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The EM algorithm for ML Estimators under nonlinear

inequalities restrictions on the parameters

SHEN Qi-xia1 MIAO Peng1 LIANG Yin-shuang2,∗

Abstract. One of the most powerful algorithms for obtaining maximum likelihood estimates

for many incomplete-data problems is the EM algorithm. However, when the parameters satisfy

a set of nonlinear restrictions, It is difficult to apply the EM algorithm directly. In this paper,

we propose an asymptotic maximum likelihood estimation procedure under a set of nonlinear

inequalities restrictions on the parameters, in which the EM algorithm can be used. Essentially

this kind of estimation problem is a stochastic optimization problem in the M-step. We make

use of methods in stochastic optimization to overcome the difficulty caused by nonlinearity in

the given constraints.

§1 Introduction

One of the most powerful algorithms for obtaining maximum likelihood estimates for many

incomplete-data problems is the EM algorithm. Since the EM algorithm is computationally

simple and numerically stable, it is used for a broad range of applications, such as Analysis of

variance component models in normal data, finite mixture models and multivariate normal mod-

els with missing data [1, 7], Gaussian copula with missing data[17] , Robust Gaussian process

modeling[14]. In the EM algorithm it is usually necessary to find the conditional distribution in

the E-step, then the standard maximum likelihood estimation for the complete-data problem is

used in the M-step. Wu[18] showed the convergence properties of EM sequence. Many statis-

tician introduced the extensions of the EM algorithm in their papers. Meng and Rubin [10]

discussed a kind of generalized EM algorithms which they called the Expectation-Conditional

Maximization (ECM) algorithms. They took advantage of the simplicity of complete-data con-

ditional maximization by replacing a complicated M-step of the EM algorithm with several
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computationally simpler CM-steps. Little and Rubin [8] gave a generalization of the ECM al-

gorithm which replaced some of the CM-steps with steps that maximized the constrained actual

(incomplete-data) log-likelihood. And they called this algorithm the Expectation-conditional

Maximization Either (ECME) algorithm. This algorithm shares with both the EM and the

ECM algorithms’ stable monotone convergence and basic simplicity of implementation relative

to faster converging competitors.

When there are no restrictions on the parameters, each step of the EM algorithm is usually

simple and straightforward. But when the parameters must satisfy a set of linear or nonlinear

restrictions, the M-step will usually involve complicated procedures to find the solutions, and

no closed form may exist, and in this case the constrained optimization routines are needed.

The constrained optimization problems have attracted many researchers. For example, Liew[6]

considered linear regression with linear constraints. Nagaraj and Fuller [11] studied linear time

series subject to nonlinear equality constraints. Eicker [3] studied the asymptotic normality and

consistency of the least squares estimators for families of linear regression. Nyquist[12] proposed

iteratively reweighted least squares to estimate parameters under a set of linear restrictions and

applied the method to generalized linear models. Wang[16] considered the asymptotics of least-

squares estimators for constrained nonlinear regression.

Kim and Taylor[5] proposed a modification to the EM algorithm that incorporates linear

equalities restrictions on the parameters. Shi, Zheng and Guo[15] studied the incomplete-

data problem for the case that the parameters were restricted on a linear subspace. They

proposed a restricted EM algorithm to find MLEs under the linear inequalities restrictions in

which projection algorithm was used in the M-step. However, when parameters are restricted

by some nonlinear inequalities, the incomplete-data approach has important applications in

many clinical experiments, agricultural research, public-opinion polls and so on. In this article,

we construct the restricted EM algorithm for maximum likelihood estimation under nonlinear

inequalities restrictions on the parameters, and investigate the asymptotic behavior of the

maximum likelihood (ML) estimators in linear regression problems.

First, we give some results about the EM algorithm, consider the linear model Y = Xβ+ e,

following the notation of Kim and Taylor[5], denote Y = (Ymis, Yobs), where Y is the complete-

data, Ymis and Yobs represent the missing part and the observed components of Y . The likeli-

hood function of Y can be written as

f(Y |β) = f(Yobs, Ymis|β) = f(Yobs|β)f(Ymis|Yobs, β), (1)

where β is the unknown parameter, f(Yobs|β) denotes the observed likelihood and f(Ymis|Yobs, β)

denotes the conditional likelihood given Yobs and β. Then the log-likelihood is given by

l(β|Yobs) = l(β|Y )− ln f(Ymis|Yobs, β), (2)

where l(β|Yobs) = ln f(Yobs|β), l(β|Y ) = ln f(Y |β). Let {β(m)
n } be an iteration sequence of the

EM algorithm and denote

Q(β|β(m)
n ) =

∫
l(β|Y )f(Ymis|Yobs, β

(m)
n )dYmis,

H(β|β(m)
n ) =

∫
ln f(Ymis|Yobs, β)f(Ymis|Yobs, β

(m)
n )dYmis.
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Then l(β|Yobs) = Q(β|β(m)
n )−H(β|β(m)

n ) and

l(β
(m+1)
n |Yobs)− l(β

(m)
n |Yobs)

= Q(β
(m+1)
n |Yobs)−Q(β

(m)
n |β(m)

n )− [H(β
(m+1)
n |β(m)

n )−H(β
(m)
n |β(m)

n )].

From H(β
(m+1)
n |β(m)

n ) − H(β
(m)
n |β(m)

n ) ≤ 0(Kim and Taylor[5]; Shi, Zheng and Guo [15]), we

have

l(β(m+1)
n |Yobs)− l(β(m)

n |Yobs) ≥ Q(β(m+1)
n |β(m)

n )−Q(β(m)
n |β(m)

n ).

If Q(β
(m+1)
n |β(m)

n ) = max
β

Q(β|β(m)
n ), then l(β

(m+1)
n |Yobs) ≥ l(β

(m)
n |Yobs).

The above result implies that the observed likelihood function increases in each step. This

is a property of the EM algorithm that if β
(m+1)
n is chosen to increase Q(β|β(m)

n ) with respect

to β which under a set of restrictions, this will ensure that the log-likelihood under the set of

restrictions on the parameters also increase(Kim and Taylor[5]).

§2 The restricted EM algorithm

The restricted regression we are facing is of the following form:
Yi = Xiβ + ei i = 1, . . . , n,

hj(β) ≥ 0, j = 1, . . . , r,

gj(β) = 0, j = r + 1, . . . , q,

(3)

where Yi = (Yi1, . . . , Yik)
′, i = 1, . . . , n are random samples, and Yij is the jth variate of

Yi. When Yi cannot be fully observed, Y ′
i s missing data vector Yi(mis) and observed data

vector Yi(obs) exist (when Yi is completely observed, Yi(mis) is absent and Yi(obs) is Yi). Let

Y = (Y ′
1 , . . . , Y

′
n), Ymis and Yobs denote Y ′s missing data vector (Y ′

1(mis), . . . , Y
′
n(mis)) and

observed data vector (Y ′
1(obs), . . . , Y

′
n(obs)). Xi is k × p matrix, and rank(Xi) = p, β ∈ Ω ⊆ Rp

is the unknown parameter to be estimated, where Ω is a convex compact subset of Rp, ei =

(ei1, . . . , eik)
′ is error vector and normally distributed with mean zero and known covariance

matric Σi > 0, hj , j = 1, . . . , r; gj , j = r + 1, . . . , q are continuously differentiable functions in

Ω.

Now, we consider the linear model (3), the log-likelihood function

l(β|Y ) = −1

2

n∑
i=1

(Yi −Xiβ)
′Σ−1

i (Yi −Xiβ) + C0,

where C0 is a constant which does not depend on the unknown parameter β. At first, we

compute the conditional expectation, for convenience, substitute
n∑

i=1

with
∑

.

Q(β|β(m)
n ) = − 1

2

∫ ∑
(Yi −Xiβ)

′Σ−1
i (Yi −Xiβ)f(Ymis|Yobs, β

(m)
n )dYmis + C0

= − 1
2

∑
E(Y ′

i Σ
−1
i Yi|Yobs, β

(m)
n ) +

∑
E(β′X ′

iΣ
−1
i Yi|Yobs, β

(m)
n )

−1
2

∑
β′X ′

iΣ
−1
i Xiβ + C0.

Removing β-independent terms, let Q(β| β(m)
n ) = β′∑X ′

iΣ
−1
i Xiβ − 2β′∑X ′

iΣ
−1
i
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E(Yi|Yobs, β
(m)
n ) , then the restricted maximum likelihood problem is equivalent to

minQ(β| β(m)
n ) = β′∑X ′

iΣ
−1
i Xiβ − 2β′∑X ′

iΣ
−1
i E(Yi|Yobs, β

(m)
n )

hj(β) ≥ 0, j = 1, . . . , r,

gj(β) = 0, j = r + 1, . . . , q.

(4)

Let β
(m+1)
n be the optimal solution to problem (4) and β0 be the true value of β in model:

Yi = Xiβ + ei i = 1, . . . , n,

hj(β) = 0, j = 1, . . . , r,

gj(β) = 0, j = r + 1, . . . , q,

β0 can be estimated by restricted EM algorithm under equality.

Let θ = n
1
2 (β − β0), which is often used in the statistical literature, for example, in

Prakasa[13], in Wang [16] and in Liu and Wang[9]. Then we’ll get the ML estimation of β

from the ML estimation of θ. Substituting θ into (4), we get
min Q(θ|θ(m)

n ) = θ′[n−1
∑

X ′
iΣ

−1
i Xi]θ − 2θ′n− 1

2

∑
X ′

iΣ
−1
i [E(Yi|Yobs, θ

(m)
n )−

Xiβ0] + β′
0

∑
X ′

iΣ
−1
i Xiβ0 − 2β′

0

∑
XiΣ

−1
i E(Yi|Yobs, θ

(m)
n )

hj(n
− 1

2 θ + β0) ≥ 0 j = 1, . . . , r,

gj(n
− 1

2 θ + β0) = 0, j = r + 1, . . . , q,

(5)

where θ
(m)
n = n

1
2 (β

(m)
n − β0).

Remove the amount of θ-independent, let

Q̃n(θ|θ(m)
n ) = θ′[n−1

∑
X ′

iΣ
−1
i Xi]θ − 2θ′n− 1

2

∑
X ′

iΣ
−1
i [E(Yi|Yobs, θ

(m)
n )−Xiβ0],

and Sn be the objective function and the feasible solution set of problem (5), respectively. Then

the problem (5) is equivalent to
min Q̃n(θ|θ(m)

n ) = θ′[n−1
∑

X ′
iΣ

−1
i Xi]θ − 2θ′n− 1

2

∑
X ′

iΣ
−1
i [E(Yi|Yobs, θ

(m)
n )−

Xiβ0]

hj(n
− 1

2 θ + β0) ≥ 0 j = 1, . . . , r,

gj(n
− 1

2 θ + β0) = 0, j = r + 1, . . . , q,

(6)

Assume the optimal solution of (6) exists, denote it by θ
(m+1)
n , then θ

(m+1)
n = n

1
2 (β

(m+1)
n −β0).

Due to the appearance of the constraints, especially of the nonlinear inequality constraints,

one can not expect to get the actual restricted ML estimation of the parameter of θ as in the

unconstrained regression problems. In this paper, we firstly find the asymptotic distribution of

θ
(m+1)
n . Then, we consider the limit form of problem (6) in the following:

2.1 The asymptotic property of the objective function Q̃n(θ|θ(m)
n )

Let W be a neighborhood of β0 and such that for β in W it holds that

Xiβ = Xiβ0 + (∇β(Xiβ))
′
(β − β0) + ri(β)(||β − β0||)2

Where ∇β(Xiβ) is the gradient vector of Xiβ with repect to β at β0, ||.|| denotes the Euclidean
norm in RP and ri(β) = (ri1(β), ri2(β), ..., rip(β))

′
satisfies

lim
n→∞

n−1Σr
′

i(β)ri(β) < ∞.

Uniformly on W .

For finding the limit form of the objective function Q̃n(θ|θ(m)
n ), we have the following
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theorem.

Theorem 2.1. Let T (m) = lim
n→∞

n− 1
2

∑
X ′

iΣ
−1
i [E(Yi|Yobs, θ

(m)
n )−Xiβ0],

K = lim
n→∞

1
n

∑
X ′

iΣ
−1
i Xi, suppose T (m) and K exists and K is a positive-definite matrix. Then

for each θ ∈ Ω, Q̃n(θ|θ(m)
n ) converges in distribution to θ′Kθ − 2θ′T (m).

Proof. For any β in W we have θ = n
1
2 (β − β0) and

Q̃n(θ|θ(m)
n ) = θ′[n−1

∑
X ′

iΣ
−1
i Xi]θ − 2θ′n− 1

2

∑
X ′

iΣ
−1
i [E(Yi|Yobs, θ

(m)
n )−Xiβ0]

= θ′[n−1
∑

X ′
iΣ

−1
i Xi]θ − 2θ′n− 1

2

∑
X ′

iΣ
−1
i E(ei|Yobs, θ

(m)
n ).

By Theorem 1 in Wang[16],

n− 1
2

n∑
i=1

Xi
′Σ−1

i ei →L N(0,K) (n → ∞).

Hence, for any fixed θ, we have Q̃n(θ|θ(m)
n ) →L θ′Kθ − 2θ′T (m)(n → ∞).

2.2 The asymptotic property of the feasible solution set Sn

We use the compact of convergence of sets in Kuratowsi’s sense, because this kind of

convergence of sets will lead to convergence of optimal solutions about the related programming

problems. We write S = (K) limSn, if

limsupSn ⊂ S ⊂ liminfSn,

where limsupSn = {θ : ∃ {θnj} such that θnj ∈ Sn, and θnj → θ}, limsupSn = {θ : ∃ {θn}
such that θn ∈ Sn, and θn → θ}. Then for any θ ∈ S there is a sequence {θn}, θn ∈ Sn and

θn → θ, and for any sequence {θn} with θn ∈ Sn any accumulation point of {θn} must belong

to S.

Lemma 2.1. Suppose that hj , j = 1, . . . , r and gj , j = r+1, . . . , q are continuously differentiable

functions in Ω, then as n → ∞ we have

S = {θ : ∇hj(β0)
′θ ≥ 0, j = 1, . . . , r; ∇gj(β0)

′θ = 0, j = r + 1, . . . , q}.
where ∇hj(β0)(j = 1, . . . , r) and ∇gj(β0)(j = r+1, . . . , q) are the gradient vectors of gj(β)(j =

1, . . . , r) and hj(β)(j = r + 1, . . . , q) respectively with respect to β at β = β0.

(For proof one could see Theorem 2 of Wang[16]).

With Theorem 2.1 and Lemma 2.1, we can formulate a limit form of problem (6):{
min Q̈(θ|T (m)) = θ′Kθ − 2θ′T (m)

θ ∈ S,
(7)

Let θ(m+1) be the optimal solution of problem (7). Although for the objective function we have

Q̃n(θ|θ(m)
n ) →L Q̈(θ|T (m))(n → ∞) for any fixed θ, it has not been shown that Q̃n(θ

(m+1)
n |θ(m)

n )

→L Q̈(θ(m+1)|T (m))(n → ∞). When θ is varying over the connected set D = Ω
∩
{θ : ∥θ∥ ≤

M,M > 0, θ ⊆ Rp}, {Q̃n(θ|θ(m)
n ), θ ∈ D} and {Q̈(θ|T (m)), θ ∈ D} can be viewed as stochastic

processes. We will study the convergence in distribution of the sequence of these stochastic

processes in the next section. Now we propose the restricted EM algorithm:

Let β(0) be the starting point, and θ(m) = n1/2(β(m) − β0), m = 0, 1, · · · .
E-step: Compute Q̈(θ|T (m)) = θ′Kθ − 2θ′T (m) from θ(m).
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M-step: Let β(m+1) = n−1/2θ(m+1) + β0, where θ(m+1) is the optimal solution of problem (7)

by using Hildreth-D’Esopo algorithm (Hildreth[4], D’Esopo[2]).

§3 Convergence of the restricted EM algorithm

In this section, we discuss some convergence properties of the proposed algorithm. Denote

the sequence obtained from the restricted EM algorithm by {θ(m+1)}, we’ll prove θ
(m+1)
n →L

θ(m+1)(n → ∞), where θ
(m+1)
n and θ(m+1) are the optimal solutions of (6) and (7) respectively.

First, we give two lemmas (for proof one could see Wang[16]):

Lemma 3.1. Under the assumptions made in Theorem 2.1, θ
(m+1)
n is bounded in probability.

Lemma 3.2. Let D be the ball in Rk with center θ = 0 and radius d > 0. Suppose the

assumptions in Theorem 2.1 hold true. Then the stochastic processes {Q̃n(θ|θ(m)
n ), θ ∈ D}

converge in distribution to {Q̈(θ|T (m)), θ ∈ D}.

Then we get the following restricted optimal problems:{
min Q̃n(θ|θ(m)

n )

θ ∈ Sn

∩
D,

(8)

and {
min Q̈(θ|T (m))

θ ∈ S
∩
D.

(9)

Let θ
(m+1)(D)
n and θ(m+1)(D) be the optimal solutions of problem (8) and (9), respectively. We’ll

prove Q̃n(θ
(m+1)
n |θ(m)

n ) →L Q̈(θ(m+1)|T (m)) (n → ∞) and θ
(m+1)
n →L θ(m+1)(n → ∞) in the

following theorems.

Theorem 3.1. Let θ
(m+1)
n and θ(m+1) be the optimal solutions of (6) and (7) respectively, then

Q̃n(θ
(m+1)
n |θ(m)

n ) →L Q̈(θ(m+1)|T (m))(n → ∞).

Proof. Note that the sample function of the stochastic processes {Q̃n(θ|θ(m)
n ), θ ∈ D} and

{Q̈(θ|θ(m)
n ), θ ∈ D} are continuous functions on D. Let C(D) be the space of all continuous

functions over D whose metric is defined by

d(h1, h2) = sup
θ∈D

|h1(θ)− h2(θ)|, h1, h2 ∈ C(D).

Define mappings Hn(.) and H(.) on C(D) such that

Hn(fn) = min
θ∈Sn

∩
D
fn(θ) = fn(θ

(m+1)(Df )
n ), (10)

H(f) = min
θ∈S

∩
D
f(θ) = f(θ(m+1)(Df )), (11)

for fn, f ∈ C(D), where S is the same as in (7), and θ
(m+1)(Df )
n and θ(m+1)(Df ) are optimal

solution of min
θ∈Sn

∩
D
fn(θ) and min

θ∈S
∩

D
f(θ). First we are going to show that

lim
n→∞

Hn(fn) = H(f), (12)

for any fn, f in C(D) with fn → f and f is such that (11) has a unique optimal solution.
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Observe the convergence of fn to f means that

max
θ∈D

|fn(θ)− f(θ)| → 0, (n → ∞), (13)

this implies that for any θn → θ

fn(θn) → f(θ), (n → ∞). (14)

Thus to show (12), it suffices to show that θ
(m+1)(Df )
n → θ(m+1)(Df )(n → ∞). We first show

the following: if θ
(m+1)(Df )
n , n = 1, 2, . . . are optimal solutions of problem (10) and θ̃(m+1) is an

accumulation point of {θ(m+1)(Df )
n }, then θ̃(m+1) must be an optimal solution of problem (11).

Suppose it is not true, then there is a point θ̄(m+1) ∈ S
∩

D such that f(θ̄(m+1)) < f(θ̃(m+1)).

Without loss of generality, we assume θ̄(m+1) is a interior point of D(since f is continuous). On

the other hand, by the definition of Kuratowski’s convergence of sets there is a sequence θ
(m+1)
n

such that θ
(m+1)
n ∈ Sn and θ

(m+1)
n → θ̄(m+1), and then θ

(m+1)
n ∈ D, when n is large enough.

As θ̃(m+1) is a accumulation point of {θ(m+1)(Df )
n }, by (14) we obtain

f(θ̄(m+1)) = lim
n→∞

f(θ(m+1)
n ) ≥ lim

n→∞
fn(θ

(m+1)(Df )
n ) = f(θ̃(m+1)).

This result is contradicted with the assumption f(θ̄(m+1)) < f(θ̃(m+1)). Hence θ̃(m+1) must be

an optimal solution of problem (11). Since D is compact and Sn, S are closed, {θ(m+1)(Df )
n }

must have accumulation point. Moreover, by the assumption on f the only possible accumula-

tion point is θ(m+1)(Df ). Thus we get (12).

Next, θ(m+1) is the optimal solution of problem(7), thus

0 ≥ (θ(m+1))′Kθ(m+1) − 2(θ(m+1))′T (m).

Then for any ε > 0, there exists a constant M such that ∥θ(m+1)∥ ≤ M with a probability

larger than 1− ε. When ∥θ(m+1)
n ∥ ≤ M and ∥θ(m+1)∥ ≤ M note that

Q̃n(θ
(m+1)
n |θ(m)

n ) = Hn(Qn), Q̈(θ(m+1)|T (m)) = H(Q). Therefore

P (Q̃n(θ
(m+1)
n |θ(m)

n ) ̸= Hn(Qn)) < ε, P (Q̈(θ(m+1)|T (m)) ̸= H(Q)) < ε.

By the arbitrariness of ε and Hn(Qn) →L H(Q)(n → ∞), we get

Q̃n(θ
(m+1)
n |θ(m)

n ) →L Q̈(θ(m+1)|T (m))(n → ∞).

Also by θ
(m+1)(Df )
n →L θ(m+1)(Df )(n → ∞) and the arbitrariness of f , we know that

θ
(m+1)(D)
n →L θ(m+1)(D)(n → ∞).

Theorem 3.2. Let θ
(m+1)(D)
n and θ(m+1)(D) be the optimal solution of problem (8) and (9).

If θ
(m+1)(D)
n →L θ(m+1)(D)(n → ∞), where D = Ω

∩
{θ : ∥θ∥ ≤ M, θ ⊆ Rp}, then for any

M > 0, θ
(m+1)
n →L θ(m+1)(n → ∞).

Proof. Observe that the optimal solution θ(m+1) of problem (7) satisfies

0 ≥ (θ(m+1))′Kθ(m+1) − 2(θ(m+1))′T (m),

because θ = 0 is a feasible solution of (7) and K is positive definite matrix, there must be a

constant M such that ∥θ(m+1)∥ ≤ M .

Let θ
(m+1)
n and θ(m+1) be the optimal solution of problem (6) and (7), then by Lemma 3.1

if ∥θ(m+1)
n ∥ ≤ M, we have θ

(m+1)
n = θ

(m+1)(D)
n , thus

P (θ(m+1)
n ̸= θ(m+1)(D)

n ) < ε.
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Similarly

P (θ(m+1) ̸= θ(m+1)(D)) < ε.

Therefore, for any ε > 0 and any open set G in Rp, we have

lim inf P (θ
(m+1)
n ∈ G) > lim inf P (θ

(m+1)(D)
n ∈ G)− ε ≥ P (θ

(m+1)(D)
n ∈ G)− ε

≥ P (θ(m+1) ∈ G)− 2ε,

where the second inequality holds because of θ
(m+1)(D)
n → θ(m+1)(D)(n → ∞), then by the

arbitrariness of ε, we have

lim inf P (θ(m+1)
n ∈ G) > P (θ(m+1) ∈ G).

This is equivalent to θ
(m+1)
n →L θ(m+1)(n → ∞).

From Theorem 3.2 we have θ
(m+1)
n →L θ(m+1)(n → ∞). Because θ(m+1) is a constant

for each fixed m, then θ
(m+1)
n converges to θ(m+1) in probability, that is β

(m+1)
n converges to

β(m+1) in probability for each fixed m. At last, By the theorem of Large number and using the

restricted EM algorithm given in this paper, we obtain the desired solution for β.

§4 Numerical simulation

In this section we’ll give an example to illustrate the theory developed in earlier sections,

for computationally convenient, we just consider 2-dimensional normal distribution situation,

the restricted problem is of the following form:
Yi = Xiβ + ei i = 1, . . . , n,

h1(β) = β2
1 + 2β2 ≥ 0,

g2(β) = β1β2 − β2 + 2 = 0.

(15)

We take n draws from the linear model (15) with mean Xβ and covariance matrix Σ > 0,

where X =

(
2 −1

−1 1

)
, β = (4,−2/3)′, Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, σ1 = 4, σ2 = 4, ρ denotes

the correlation coefficient, Yi = (Yi1, Yi2)
′, i = 1, . . . , n are random samples which come from

the same normal distribution. We’ll compare the restricted EM estimators with the true value

β = (4,−2/3)′.

Let Yi1(i = 1, · · · , k) and Yi2(i = n − k + 1, · · · , n) are missing data, Yi1(i = k + 1, · · · , n)
and Yi2(i = 1, · · · , n − k) are observed data, µ(m) = Xβ(m) = (µ

(m)
1 , µ

(m)
2 )′, where β(m)(m =

0, 1, · · · ) is the restricted EM iteration sequence. From the theory developed in earlier sections

we have
E(Yi1|Yi2, β

(m)) = µ
(m)
1 + σ2ρ

σ1
(Yi2 − µ

(m)
2 ), i = 1, · · · , k,

E(Yi2|Yi1, β
(m)) = µ

(m)
2 + σ1ρ

σ2
(Yi1 − µ

(m)
1 ), i = n− k + 1, · · · , n.

By Lemma 2.1, when n is large enough, the optimization problem is approximately equivalent

to the following form: {
Q̈(θ|T (m)) = θ′Kθ − 2θ′T (m)

S = {θ ∈ R2 : 2θ1 + θ2 ≥ 0; 2θ1 − 3θ2 = 0}.
(16)

where K = X ′Σ−1X, T (m) = n− 1
2

∑
X ′Σ−1[E(Yi|Yobs, θ

(m)) − Xβ0], θ = n1/2(β − β0), β0 is
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true value for β in model: 
Yi = Xiβ + ei i = 1, . . . , n,

h1(β) = β2
1 + 2β2 = 0,

g2(β) = β1β2 − β2 + 2 = 0.

Then we consider the optimization problem (16), the following figure 1-2 are the simulations

for β = (β1, β2)
′ when n = 100, 1000; k = 10 and ρ = 0.9.

Figure 1: The simulation results for β, n = 100.

Figure 2: The simulation results for β, n = 1000.

From the simulation results, we found that the parameters converge to the same true value

β = (4,−2/3)′ when given different initial values, and the effect of convergence is better when

n is larger. This is exactly consistent with the theory of the algorithm.

§5 Discussion

In this paper, we propose a restricted EM algorithm for parameters under nonlinear inequal-

ity restrictions, by using the asymptotic properties of the maximum likelihood estimators of

parameter, the convergence of the algorithm is proved and numerical simulation is given. Next,

we are trying to generalize the proposed algorithm to other more general models.
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