1, 2, · · · } are mutually independent

long memory processes with zero mean and variance one, and the conditional heteroscedasticity

is permitted. We also assume that {εt, t = 1, 2, · · · } and {ηt, t = 1, 2, · · · } are independent

of {Xt, t = 1, 2, · · · }. The long memory property of the processes {εt}, {ηt} and {Xt} will be

discussed in details in the next section.

The main idea is that we first use the local linear smoother, m̂j(xj), to estimate the one-

dimensional function mj(xj), and then least squares estimators of the weights wj , ŵj , can be
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obtained. Finally, we can estimate the multivariate regression function m(x) by

m̂(x) =

p∑
j=1

ŵjm̂j(xj).

It is worth mentioning that m̂(x) can only be taken as the approximated value of m(x) as∑p
j=1 wjmj(xj) may not equal to m(x) except the full linear regression case. As stated in [22],

because the closed form for the parametric estimator of wj can be obtained and no iterative

algorithm is involved, this method is fast to be computed especially when p is large, and thus

avoids the curse of dimensionality. We shall show that, in the long memory case, the method

can also avoid the curse of dimensionality.

Now we estimate mj(xj) by using local linear fitting method. That is, we approximate mj(·)
in a neighborhood of xj as

mj(x̃) ≈ mj(xj) + (x̃− xj)m
′
j(xj),

where m′
j(·) is the first derivative of the function mj(·). This suggests the following estimator

of mj(xj):

m̂j(xj) = (1, 0)U−1
n Vn, (3)

where

Un := Un(xj) =

(
U0 U1

U1 U2

)
, Vn := Vn(xj) =

(
V0

V1

)
,

where

Ul := Ul(xj) =
1

n

n∑
t=1

(
Xtj − xj

h

)l

Kh(Xtj − xj), l = 0, 1, 2,

and

Vl := Vl(xj) =
1

n

n∑
t=1

(
Xtj − xj

h

)l

Kh(Xtj − xj)Yt, l = 0, 1,

and h = hn is a sequence of bandwidths tending to zero at an appropriate rate as n tends to

infinity, K is a kernel satisfying the conditions given in the next section, and Kh(t) = K(t/h)/h.

As suggested in [29], since the performance of the estimator m̂j(xj) will be poor for large values

of xj , we shall assume that Xtj falls into an interval [an, qn], where an < 0 < qn, and −an and

qn tend to infinity slowly.

Define

M̂ =


m̂1(X11) · · · m̂p(X1p)

...
...

...

m̂1(Xn1) · · · m̂p(Xnp)

 ,

and y = (Y1, · · · , Yn)
T . Let w = (w1, · · · , wp)

T . The least squares estimators for the weights

are

ŵ = (M̂T M̂)−1M̂T y.

In the following section, we will study the asymptotic properties of the estimators ŵ and

m̂(x) for long memory processes. It is shown that the convergence rates of the estimators do

not depend on the dimension p. This means that, for the long memory nonparametric multi-

variate regression models, this dimension reduction estimation method not only incorporates

fast computation when p is large but also solves the curse of dimensionality problem. Section 3
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illustrates the estimation method with a small real data analysis. The proofs of the theorems

are in Section 4.

Throughout the paper, all limits are taken as n → ∞, unless specified otherwise,
D−→

denotes convergence in distribution, and
P−→ denotes convergence in probability. For any two

real sequences {an} and {bn}, an ∼ bn means that there are constants c > 0 and C < ∞ such

that c ≤ an/bn ≤ C for all sufficiently large n.

§2 Asymptotic properties of the estimators

Throughout this paper, we assume the following conditions:

Assumption(A)

(A1) {εt, t = 1, 2, · · · } is a zero mean stationary process with the autocovariance function

satisfying

γε(k) = Cov(εt, εt+k) ∼ Gε|k|2dε−1

for large k, where 0 < dε <
1
2 and Gε is a positive constant.

(A2) {ηt, t = 1, 2, · · · } is a zero mean stationary process with the autocovariance function

satisfying

γη(k) = Cov(ηt, ηt+k) ∼ Gη|k|2dη−1

for large k, where 0 < dη < 1
2 and Gη is a positive constant.

(A3) The marginal density function of Xtj , fj(·), is positive, bounded and Lipschitz continuous.

The joint density function of Xt, fX(·), is positive, bounded and differentiable with the deriva-

tive f ′
X satisfying

∫
∥f ′

X(x)∥dx < ∞,
∫
∥f ′

X(xj , x
′)∥2/fj(xj)dx

′dxj < ∞, where ∥ · ∥ denotes

the Euclidean norm and x′ = (x1 · · · , xj−1, xj+1, · · · , xp)
T .

(A4) The joint density function of the random vectors Xt and Xs, fX,t,s, exists and satisfies

that

Dt,s(x, y) ≤ GX |s− t|2dX−1∥f ′
X(x)|∥f ′

X(y)∥
for any x, y ∈ Rp as |s − t| → ∞, where Dt,s(x, y) = |fX,t,s(x, y) − fX(x)fX(y)|, 0 < dX < 1

2

and GX is a positive constant. Moreover, the joint density function of the random vectors Xt,

Xs and Xk, fX,t,s,k, exists and satisfies that

Dt,s,k(x, y, z) ≤ G′
X

(
|k − t|2dX−1∥f ′

X(x)∥fX(y)∥f ′
X(z)∥+ |k − s|2dX−1fX(x)∥f ′

X(y)∥∥f ′
X(z)∥

)
for any x, y, z ∈ Rp as |k − t| → ∞, |k − s| → ∞ and |s − t| → ∞, where Dt,s,k(x, y, z) =

|fX,t,s,k(x, y, z)− fX,t,s(x, y)fX(z)|, and G′
X is a positive constant.

(A5) The regression functions mj(·), 1 ≤ j ≤ p, are bounded, integrable and three times

differentiable with bounded derivatives.

(A6) The kernel density K is bounded with compact support, and ulK(u) has Fourier transform

Φl(r) = 2π
∫
eiruulK(u)du that satisfies

∫
|Φl(r)|dr < ∞ for l = 0, 1, 2, 3.

(A7) The functions σ(·) and σj(·), 1 ≤ j ≤ p, are bounded and integrable.

(A8) ndX−1/2h−1 → 0 and n2dη−1h−1 → 0.

(A9) n1/2−max(dε,dη)h → 0, ndX−max(dε,dη)h−1 → 0 and n2max(dε,dη)−1h−1 log2 n → 0.
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(A10) The interval [an, qn] is such that −an and qn tend to infinity slowly enough so that log n

infxj∈[an,qn] fj(xj) ≥ Cj for 0 < Cj < ∞, j = 1, · · · , p.

The assumptions (A3), (A5)-(A7) for the kernel, the density functions and the regression

functions are the usual standard conditions for local linear estimation.

In addition, Assumption (A8) is used for proving the weak consistency of the local linear

estimator m̂j(·) (Theorem 2.1). Assumptions (A9) and (A10) are needed to obtain the asymp-

totic distributions of the least squares estimator ŵ and the proposed nonparametric estimator

m̂(x) (Theorems 2.2 and 2.3). Assumption (A10) is analogous to [29] who proves uniform

convergence rates for local linear estimators based on independent data.

Similar long memory conditions in Assumptions (A1), (A2) and (A4) are also imposed in [28]

and [31]. Many commonly used densities including Gaussian can be shown to satisfy Assumption

(A3). The long memory property of a stationary random process can be characterized in various

ways (see, for example [19]). In this paper the error processes {εt} and {ηt} have long memory

in the covariance sense, whereas the long memory property of the explanatory process {Xt} is

characterized by its joint distributions (Assumption (A4)), which is similar to Assumption B10

in [31].

When p = 1, from the proof of Lemma 2 of [16], we can show that, if {Xt} is a one-

dimensional linear long memory process, then under some mild conditions,

fX,t,s(x, y)− fX(x)fX(y) = γX(s− t)f ′
X(x)f ′

X(y) + o(|s− t|2dX−1),

and

fX,t,s,k(x, y, z)− fX,t,s(x, y)fX(z)

= γX(k − t)
∂fX,t,s(x, y)

∂x
f ′
X(z) + γX(k − s)

∂fX,t,s(x, y)

∂y
f ′
X(z)

+o(|k − t|2dX−1) + o(|k − s|2dX−1),

for any x, y, z ∈ R as |s − t| → ∞, |k − t| → ∞ and |k − s| → ∞, where ∂fX,t,s(x, y)/∂x

and ∂fX,t,s(x, y)/∂y are the partial derivatives of fX,t,s(x, y), and γX(k) = Cov(X0, Xk) ∼
CX |k|2dX−1 as |k| → ∞. These equations obviously imply Assumption (A4).

Let

µl =

∫
ulK(u)du, l = 1, 2, 3, µ = (µ2, µ3)

T ,

U =

(
1 µ1

µ1 µ2

)
,

and V ∗
n := V ∗

n (Xtj) = (V ∗
0 , V

∗
1 )

T , where

V ∗
l := V ∗

l (Xtj) =
1

n

n∑
s=1

(
Xsj −Xtj

h

)l

Kh(Xsj −Xtj)σj(Xs)ηs, l = 0, 1.

We first show the weak consistency of the local linear estimator m̂j(·). Let m′′
j (·) be the second

derivative of the function mj(·).
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Theorem 2.1. Under Assumptions (A2)-(A8), we have, for any fixed t,

m̂j(Xtj)−mj(Xtj) = (1, 0)
{
(fj(Xtj)U)−1V ∗

n +
h2

2
U−1µm′′

j (Xtj)
}

+OP (n
dX−1/2h−1) +OP (h) (4)

and

m̂j(Xtj)−mj(Xtj)
P−→ 0.

Next we establish the asymptotic distribution of the least squares estimator ŵ. As we will

see, under long memory of the processes {εt}, {ηt} and {Xt}, the limiting distribution and the

convergence rate of ŵ depend on the relative strength of dependence in εt and ηt but do not

depend on the dimension p.

Define

M =


m1(X11) · · · mp(X1p)

...
...

...

m1(Xn1) · · · mp(Xnp)

 ,

Λ =


E(m1(Xt1)m1(Xt1)) · · · E(m1(Xt1)mp(Xtp))

...
...

...

E(mp(Xtp)m1(Xt1)) · · · E(mp(Xtp)mp(Xtp))

 ,

and ε∗ = (σ(X1)ε1, · · · , σ(Xn)εn)
T . To simplify the formulas we assume that the kernel K is

symmetric. This implies that µ1 = µ3 = 0.

Theorem 2.2. Assume that Assumption (A) holds, the kernel K is symmetric and the matrix

Λ is positive definite.

(a). If dη < dε and n−1/2−dε
∑n

t=1 εt converges in distribution to a random variable Z1,

then

n1/2−dε(ŵ − w)
D−→ Λ−1Θ1Z1,

where Θ1 = (Θ11, · · · ,Θ1p)
T , and Θ1j = E

(
mj(Xtj)σ(Xt)

)
.

(b). If dη > dε and n−1/2−dη
∑n

t=1 ηt converges in distribution to a random variable Z2,

then

n1/2−dη (ŵ − w)
D−→ −Λ−1Θ2Z2,

where Θ2 = (Θ21, · · · ,Θ2p)
T , Θ2j =

∑p
k=1 wkE(σk(Xt)ζj(Xtk)) and ζj(Xtk) = E(mj(Xtj)|Xtk).

(c). If dη = dε = d, n−1/2−d
∑n

t=1 εt converges in distribution to a random variable Z1, and

n−1/2−d
∑n

t=1 ηt converges in distribution to a random variable Z2, then

n1/2−d(ŵ − w)
D−→ Λ−1(Θ1Z1 −Θ2Z2).

Theorem 2.2 examines the asymptotic behavior of the parametric estimator of the weight

and shows that the estimator can achieve the n1/2−max{dε,dη} convergence rate when we re-

place mj(Xtj) by its nonparametric local linear estimator. We can also see that the estimator

is asymptotically unbiased and its asymptotic distribution is a scaled distribution of a fixed

random variable. Actually, from the proof we see that the behavior of the estimator is asymp-
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totically governed by the sample mean of the errors {εt} and {ηt}. If {εt} and {ηt} are linear

or Gaussian random processes with long memory, the random variables Z1 and Z2 will have

normal distributions (cf. [17] and [30]), hence the limiting distribution of the estimator is also

normal.

Next we establish the limiting distribution of the proposed nonparametric estimator m̂(x).

Theorem 2.3. (a). Under the conditions of Theorem 2.2 (a), for any x ∈ [an, qn]
p,

n1/2−dε(m̂(x)−mw(x))
D−→ (Λ−1Θ1)

TΥ(x)Z1,

where Υ(x) = (m1(x1), · · · ,mp(xp))
T .

(b). Under the conditions of Theorem 2.2 (b), for any x ∈ [an, qn]
p,

n1/2−dη (m̂(x)−mw(x))
D−→ (wTΨ(x)− (Λ−1Θ2)

TΥ(x))Z2,

where Ψ(x) = (g1(x1), · · · , gp(xp))
T , and gj(xj) = (fj(xj))

−1
∫
σj(xj , x

′)fX(xj , x
′)dx′.

(c). Under the conditions of Theorem 2.2 (c), for any x ∈ [an, qn]
p,

n1/2−d(m̂(x)−mw(x))
D−→ (Λ−1Θ1)

TΥ(x)Z1 + (wTΨ(x)− (Λ−1Θ2)
TΥ(x))Z2.

Typically if one uses h ∝ n−δ, then the assumptions about h in Theorem 2.3 will be satisfied

as long 1/2 − max{dε, dη} < δ < min{1 − 2max(dε, dη),max{dε, dη} − dX}. For example, if

dε = dη = 0.4 and dX = 0.2, then Theorems 2.1-2.3 hold for 0.1 < δ < 0.2.

From Theorem 2.3 we see that the estimator m̂(x) is asymptotically unbiased and have

the same convergence rate as in the univariate nonparametric regression setting up (cf. [28]).

Moreover, unlike in the independent or weakly dependent cases, the limiting distribution of the

estimator is a scaled distribution of a fixed random variable. When {εt} and {ηt} are linear or

Gaussian random processes with long memory, the limiting distribution of the estimator will

be normal.

As evidenced by Theorem 2.3, although the asymptotic variance of the estimator for the

long memory multivariate semiparametric additive model is more complex than its univariate

counterpart, the central limit theorems similar to those studied for the univariate case still

hold and the convergence rate does not depend on the dimension p. Therefore the curse of

dimensionality is effectively avoided.

§3 A real data example

We now report the results of a small real data example to demonstrate the finite sample per-

formance of the proposed local linear estimation for semiparametric additive long memory time

series models. We will see that the main advantage of the proposed method is computational

and its performance in the case of high-dimensional problems.

We consider a real financial data set from the S&P 500 Index series starting from April 11,

2005 to March 23, 2018. The data consists of daily trading volume vt and the absolute daily

return Rt = |100 log(ct/ct−1)|, where ct is the daily close price. It is well known that most daily

financial time series exhibit quite persistent autocorrelation in their absolute returns, e.g. [18]
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Table 1: The MSE of the residuals under six circumstances
model (1) (2) (3)

ARFIMA 1.2547 1.2528 1.2414
WAL 0.5527 0.4876 0.4540

model (4) (5) (6)
ARFIMA 1.2547 1.2528 1.2414
WAL 0.0034 0.0016 0.0014

analyzed the long memory properties of absolute stock returns of the S&P 500 Index.

We are interested in fitting the data using the proposed weighted nonparametric additive

model with a long lag. We will also check if the volume lags would be helpful in improving the

precision of the estimation and model fitting. We explore the following six circumstances with

Yt = Rt. (1). p=30 and Xt = (Rt−1, · · · , Rt−p)
T ; (2). p=45 and Xt = (Rt−1, · · · , Rt−p)

T ; (3).

p=60 and Xt = (Rt−1, · · · , Rt−p)
T ; (4). p=30 and Xt = (Rt−1, · · · , Rt−p, vt−1, · · · , vt−p)

T ;

(5). p=45 and Xt = (Rt−1, · · · , Rt−p, vt−1, · · · , vt−p)
T ; (6). p=60 and Xt = (Rt−1, · · · , Rt−p,

vt−1, · · · , vt−p)
T . We compare the mean squared error (MSE) of the fitted residuals by using

two methods, the linear ARFIMA (p, d, 0) model and the weighted nonparametric additive

model of order p by local linear regression estimation (WAL) method. The MSE is defined by

MSE =
1

n− p

n∑
t=p+1

(Yt − Ŷt)
2,

where Ŷt = m̂(Xt) =
∑p

j=1 ŵjm̂j(Xt−j).

The results are displayed in Table 1. From the table we see that the MSEs of WAL method

are much smaller than those of the ARFIMA method. Moreover, it seems that the volume lags

contribute much to the estimation and model fitting. It is clear that the weighted nonlinear

additive model performs better than the linear ARFIMA method. The simulation evidence

indicates that the weighted nonparametric additive model can effectively avoid the curse of

dimensionality and solve the model fitting precision and computation burden problems for the

high-dimensional nonlinear models.

§4 Proofs

Proof of Theorem 2.1. We first show that, for l = 0, 1, 2,

sup
xj∈R

|Ul − fj(xj)µl| = OP (n
dX−1/2h−1) +OP (h), (5)

where µ0 = 1.

By Assumptions (A3) and (A4), we have

Dj,t,s(xj , yj) := |fj,t,s(xj , yj)− fj(xj)fj(yj)|

=

∣∣∣∣∫ (fX,t,s(xj , x
′, yj , y

′)− fX(xj , x
′)fX(yj , y

′))dx′dy′
∣∣∣∣

≤ GX |s− t|2dX−1

∫
∥f ′

X(xj , x
′)∥∥f ′

X(yj , y
′)∥dx′dy′ (6)
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for any xj , yj ∈ R as |s−t| → ∞, where fj,t,s is the joint density function of the random variables

Xtj and Xsj , and x′ = (x1 · · · , xj−1, xj+1, · · · , xp)
T , and y′ = (y1 · · · , yj−1, yj+1, · · · , yp)T .

Similar arguments also yield

Dj,t,s,k(xj , yj , zj) := |fj,t,s,k(xj , yj , zj)− fj,t,s(xj , yj)fj(zj)|

≤ G′
X

(
|k − t|2dX−1fj(yj)

∫
∥f ′

X(xj , x
′)∥∥f ′

X(zj , z
′)∥dx′dz′

+|k − s|2dX−1fj(xj)

∫
∥f ′

X(yj , y
′)∥∥f ′

X(zj , z
′)∥dy′dz′

)
(7)

for any xj , yj , zj ∈ R as |s − t| → ∞, |k − t| → ∞ and |k − s| → ∞, where fj,t,s,k is the joint

density function of the random variables Xtj , Xsj and Xkj .

First

E(Ul) =

∫
ulK(u)fj(xj + hu)du.

Hence

sup
xj∈R

|E(Ul)− fj(xj)µl| = sup
xj∈R

∣∣∣∣∫ ulK(u)(fj(xj + hu)− fj(xj))du

∣∣∣∣
≤

∫
|ulK(u)| sup

xj∈R
|fj(xj + hu)− fj(xj)|du

= O(h). (8)

Moreover, since Ul =
1
nh

∑n
t=1

∫
e−ir(Xtj−xj)/hΦl(r)dr, then

sup
xj∈R

|Ul − E(Ul)|

= sup
xj∈R

∣∣∣∣∣ 1nh
n∑

t=1

{∫
e−ir(Xtj−xj)/hΦl(r)dr − E

[∫
e−ir(Xtj−xj)/hΦl(r)dr

]}∣∣∣∣∣
≤

∫ ∣∣∣∣∣ 1nh
n∑

t=1

{
e−irXtj/h − E[e−irXtj/h]

}∣∣∣∣∣ supxj∈R
|eirxj/h||Φl(r)|dr

≤
∫ ∣∣∣∣∣ 1n

n∑
t=1

{
e−irXtj − E[e−irXtj ]

}∣∣∣∣∣ |Φl(rh)|dr.

By (6), for some large enough N ,

V ar

(
1

n

n∑
t=1

cos(rXtj)

)

=
1

n2

n∑
t=1

V ar(cos(rXtj)) +
1

n2

∑
t ̸=s

Cov(cos(rXtj), cos(rXsj))

≤ Cn−1 +
1

n2

 ∑
0<|s−t|≤N

+
∑

|s−t|>N

∫ cos(rx) cos(ry){fj,t,s(x, y)− fj(x)fj(y)}dxdy

≤ Cn−1 + Cn−2
∑

|s−t|>N

(
|s− t|2dX−1 + o(|s− t|2dX−1)

)
= O(n2dX−1).



412 Appl. Math. J. Chinese Univ. Vol. 34, No. 4

The same inequality holds with cos(·) replaced by sin(·). Hence,

sup
r∈R

E
∣∣∣ 1
n

n∑
t=1

{
e−irXtj − E[e−irXtj ]

} ∣∣∣ = O(ndX−1/2).

This, together with the fact that
∫
|Φl(rh)|dr = O(h−1) by Assumption (A6), implies

sup
xj∈R

|Ul − E(Ul)| = OP (n
dX−1/2h−1). (9)

Thus (5) follows from (8) and (9). Now (5) implies that

Un(Xtj)− fj(Xtj)U = OP (n
dX−1/2h−1) +OP (h) (10)

in the sense that each element converges in probability. From (2) and (3), we get

m̂j(Xtj)−mj(Xtj) = (1, 0){U−1
n (Xtj)V

∗
n + U−1

n (Xtj)Rn},

where Rn = (R0, R1)
T , Rl =

1
n

∑n
s=1

(
Xsj−Xtj

h

)l
Kh(Xsj−Xtj)

(
mj(Xsj)−mj(Xtj)−m′

j(Xtj)

(Xsj −Xtj)
)
, l = 0, 1.

Using the Taylor expansion for mj(·) and Assumptions (A5)-(A6), and along similar lines

of the proof of (10), we have that,

Rn − 1

2
µh2fj(Xtj)m

′′
j (Xtj) = OP (n

dX−1/2h−1) +OP (h). (11)

This, together with (10), implies the first result of Theorem 2.1.

For any c = (c0, c1)
T ∈ R2, let Kc(u) = (c0+ c1u)K(u). Then, by (6), (7) and Assumptions

(A2), (A3), and (A6)-(A7), for any fixed t, we have,

V ar(cTV ∗
n )

≤ 2c20K
2(0)

n2h2
Eη2tE(σj(Xt))

2 +
2

n2h2

∑
1≤s≤n

s ̸=t

E(Kc((Xsj −Xtj)/h)σj(Xs))
2Eη2s

+
2

n2h2

∑
1≤s≤n

s ̸=t

n∑
l=1

E(ηsηs+l)E

(
Kc

(
Xsj −Xtj

h

)
Kc

(
Xs+l,j −Xtj

h

)
σj(Xs)σj(Xs+l)

)
≤ C(nh)−2

+
C

n2h

n∑
l=1

{
E(σj(Xs))

4

∫
K4

c (u)(Dj,s,s+l(xj , xj + hu) + fj(xj)fj(xj + hu))dxjdu

}1/2

+
C

n2h2

∑
1≤s≤n

s ̸=t

n∑
l=1

|γη(l)|

{
E(σj(Xs))

4E

(
Kc

(
Xsj −Xtj

h

)
Kc

(
Xs+l,j −Xtj

h

))2
}1/2

≤ C(nh)−2 + C(nh)−1 + C(nh)−1ndX−1/2

+
C

n2h

∑
1≤s≤n

s̸=t

n∑
l=1

|γη(l)|
{∫

K2
c (u)K

2
c (v)fj,t,s,s+l(xj , xj + hu, xj + hv)dxjdudv

}1/2

≤ O((nh)−1) +
C

n2h

∑
1≤s≤n

s ̸=t

n∑
l=1

l2dη−1
{∫

K2
c (u)K

2
c (v)

(
Dj,t,s,s+l(xj , xj + hu, xj + hv)

+Dj,t,s(xj , xj + hu)fj(xj + hv) + fj(xj)fj(xj + hu)fj(xj + hv)
)
dxjdudv

}1/2

.
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Since Assumption (A6) implies that
∫
K2

c (u)du < ∞, by (6), (7) and Assumption (A3), for any

fixed t,

C

n2h

∑
1≤s≤n

s ̸=t

n∑
l=1

l2dη−1
{∫

K2
c (u)K

2
c (v)Dj,t,s,s+l(xj , xj + hu, xj + hv)dxjdudv

}1/2

≤ C

n2h

∑
1≤s≤n

s ̸=t

n∑
l=1

l2dη−1
(
ldX−1/2 + |s+ l − t|dX−1/2

)
= O(h−1n2dη+dX−3/2),

C

n2h

∑
1≤s≤n

s ̸=t

n∑
l=1

l2dη−1
{∫

K2
c (u)K

2
c (v)Dj,t,s(xj , xj + hu)fj(xj + hv)dxjdudv

}1/2

≤ C

n2h

∑
1≤s≤n

s ̸=t

n∑
l=1

l2dη−1|s− t|dX−1/2 = O(h−1n2dη+dX−3/2),

and

C

n2h

∑
1≤s≤n

s̸=t

n∑
l=1

l2dη−1
{∫

K2
c (u)K

2
c (v)fj(xj)fj(xj + hu)fj(xj + hv)dxjdudv

}1/2

≤ C

n2h

∑
1≤s≤n

s̸=t

n∑
l=1

l2dη−1 = O(h−1n2dη−1).

Therefore Assumption (A8) implies that

V ar(cTV ∗
n ) = O((nh)−1) +O(h−1n2dη+dX−3/2) +O(h−1n2dη−1) = o(1). (12)

Combining this with (4) and the fact that E(V ∗
n ) = 0, we have m̂j(Xtj)−mj(Xtj) converges

to 0 in probability. �

Proof of Theorem 2.2. The proof will follow some of the arguments used in [22]. Hence we

shall mainly indicate the extra steps that are needed for us to achieve our goal. Note that

ŵ = (M̂T M̂)−1M̂T y = (M̂T M̂)−1M̂T (Mw + ε∗) = w + I1 + I2, (13)

where I1 = (M̂T M̂)−1M̂T (M−M̂)w, and I2 = (M̂T M̂)−1M̂T ε∗. From Theorem 2.1, we obtain

that M̂ ∼ M and M̂T M̂ ∼ MTM in the sense that each element converges in probability.

Moreover, we will show
1

n
MTM

P−→ Λ. (14)

In fact,

1

n
MTM =

1

n

n∑
t=1

MtM
T
t ,

and

E(MtM
T
t ) = Λ,

where Mt = (m1(Xt1), · · · ,mp(Xtp))
T , t = 1, · · · , n. Therefore, to prove (14), it suffices to

show that, for any 1 ≤ i, j ≤ p,

1

n

n∑
t=1

mi(Xti)mj(Xtj)− E(mi(Xti)mj(Xtj))
P−→ 0. (15)



414 Appl. Math. J. Chinese Univ. Vol. 34, No. 4

By Assumptions (A3) and (A4),

V ar

(
1

n

n∑
t=1

mi(Xti)mj(Xtj)

)

=
1

n
V ar(mi(Xti)mj(Xtj)) +

1

n2

∑
s̸=t

Cov(mi(Xti)mj(Xtj),mi(Xsi)mj(Xsj))

≤ O(n−1) +
C

n

n∑
l=1

∫
mi(xi)mi(yi)mj(xj)mj(yj)

·(fX,t,t+l(xi, xj , x
′, yi, yj , y

′)− fX(xi, xj , x
′)fX(yi, yj , y

′))dx′dy′dxidxjdyidyj

≤ O(n−1)

+
C

n

n∑
l=1

l2dX−1

∫
|mi(xi)mi(yi)mj(xj)mj(yj)|

·∥f ′
X(xi, xj , x

′)∥∥f ′
X(yi, yj , y

′)∥dx′dy′dxidxjdyidyj

≤ O(n−1) +
C

n

n∑
l=1

l2dX−1 = O(n−1) +O(n2dX−1),

which implies (15).

On the other hand, Theorem 2.1 yields that, for 1 ≤ j ≤ p,

(MT (M − M̂)w)j

=
n∑

t=1

p∑
k=1

wkmj(Xtj)(mk(Xtk)− m̂k(Xtk))

=

n∑
t=1

p∑
k=1

wkmj(Xtj)
(
− 1

n

n∑
s=1

(fk(Xtk))
−1Kh(Xsk −Xtk)σk(Xs)ηs

+OP (n
dX−1/2h−1) +OP (h)

)
= −

n∑
s=1

p∑
k=1

wkσk(Xs)ηs
1

n

n∑
t=1

mj(Xtj)(fk(Xtk))
−1Kh(Xsk −Xtk)

+OP (n
dX+1/2h−1) +OP (nh). (16)

When k = j,

1

n

n∑
t=1

mj(Xtj)(fk(Xtk))
−1Kh(Xsk −Xtk)

=
K(0)

nh
mj(Xsj)(fj(Xsj))

−1 +
1

n

∑
t̸=s

mj(Xtj)(fj(Xtj))
−1Kh(Xsj −Xtj).

By Assumption (A10),∣∣∣K(0)

nh
mj(Xsj)(fj(Xsj))

−1
∣∣∣ ≤ C

nh inf1≤s≤n fj(Xsj)
= OP ((nh)

−1 log n). (17)
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Next, similarly to the proof of (12), we obtain

E

 1

n

∑
t̸=s

mj(Xtj)(fj(Xtj))
−1Kh(Xsj −Xtj)−mj(Xsj)

2

=

∫
m2

j (x)fj(x)dx− 2

n

∑
t ̸=s

E(mj(Xtj)(fj(Xtj))
−1Kh(Xsj −Xtj)mj(Xsj))

+
1

n2

∑
t,l ̸=s

E
(
mj(Xtj)mj(Xlj)(fj(Xtj)fj(Xlj))

−1Kh(Xsj −Xtj)Kh(Xsj −Xlj)
)

=

∫
m2

j (x)fj(x)dx+R1 +R2, say. (18)

Note that

R1 = −2(n− 1)

n

∫
mj(x)mj(x+ hu)fj(x+ hu)K(u)dxdu

− 2

n

∑
t ̸=s

∫
mj(x)mj(x+ hu)

fj(x)
K(u)(fj,t,s(x, x+ hu)− fj(x)fj(x+ hu))dxdu

≤ −2

∫
m2

j (x)fj(x)dx+O(h) + C
1

n

n∑
l=1

l2dX−1

= −2

∫
m2

j (x)fj(x)dx+O(h) +O(n2dX−1), (19)

and

R2 =
1

n2

∑
t ̸=s

n∑
l=1

∫
mj(x− hu)mj(x− hv)

fj(x− hu)fj(x− hv)
K(u)K(v)fj,s,t,t+l(x, x− hu, x− hv)dxdudv

≤ 1

n2

∑
t ̸=s

n∑
l=1

∫
mj(x− hu)mj(x− hv)

fj(x− hu)fj(x− hv)
K(u)K(v)fj(x)fj(x− hu)fj(x− hv)dxdudv

+
C

n2

∑
t ̸=s

n∑
l=1

{
|t+ l − s|2dX−1 + l2dX−1

+

∫
mj(x− hu)mj(x− hv)

fj(x− hu)
K(u)K(v)

(
fj,s,t(x, x− hu)− fj(x)fj(x− hu)

)
dxdudv

}
=

∫
m2

j (x)fj(x)dx+O(h) +O(n2dX−1). (20)

Combining (17)–(20), we arrive at

1

n

n∑
t=1

mj(Xtj)(fj(Xtj))
−1Kh(Xsj −Xtj) = mj(Xsj) + oP (1). (21)

If k ̸= j, along the same but more tedious lines of the proof of (15) and (21), we get

1

n

n∑
t=1

mj(Xtj)(fk(Xtk))
−1Kh(Xsk −Xtk) = ζj(Xsk) + oP (1). (22)

Obviously, ζj(Xsj) = mj(Xsj). Hence, (14), together with (16), (21) and (22), yields

I1 = −Λ−1 1

n

n∑
t=1

βt(1 + oP (1)) +OP (n
dX−1/2h−1) +OP (h), (23)
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where βt = (βt1, · · · , βtp)
T , and βtj = ηt

∑p
k=1 wkσk(Xt)ζj(Xtk).

For I2, we have

I2 =
{
Λ−1 1

n

n∑
t=1

β∗
tj + Λ−1 1

n
(M̂ −M)T ε∗

}
(1 + oP (1)), (24)

where β∗
t = (β∗

t1, · · · , β∗
tp)

T , and β∗
tj = mj(Xtj)σ(Xt)εt.

Again by Theorem 2.1, we obtain, for 1 ≤ j ≤ p,(
1

n
(M̂ −M)T ε∗

)
j

=
1

n2

n∑
t,s=1

(fj(Xtj))
−1Kh(Xsj −Xtj)σj(Xs)σ(Xt)εtηs +OP (n

dX−1/2h−1) +OP (h)

=
K(0)

n2h

n∑
t=1

(fj(Xtj))
−1σj(Xt)σ(Xt)εtηt

+
1

n2

∑
t̸=s

(fj(Xtj))
−1Kh(Xsj −Xtj)σj(Xs)σ(Xt)εtηs

+OP (n
dX−1/2h−1) +OP (h)

= Q1 +Q2 +OP (n
dX−1/2h−1) +OP (h). (25)

First, Assumption (A10) implies

|Q1| ≤
C

n2h inf1≤j≤n fj(Xtj)

n∑
t=1

σj(Xt)σ(Xt)|εtηt| = OP ((nh)
−1 log n). (26)

In a same way, we have

n4Q2
2 = OP (n

2h−2 log2 n) +
∑
t1 ̸=s1

∑
t2 ̸=s2

εt1εt2ηs1ηs2σj(Xs1)σ(Xt1)σj(Xs2)σ(Xt2)

·(fj(Xt1,j))
−1(fj(Xt2,j))

−1Kh(Xs1,j −Xt1,j)Kh(Xs2,j −Xt2,j)

= OP (n
2h−2 log2 n) +Q22.

Note that

EQ22 =
∑
t1 ̸=s1

∑
t2 ̸=s2

γε(t1 − t2)γη(s1 − s2)E
(
σj(Xs1)σ(Xt1)σj(Xs2)σ(Xt2)

·(fj(Xt1,j))
−1(fj(Xt2,j))

−1Kh(Xs1,j −Xt1,j)Kh(Xs2,j −Xt2,j)
)

≤ Cn2h−1 log2 n
n∑

l1,l2=1

l2dε−1
1 l

2dη−1
2 = O(n2dε+2dη+2h−1 log2 n).

This implies that

Q2 = OP ((nh)
−1 log n) +OP (n

dε+dη−1h−1/2 log n). (27)

(24) to (27) lead to

I2 = Λ−1 1

n

n∑
t=1

β∗
t (1 + oP (1)) +OP (n

dε+dη−1h−1/2 log n) +OP (n
dX−1/2h−1) +OP (h). (28)
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By (13), (23) and (28), we obtain

ŵ − w = Λ−1 1

n

n∑
t=1

(β∗
t − βt)(1 + oP (1))

+OP (n
dε+dη−1h−1/2 log n) +OP (n

dX−1/2h−1) +OP (h). (29)

We are now ready to prove (a). For any c = (c1, · · · , cp)T ,

n1/2−dε
1

n

n∑
t=1

cT (β∗
t − βt) = n−1/2−dε

n∑
t=1

εtc
TMtσ(Xt)− n−1/2−dε

n∑
t=1

ηtWt,

where Wt =
∑p

j=1

∑p
k=1 wkσk(Xt)cjζj(Xtk). Observe that

V ar

(
n∑

t=1

ηtWt

)
= nEη2tEW 2

t +
∑
t ̸=s

γη(t− s)E(WtWs)

≤ O(n) + Cn

n∑
l=1

l2dη−1 = O(n) +O(n2dη+1).

Since dη < dε, we have

n−1/2−dε

n∑
t=1

ηtWt = OP (n
−dε) +OP (n

dη−dε) = oP (1). (30)

By (29), (30), the Slutsky theorem and the assumption that n1/2−dεh = o(1), ndX−dεh−1 =

o(1) and ndη−1/2h−1/2 log n = o(1), it suffices to show that

n−1/2−dε

n∑
t=1

εtc
TMtσ(Xt)

D−→ cTΘ1Z1. (31)

Let St =
∑p

j=1 cjmj(Xtj)σ(Xt). We obtain
n∑

t=1

εtc
TMtσ(Xt) =

n∑
t=1

εtESt +

n∑
t=1

εt(St − ESt). (32)

First we show that
n∑

t=1

εt(St − ESt) = oP (n
1/2+dε). (33)

Notice that ES2
t = E(cTMtσ(Xt))

2 < ∞ and

E

(
n∑

t=1

εt(St − ESt)

)2

≤
n∑

t=1

Eε2tES2
t +

∑
t ̸=s

γε(t− s)Cov(St, Ss)

≤ O(n) +
∑
t ̸=s

γε(t− s)

p∑
j,k=1

cjck

∫
mj(xj)mk(yk)σ(xj , x

′)σ(yk, y
′)

·(fX,t,s(xj , x
′, yk, y

′)− fX(xj , x
′)fX(yk, y

′))dx′dy′dxjdyk

≤ O(n) + Cn
n∑

l=1

l2dε−1l2dX−1 = O(n) +O(n2dε+2dX ),

which implies (33).
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Moreover,

E(St) = cTΘ1. (34)

Combining (32)–(34), we show (31) and this completes the proof of the first result of Theorem

2.2.

(b). In a similar way, we obtain

n−1/2−dη

n∑
t=1

εtc
TMtσ(Xt) = OP (n

−dη ) +OP (n
dε−dη ) = oP (1) (35)

due to the assumption that dε < dη, and

n−1/2−dη

n∑
t=1

ηtWt = n−1/2−dη

n∑
t=1

ηtEWt + oP (1). (36)

Then (b) follows from (35), (36) and the fact that EWt = cTΘ2.

(c). Again, for any c = (c1, · · · , cp)T ,

n1/2−d 1

n

n∑
t=1

cT (β∗
t − βt) = n−1/2−d

n∑
t=1

(εtESt − ηtEWt) + oP (1).

Therefore (c) is proved due to the independence of {εt} and {ηt}. �

Proof of Theorem 2.3. We give the detailed proof of (a). (b) and (c) follow by the same

arguments as in part (a), hence we only give a sketch of the proof for (b) and omit the proof of

(c).

In light of Theorems 2.1 and 2.2, by (29) and (30), we have

n1/2−dε(m̂(x)−mw(x))

= n1/2−dε

p∑
j=1

(ŵj − wj)m̂j(xj) + n1/2−dε

p∑
j=1

wj(m̂j(xj)−mj(xj))

= n−1/2−dε

n∑
t=1

εt

p∑
j=1

σ(Xt)(Λ
−1Mt)jm̂j(xj)

+n−1/2−dε

n∑
t=1

ηt

p∑
j=1

wj(fj(xj))
−1Kh(Xtj − xj)σj(Xt) + oP (1)

= n−1/2−dε

n∑
t=1

εt

p∑
j=1

σ(Xt)(Λ
−1Mt)j

·

(
mj(xj) + (fj(xj))

−1 1

n

n∑
s=1

Kh(Xsj − xj)σj(Xs)ηs +OP (n
dX−1/2h−1) +OP (h)

)

+n−1/2−dε

n∑
t=1

ηt

p∑
j=1

wj(fj(xj))
−1Kh(Xtj − xj)σj(Xt) + oP (1).

Similarly to the proof of (30), we can prove that

n−1/2−dε

n∑
t=1

ηt

p∑
j=1

wj(fj(xj))
−1Kh(Xtj−xj)σj(Xt) = OP (n

−dεh−1/2 log n)+OP (n
dη−dε log n).
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Then (a) will follow if we show that

n−1/2−dε

n∑
t=1

εt

p∑
j=1

σ(Xt)(Λ
−1Mt)j

(
mj(xj) + (fj(xj))

−1 1

n

n∑
s=1

Kh(Xsj − xj)σj(Xs)ηs

)
D−→ (Λ−1Θ1)

TΥ(x)Z1.

Following the same arguments as in proving (31), we need to show that

n−1/2−dε

n∑
t=1

εt(Pt − EPt) = oP (1), (37)

where Pt =
∑p

j=1 σ(Xt)(Λ
−1Mt)j

(
mj(xj) + (fj(xj))

−1 1
n

∑n
s=1 Kh(Xsj − xj)σj(Xs)ηs

)
. Ob-

serve that

E(P 2
t ) ≤ 2p2

p∑
j,k=1

Λ2
jkm

2
j (xj)E(σ(Xt)m

2
k(Xtk))

+2p2
p∑

j,k=1

Λ2
jk(fj(xj))

−2E

(
1

n

n∑
s=1

mk(Xtk)Kh(Xsj − xj)σ(Xt)σj(Xs)ηs

)2

≤ O(1) + C(nh)−1 log2 n+ C log2 n

p∑
j,k=1

1

n2

n∑
s1,s2=1

γη(s1 − s2)

·E(m2
k(Xtk)σ

2(Xt)σj(Xs1)σj(Xs2)Kh(Xs1,j − xj)Kh(Xs2,j − xj))

≤ O(1) +O((nh)−1 log2 n) + Cn−1 log2 n

n∑
l=1

l2dη−1 = O(1),

where Λjk is the element of the matrix Λ−1 in row j and column k. Thus we obtain

E

(
n∑

t=1

εt(Pt − EPt)

)2

= O(n) +
∑
t ̸=s

γε(t− s)(1 + o(1))

·
p∑

j1,j2,k1,k2=1

Λj1,k1Λj2,k2mj1(xj1)mj2(xj2)Cov(σ(Xt)mk1(Xtk1), σ(Xs)mk2(Xsk2))

≤ O(n) +
∑
t ̸=s

γε(t− s)

p∑
j1,j2,k1,k2=1

|Λj1k1Λj2k2mj1(xj1)mj2(xj2)|

·
∫

σ(xk1 , x
′)σ(yk2 , y

′)|fX,t,s(xk1 , yk2 , x
′, y′)− fX(xk1 , x

′)fX(yk2 , y
′)|dx′dy′dxk1dyk2

≤ O(n) + Cn
n∑

l=1

l2dε−1l2dX−1 = O(n) +O(n2dε+2dX )

which implies (37). On the other hand,

EPt = (Λ−1Θ1)
TΥ(x).

This completes the proof of (a).
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(b). Again

n1/2−dη (m̂(x)−mw(x)) = n1/2−dη

p∑
j=1

(ŵj − wj)m̂j(xj) + n1/2−dη

p∑
j=1

wj(m̂j(xj)−mj(xj))

= −n−1/2−dη

n∑
t=1

ηt

p∑
j,l=1

Λjlmj(xj)

p∑
k=1

wkσk(Xt)ζl(Xtk)

−n−1/2−dη

n∑
t=1

ηt

p∑
j,l=1

Λjl

p∑
k=1

wkσk(Xt)ζl(Xtk)(fj(xj))
−1 1

n

n∑
s=1

Kh(Xsj − xj)σj(Xs)ηs

+n−1/2−dη

n∑
t=1

ηt

p∑
j=1

wj(fj(xj))
−1Kh(Xtj − xj)σj(Xt) + oP (1).

Using arguments similar to those in the proof of (a), we show that

n−1/2−dη

n∑
t=1

ηt(P
∗
t − EP ∗

t ) = oP (1),

and

EP ∗
t = wTΨ(x)− (Λ−1Θ2)

TΥ(x),

where P ∗
t = −

∑p
j,l,k=1 wkΛjlσk(Xt)ζl(Xtk)

(
mj(xj)+ (fj(xj))

−1 1
n

∑n
s=1 Kh(Xsj−xj) σj(Xs)ηs

)
.

This completes the proof of (b). �
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