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Organic skeleton correspondence using part arrangements

LI Shu-hua LIU Xiu-ping∗ CAO Jun-jie WANG Shi-yao

Abstract. Shape correspondence between semantically similar organic shapes with large shape

variations is a difficult problem in shape analysis. Since part geometries are no longer similar,

we claim that the challenge is to extract and compare prominent shape substructures, which

are recurring part arrangements among semantically related shapes. Our main premise is that

the challenge can be solved more efficiently on curve skeleton graphs of shapes, which provide a

concise abstraction of shape geometry and structure. Instead of directly searching exponentially

many skeleton subgraphs, our method extracts the intrinsic reflectional symmetry axis of the

skeleton to guide the generation of subgraphs as part arrangements. For any two subgraphs from

two skeletons, their orientations are aligned and their pose variations are normalized for match-

ing. Finally, the matchings of all subgraph pairs are evaluated and accumulated to the skeletal

feature node correspondences. The comparison results with the state-of-the-art work show that

our method significantly improves the efficiency and accuracy of the semantic correspondence

between a variety of shapes.

§1 Introduction

Humans perform well in perceiving semantics of parts and giving a semantically meaningful

part matching across shapes. However, inferring semantics computationally and automatically

is very difficult. Thus, shape correspondence methods [8] rarely combine part semantics as prior

knowledge and heavily rely on part geometries. In the presence of large pose, geometric and

topological variations, geometric similarity becomes unreliable and these methods fail to obtain

semantically correct correspondence.

Given a set of semantically related man-made shapes, Zheng et al. [15] observe that although

part geometries are quiet different, part spatial arrangements (how parts are arranged) are

consistent among shapes (e.g., the arrangements of chair legs, seat and back among various

chairs in the left of Fig. 1), and thus can be used to reveal semantic correspondence. However,
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Figure 1: Part arrangements among man-made shapes (left) and organic shapes (right). The
part arrangements of organic shapes vary under different poses.

the part arrangements of organic shapes vary under different poses [11] (e.g., the arrangements

of arms, legs and the body of a monster in the right of Fig. 1), which is beyond the realm of

Zheng et al. [15].

In this paper, we focus on the correspondence between two organic shapes with large pose,

geometric and topological variations. The challenges to take advantage of part spatial arrange-

ments come from three aspects: Firstly, organic shapes usually come as a whole and segmenting

them into parts is difficult and time-consuming in itself. Man-made shapes, by contrast, consist

of multi-components and Zheng et al. [15] directly group these components to form candidate

parts. Secondly, man-made shapes commonly found online are assumed to have a consisten-

t upright orientation, which makes sure the consistency of part arrangements across shapes.

However, the orientations of organic shapes are not aligned. Lastly, the part arrangements of

organic shapes vary extrinsically as mentioned.

Our key insight is that it is natural to identify parts and part arrangements on the curve

skeleton of a shape. In general, an edge connecting two skeletal feature nodes corresponds to

a shape part, and a subgraph with more than one edge corresponds to a part arrangement.

Moreover, the skeleton is naturally augmented with geometric properties (e.g., local radius)

and distance metrics (e.g., geodesic distance measured along the curve skeleton) from the sur-

face, which are crucial for establishing correspondence. Therefore, we turn to discover part

arrangements on the curve skeleton.

Given two organic shapes, we extract their curve skeletons automatically and aim to cor-

respond two sets of skeletal feature nodes (Fig. 2a). Firstly, subgraphs as parts and part

arrangements are identified for each skeleton (Fig. 2b). In order to make sure these subgraphs

capturing prominent skeleton structures, an intrinsic reflectional symmetry axis is extracted for

guidance. Secondly, subgraphs of part arrangements are basic matching units of two skeletons

(Fig. 2c). Before matching, the orientation alignment of two skeletons is reduced to the align-

ment of their symmetry axes. And the pose variations between two skeletons are normalized

by a spatial embedding method, which spans out each skeleton. In this way, the orientations

between any two subgraphs from two skeletons are consistent and their pose variations are

normalized. Lastly, the matchings of all subgraph pairs are evaluated to vote on the skeletal

feature node correspondence (Fig. 2d, e).
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Figure 2: Algorithm overview. (a) Two input curve skeletons; (b) Symmetry-guided generation
of parts and part arrangements. Parts are shown in different colors and the red path is a segment
of the symmetry axis; (c) Part arrangement matching. The orientations and pose variation of
two skeletons are aligned and normalized for matching and good subgraph matchings are shown
in green boxes; (d) The voting matrix; (e) The output feature node correspondence.

We demonstrate the efficiency, effectiveness and robustness of our algorithm on a range of

semantically similar shape pairs with large pose, geometric and topological differences. The

results of comparison experiments exhibit that the efficiency and accuracy of our method is

significantly better than that of the state-of-the-art work Au et al. [1]. Au et al. [1] is the most

relevant skeleton correspondence work to ours. They use all subgraph pairs of two skeletons

as matching units to vote for skeletal feature node correspondence. By limiting the matching

units to subgraphs of part arrangements, which contain significant shape substructures, we

dramatically reduce the number of matching units and increase the correctness percentage of

node correspondences from matched subgraph pairs.

§2 Related work

Our problem and algorithm pipeline are related to shape intrinsic correspondence and intrin-

sic symmetry analysis, which are well studied shape analysis problems with extensive previous

work. Here we focus our review on the most relevant work.

Curve skeleton correspondence. Since the geometric similarity between two shapes with

large variations is not reliable, semantic correspondence calls for global structural information.

Various methods have been proposed to construct a graph through curve skeleton extraction,
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which provides a robust abstraction of shape geometry and structure. Each graph node cor-

responds to a shape part and is augmented with geometric descriptors for graph matching.

Moreover, recent curve skeleton extraction algorithms perform well for rough shapes [2], even

incomplete point clouds [13,5], which makes shape correspondence on skeleton graphs more

robust than on noisy surfaces.

Given two skeleton graphs, Bai et al. [3] directly match graph nodes by comparing their

geodesic paths. Zhang et al. [16] propose a deformation-driven combinatorial search algorithm

for the best node correspondence. The evaluation of the deformation distortion for each possi-

ble node correspondence is too costly, which can be dozens of minutes. Au et al. [1] perform a

combinatorial search using fast pruning tests to eliminate exponentially many bad correspon-

dences. The passed correspondences vote for a high-quality node correspondence. Our method

neither is a direct nor a combinatorial method. By generating and matching subgraphs of part

arrangements, our method is a top-to-bottom method, that is from subgraph matchings to node

correspondences. Node that the topological structure among internal nodes is sensitive and can

be different, Bai et al. [3] and Zhang et al. [16] ignore internal nodes and only match terminal

nodes. Au et al. [1] and our work support internal node correspondences. Moreover, Au et al.

[1] and our work consider the spatial configuration of symmetric nodes and solve the symmetry

switching problem.

Skeleton-intrinsic symmetry analysis. Most intrinsic symmetry analysis works directly

search for the best distance-preserving self-mapping on shape surfaces. Some recent works are

skeleton-driven or skeleton-intrinsic. Xu et al. [14] compute prominent intrinsic reflectional

symmetry axes on shape surfaces by a voting scheme. Jiang et al. [7] apply the voting scheme

of Xu et al. [14] to vote for symmetric node pairs of the skeleton, and then the symmetry

map of the skeleton is transformed to the input point cloud. Zheng et al. [17] introduce

the notion of a backbone, which is a path on the skeleton graph and about which the self-

mapping of the skeleton graph is optimal. The backbone can tolerate significant distortions

from perfect symmetries and guide the symmetrization of the skeleton, which in turn, guides

the symmetrization of the input asymmetric shape. Zheng et al. [17] develop a global search

algorithm based genetic programming for backbone searching. Since our input shapes only

slightly deviate from perfect symmetries, we simply use the spectral matching method [9] to

obtain symmetry axes of skeletons. The orientation alignment of two organic shapes is reduced

to the alignment of two 1D symmetry axes, which is significantly easier than on the 2D surfaces

according to Liu et al. [10].

§3 Algorithm overview

Given two shapes, we employ the automatic skeleton extraction algorithm [2] to compute

their skeletons as the input of our algorithm (Fig. 2a). Then, we take five steps to find a 1-1

semantic correspondence between two sets of skeletal feature nodes. The feature nodes are

nodes whose valences are not equal to two, which consist of terminal nodes (equal to one) and
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Figure 3: Symmetry-guided generation of part arrangements. (a) Symmetric correspondences
of elephant and dog, where a stable symmetric correspondence is shown by a single node and
a reflectional symmetric correspondence is shown by a pair of nodes in the same color; (b) Red
symmetry axis of each skeleton and two symmetry axes alignment, which is represented by the
correspondence of nodes on axes and corresponded nodes are shown in the same color; Parts
(c) and part arrangements (d) are extracted under the guidance of the symmetry axis.

internal nodes (larger than two).

First, we perform symmetry analysis on each skeleton to obtain symmetric node pairs, from

which the skeleton-intrinsic reflectional symmetry axis is extracted. Second, subgraphs as parts

and part arrangements are generated under the guidance of the symmetry axis, as the axis

conveys the connections of potential semantic parts (Fig. 2b). Third, we align two symmetry

axes and span out skeletons to respectively remove the orientation difference and pose variation

between two skeletons for subgraph matching. Fourth, a cascade of pruning tests based on

geometry, distance and spatial preservations is designed to filter out bad subgraph matchings

(Fig. 2c). At last, the remaining good subgraph matchings vote on individual node correspon-

dences, which results in a voting matrix (Fig. 2d). The final feature node correspondence is

synthesized based on the voting matrix, the symmetry map of each skeleton and some other

heuristics information (Fig. 2e). The pruning tests and the voting process are similar to those

in [1].

§4 Symmetry-guided generation of part arrangements

4.1 Symmetry analysis

Given a skeleton with feature nodes N = {n1, n2, ..., nN}, the spectral matching method

[9] is applied to construct an adjacency matrix K of an adjacency graph, whose graph nodes

are candidate symmetric node correspondences (nc, nc′) in our case, where c, c′ ∈ {1, 2, ..., N}.
The adjacency matrix K encodes graph node affinities and graph edge affinities in the diagonal

entries and non-diagonal entries, respectively. Specifically, K(i, i) measures the similarity of

the i-th individual correspondence (nci , nc′i
) and K(i, j), where i ̸= j, measures the agreement

between the i-th correspondence (nci , nc′i
) and the j-th correspondence (ncj , nc′j

).
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Candidate symmetric correspondence. We pair any two skeletal nodes with the same

valence to obtain initial symmetric correspondences. (nc, nc′) is a candidate stable symmetric

correspondence when c = c′ (single nodes on each skeleton of Fig. 3a). Otherwise, (nc, nc′) is

a candidate reflectional symmetric correspondence (pairs of nodes in the same color on each

skeleton of Fig. 3a). We further remove candidate reflectional symmetric correspondence be-

tween internal skeletal nodes. Because internal skeletal nodes are sensitive during skeleton

extraction, while terminal skeletal nodes are robust and the reflectional symmetry among them

is prominent.

Graph node affinity. K(i, i) for (nci , nc′i
) is defined based on the geometric differences of

Shape Diameter Function (SDF) [12], Average Geodesic Distance (AGD) [6] and Geodesic

Descriptor (GD):

K(i, i) =


0, if dsdf (nci , nc′i

) > τsymsdf or dagd(nci , nc′i
) > τ symagd or dgd(nci , nc′i

) > τ symgd ;

exp(−2
d2
sdf (nci

,nc′
i
)

σ2
sdf

) ∗ exp(−2
d2
agd(nci

,nc′
i
)

σ2
agd

) ∗ exp(−2
d2
gd(nci

,nc′
i
)

σ2
gd

), otherwise,

(1)

where σsdf = 2τsymsdf , σagd = 2τsymagd and σgd = 2τsymgd , and τsymsdf , τ symagd and τsymgd are parameters

whose concrete values will be introduced in Section 7. Section 7 also gives the values of pa-

rameters τ symiso , τ symref , τsdf , τagd, τiso and τrot, which will appear in the following paper. In order

to avoid the trivial identical map and encourage the reflectional symmetry map, the geometric

differences of candidate stable correspondences are set to be τsymsdf , τ symagd and τ symgd rather than

zeros.

In order to make our work self-contained, we would like to give the definitions and concise

explanations of the geometric meanings of SDF, AGD, and GD here. Shape Diameter Function

(SDF) [12] is a scalar function defined on a closed manifold surface, measuring the neighborhood

diameter of the object at each point. Due to its pose-oblivious property, SDF is widely used

in shape analysis, segmentation and retrieval. Average Geodesic Distance (AGD) [6] is also a

scalar function, while it is the average value of geodesic distances from current point to the rest

points. The smaller AGD is, the closer current point is to the shape center. The maxima of

AGD is usually a shape extremity. Geodesic Descriptor (GD) at each point is a vector whose

elements are sorted geodesic distances from current point to some specified feature points. In

our case, we specify terminal skeletal nodes for GD. A GD vector gives the intrinsic location

information of the point.

Graph edge affinity. K(i, j) measures the compatibility between (nci , nc′i
) and (ncj , nc′j

)

based on the deviation from isometry and the inconsistency of spatial configurations. The

deviation from isometry is defined as:

diso((nci , nc′i
), (ncj , nc′j

)) = max(|dg(nci , ncj )− dg(nc′i
, nc′j

)|, |dg(nci , nc′j
)− dg(nc′i

, ncj )|), (2)

where dg is the geodesic distance along the skeleton.

When nci ̸= nc′i
and ncj ̸= nc′j

, we further consider the inconsistency between the spatial
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Figure 4: Spatial configuration for symmetry analysis and part arrangement matching. Each
3D embedded skeleton with a path are shown in front view (top) and top view (bottom) to
be clearer. (a) The non-translational transformation between path < nci → oi → oj → ncj >
and path < nc′i

→ oi → oj → nc′j
> is supposed to be a reflection; (b) The case for path

< nci → oi → oj → nc′j
> and path < nc′i

→ oi → oj → ncj > is the same; (c) While the
non-translational transformation between source path < es1 → os1 → os2 → es2 > and target path
< et1 → ot1 → ot2 → et2 > is supposed to be a pure rotation, not including a reflection.

configurations of two paths < nci → oi → oj → ncj > and < nc′i
→ oi → oj → nc′j

>,

where oi and oj are the closest internal skeletal nodes to (nci , nc′i
) and (ncj , nc′j

), respectively

(Fig. 4a). Throughout this paper, we refer to the shortest path between ni and nj when we say

path < ni → nj >. Note that a spatial embedding using a variant of the least-squares multi-

dimensional scaling (MDS) [4] is performed to span out the skeleton in Fig. 4. After embedding,

it is supposed that the non-translational transformation A between two paths is a reflection.

Thus, we decompose the rotation component R of A, whose determinant is supposed to be

−1, and estimate the deviation of A from R by ∥A − R∥F . If A does not involve a reflection,

the determinant of R is 1. We make R = −R to get a large deviation. We also consider the

deviation ∥A′ − R′∥F between paths < nci → oi → oj → nc′j
> and < nc′i

→ oi → oj → ncj >

to cover another case in Fig. 4b. The reflection deviation is defined as:

dref ((nci , nc′i
), (ncj , nc′j

)) =

{
0.5, if nci = nc′i

or ncj = nc′j
or oi = oj ;

min(∥A−R∥F , ∥A′ −R′∥F ), otherwise.
(3)

The edge affinity is defined as:

K(i, j) =


0, if diso((nci , nc′i

), (ncj , nc′j
)) > τsymiso ;

exp(−2
d2
iso((nci

,nc′
i
),(ncj

,nc′
j
))

σ2
iso

) ∗ exp(−2
d2
ref ((nci

,nc′
i
),(ncj

,nc′
j
))

σ2
ref

), otherwise,

(4)

where σiso = 2τsymiso and σref = 2τsymref .

After obtaining the adjacency matrix K, the principal eigenvector x of K can be computed

and interpreted as the confidence values of candidate symmetric correspondences. We rank

candidate symmetric correspondences in a descending order based on their confidence values,

then greedily accept correspondences one by one from the top of the ranking list. The new

added correspondence (ncj , nc′j
) must satisfy three constraints:
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• Neither ncj nor nc′j
is already in accepted correspondences.

• x(j) is larger than zero.

• K(j, i) is larger than zero for any one accepted correspondence (nci , nc′i
).

The output symmetry map Ωsym consists of all accepted correspondences (Fig. 3a). We

define the intrinsic reflective symmetry axis of a skeleton as the longest path, which is stable

under the intrinsic reflective symmetry map. In implement, we simply extract the longest path

S =< ni1 → ni2 → ... → niS > from the stable correspondences of Ωsym (Fig. 3b).

4.2 Part arrangement generation.

Given a skeleton N and its symmetry axis S, we extract parts and part arrangements based

on the following definitions.

• Parts (p). A part p =< o → e > is a path which starts from an internal node o ∈ S and

ends up with a terminal node e ∈ N (Fig. 3c). p has semantics, such as leg, tail and so

on. Different parts are connected by the symmetry axis.

• Part arrangements (pa). A part arrangement pa = {p1, s12, p2, ..., pk−1, sk−1k, pk} =

{< o1 → e1 >,< o1 → o2 >,< o2 → e2 >, ..., < ok−1 → ek−1 >,< ok−1 → ok >,<

ok → ek >} is a subgraph which consists of k(≥ 2) parts and k − 1 paths on S which

connect parts. pas encode significant substructures, thus can be useful matching units. In

implement, we find that pas with 2 ≤ k ≤ 3 parts are enough to reveal potential semantic

correspondence (Fig. 3d).

§5 Part arrangement matching

Given the source skeletonN s = {ns
1, n

s
2, ..., n

s
Ns} and the target skeletonN t = {nt

1, n
t
2, ..., n

t
Nt},

we extract their symmetry axes and part arrangements, respectively. Then, we compute possi-

ble node correspondences between any pair of part arrangements (pas, pat) from two skeletons.

A cascade of pruning tests are designed to filter bad correspondences. In order to get bet-

ter correspondence results, the source symmetry axis Ss and the target symmetry axis St are

aligned before the pruning tests. And only the correspondences, whose matching directions are

consistent with the axes alignment direction, are considered.

5.1 Symmetry axes alignment.

We adapt the symmetry axes alignment algorithm of [10] to our work. The goal of [10] is

to find the best pair of closed axes from two sets of closed axes, and their optimal alignment to

maximize a quality measure. However, as we only have two axes, we directly find their optimal

alignment to maximize the quality measure, which considering the length, geometric similarity

and structural similarity.
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Assumed that we have two paths Cs =< ns
i1

→ ns
i2

→ ... → ns
ik

>⊆ Ss and Ct =< nt
j1

→
nt
j2

→ ... → nt
jk

>⊆ St, and their alignment c = {(ns
il
, nt

jl
)}kl=1, the quality measure is defined

as:

Q(Cs, Ct, c) = exp(−2
(1− Ls)2

σ2
L

) ∗ exp(−2
(1− Lt)2

σ2
L

) ∗Qalign(Cs, Ct, c), (5)

where Ls and Lt are the geodesic length of path Cs and Ct, σL = 2τiso, Qalign(Cs, Ct, c) char-

acterizes the geometric similarity and structural similarity:

Qalign(Cs, Ct, c) = (6)

1

k

k∑
l=1

(exp(−2
d2sdf (n

s
il
, nt

jl
)

σ2
sdf

)+exp(−2
d2agd(n

s
il
, nt

jl
)

σ2
agd

))+
1

k2

k∑
l=1

∑
r ̸=l

exp(−2
d2iso((n

s
il
, nt

jl
), (ns

ir
, nt

jr
))

σ2
iso

),

where diso((n
s
il
, nt

jl
), (ns

ir
, nt

jr
)) = |dg(ns

il
, ns

ir
) − dg(n

t
jl
, nt

jr
)|, σsdf = 2τsdf , σagd = 2τagd and

σiso = 2τiso.

We search both possible alignment directions and every possible starting node correspon-

dence, then return the best result {Cs, Ct, c} with the largest Q(Cs, Ct, c) (Fig. 3b). For each

alignment direction and each starting correspondence (ns
i1
, nt

j1
), the optimal 1-1 solution is

computed recursively. The next correspondence (ns
il
, nt

jl
) must be posterior to aligned corre-

spondences along the alignment direction and have the highest score, which is defined as:

s(ns
il
, nt

jl
) = (7)

exp(−2
d2sdf (n

s
il
, nt

jl
)

σ2
sdf

) ∗ exp(−2
d2agd(n

s
il
, nt

jl
)

σ2
agd

) ∗ 1

(l − 1)

l−1∑
r=1

exp(−2
d2iso((n

s
il
, nt

jl
), (ns

ir
, nt

jr
))

σ2
iso

),

ns
il
corresponds to null node if:

dsdf (n
s
il
, nt

jl
) > τsdf or dagd(n

s
il
, nt

jl
) > τagd or diso((n

s
il
, nt

jl
), (ns

ir , n
t
jr )) > τiso for all nt

jl
.

5.2 Part arrangement matching.

The premise of matching a pair of part arrangements (pas, pat) is that the number of

parts in pas and pat is the same. To match (pas, pat) is to find the 1-1 match of part-

s {(ps1, pt1); (ps2, pt2); ...; (psk, ptk)} = {(< os1 → es1 >,< ot1 → et1 >); (< os2 → es2 >,< ot2 →
et2 >); ...; (< osk → esk >,< otk → etk >)}. For any one 1-1 match of parts, whose match direction

(< os1 → os2 → ... → osk >,< ot1 → ot2 → ... → otk >) is consistent with the alignment direction

of symmetry axes, we apply the following three pruning tests to filter bad matches.

Geometric similarity. If the difference of average shape diameter function between a part

match (ps, pt) or a path match (ss, st) is larger than τsdf , the match is rejected.

Structure similarity. If the distortion of geodesic distance between a part match (ps, pt) or

a path match (ss, st) is larger than τiso, the match is rejected.

Spatial configuration. For any two part matches (ps1, p
t
1) = {< os1 → es1 >,< ot1 → et1 >

}, (ps2, pt2) = {< os2 → es2 >,< ot2 → et2 >} from the 1-1 match of parts, it is supposed that
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the non-translational transformation A between embedded path < es1 → os1 → os2 → es2 > and

embedded path < et1 → ot1 → ot2 → et2 > is a pure rotation, not including a reflection (Fig. 4c).

Similar to Section 4, we estimate the difference between A and its rotation component R by

drot = ∥A−R∥F , which is supposed to be zero. If A involves a reflection and the determinant

of R is −1, we make R = −R to get a large deviation. If drot is larger than a threshold τrot,

the match is reject. With the spatial configuration pruning test, we can not only prune away

bad matches, but also avoid the symmetry-switching problem in shape correspondence.

§6 Voting for feature node correspondence

Each node correspondence (ns
i , n

t
j) in the match of a pair of part arrangement (pas, pat)

contributes one vote to the element tij of a 2D score table T , which is the total occurrence of

this correspondence in all matches of part arrangements. Then, we greedily construct the final

correspondence Ω: all correspondences are sorted by their scores in T , and the correspondence

(ns
i , n

t
j) with the highest score is iteratively added to Ω if it satisfies the following conditions:

• Neither ns
i nor nt

j is already in Ω.

• The closest internal nodes of ns
i and nt

j that are already in Ω must match.

• The symmetric nodes of ns
i and nt

j that are already in Ω must match.

§7 Parameters

We use the following default parameter setting for all examples in our paper: {τsymsdf , τ symagd ,

τ symgd , τ symiso , τ symref } = {0.15, 0.15, 0.3, 0.2, 1.0} for symmetry analysis, {τsdf , τagd, τiso, τrot} =

{0.3, 0.3, 0.3, 1.0} for part arrangement matching. In contrast to τsymsdf , τ symagd , τ symiso , we allow

larger values for τsdf , τagd, τiso to tolerate larger geometry and structure variations between two

shapes.

§8 Experiments

In this section, we demonstrate and discuss the results of our shape correspondence algorithm

on a variety of shape pairs. We also compare our method with the state-of-the-art method.

Time. We implement our algorithm entirely in MATLAB and test it on a 3.4 GHz desktop.

Given two input shapes, we pre-compute two skeletons, two embedded skeletons, SDF feature,

AGD feature and normalized geodesic distance matrix for each skeleton. Table 1 reports our

running time, which excludes the time of pre-computation, for shape pairs in Fig. 5 and Fig. 6.

As shown in Table 1, our running time is faster than that of [1], which is implemented by C#

language, for all shape pairs. The average time of our algorithm and [1] are 2.19s and 76.84s,

respectively. Our performance improvement comes from the small number of part arrangements
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Shape pairs pa1/pa2 Our/[1](second)
dog-cat 39 28 1.70 7.11
dog-feline 39 82 2.46 20.52
dog-dragon 39 122 2.07 282.1
dog-cow 39 39 1.23 4.66
dog-lion 39 44 1.21 4.37
dog-horse 39 51 1.38 21.36

dog-elephant1 39 220 5.74 400.12
ant1-ant2 90 74 4.12 15.21

Michael-centaur 6 39 0.65 5.01
horse-centaur 51 39 1.38 7.89

Avg. 42 73.8 2.19 76.84
elephant1-elephant2 220 110 8.95 fail

Table 1: The number of part arrangements and the comparison of running time with Au et al.
[1] for shape pairs from Fig. 5 and Fig. 6.

(matching units). Even a elephant with a lot of skeletal nodes only has 220 part arrangements

(elephant1 in the table). For shape pairs with the elephant, the performance improvement is

obvious. For example, for the dog and elephant1, we take 5.74s while [1] takes 400.12s; for

elephant1 with another elephant in a different pose, we take 8.95s while [1] fails.

Visual results. Fig. 5 and Fig. 6 show our semantic correspondence between shape pairs with

large pose, geometric and topological variations. As shown, our method produces semantically

correct correspondence, even for shape pairs with extra or missing components, such as dog

and feline in Fig. 5 and Michael and the centaur in Fig. 6.

However, our algorithm may mismatch nodes, which have different semantics but very sim-

ilar geometries and structures. For example, the ear of the dog is mismatched to the beard

of the dragon, and the ivory of the elephant in Fig. 5; The ears and the nose of the horse are

respectively mismatched to the hands and the head of the centaur in Fig. 6. We deem these

mismatched nodes as ground-truth correspondences, too.

The mismatch of an internal node pair between the dog and the elephant in Fig. 5 comes

from the great structure variation between two shapes. Moreover, the embedded skeletons may

not be good enough and lead to mismatches in final results, e.g, the mismatches of Michael’s

legs and the ears of elephants in Fig. 6.

Part arrangements and general subgraphs. We implement and compare two versions of

our method, which respectively employ part arrangements and subgraphs of [1] as matching

units. Table 2 reports the number (#) of part arrangement pairs and subgraph pairs, which

have passed the pruning tests; the percentage (%) of correct correspondences among all node

correspondences from part arrangement pairs or subgraph pairs, compared to manually tagged

ground-truth correspondences; the precision (ab ) and recall rate (ac ) of the final output semantic

correspondence, where a is the number of correct output correspondences, b is the total number
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Figure 5: The semantic correspondence between the dog in grey box and other animals. Corre-
sponded nodes are shown in the same color. Nodes in small red boxes are mismatched, which
have different semantics but very similar geometry and structure with nodes of the dog.

of output correspondences and c is the number of ground-truth correspondences.

We can observe from the table that the number of part arrangement pairs is significantly

smaller than the number of subgraph pairs, while the percentage of correct correspondences

for voting is significantly larger. The observation indicates that the increase of subgraph pairs

has little contribution to the positive votes. The precision and recall rate of final semantic

correspondences are comparable for most shape pairs in the table. But, using part arrangements

stands out when shapes have a lot of skeletal nodes, such as a dog and an elephant.

§9 Conclusion and limitation

In this paper, we propose an automatic and efficient algorithm of finding semantic corre-

spondence between shape skeletons with large variations. By extracting and matching part

arrangements from two skeletons, our algorithm largely reduces the number of matching units

while increasing the accuracy of node correspondences for further voting. Experimental results

on a variety of shape pairs exhibit the improved performance and accuracy over the state-of-

the-art method. Although our method performs well, it still has some limitations. Firstly, the

input skeletons are assumed to have global intrinsic reflectional symmetry. It is more desirable

that we can handle partial symmetry and more symmetry types, such as rotational symmetry.

Secondly, the spatial embedding of skeletons are not robust enough for simple shapes, such as

Michael in Fig. 6, and shapes with large pose distortion, such as elephant2 in Fig. 6.
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Figure 6: The semantic correspondence between four more shape pairs. Corresponded nodes
are shown in the same color. Nodes in red solid boxes are mismatched, which have different
semantics but very similar geometry and structure with nodes of the horse. Nodes in dashed
boxes are exchanged, because they are too closed to each other after embedding (ant1 and
elephant2) or the embedding is not reasonable (Michael).

Shape pairs #(pa-pa/sg-sg) %(pa-pa/sg-sg) a
b (pa-pa/sg-sg)

a
c (pa-pa/sg-sg)

dog-cat 44 19082 66.5 32.5 10
10

10
10

10
10

10
10

dog-feline 66 60401 66.0 31.3 10
10

10
10

10
10

10
10

dog-dragon 91 61379 75.3 44.4 11
11

11
11

11
11

11
11

dog-cow 51 33585 79.5 44.1 11
11

11
11

11
11

11
11

dog-lion 61 24486 74.5 37.4 10
10

10
10

10
10

10
10

dog-horse 64 39815 81.9 39.6 11
11

11
11

11
11

11
11

dog-elephant1 168 276022 52.1 25.0 10
11

9
11

10
11

9
11

Avg. 77.9 73539 70.8 36.3 98.7% 97.4% 98.7% 97.4%

Table 2: The comparison of two versions of our method, which respectively employ part ar-

rangements (pa) and subgraphs (sg) of [4] as matching units. The shape pairs are from Fig. 5.
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