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Bias Free Threshold Estimation for

Jump Intensity Function

LIN Yi-wei1 LI Zhen-wei2 SONG Yu-ping2,∗

Abstract. In this paper, combining the threshold technique, we reconstruct Nadaraya-Watson

estimation using Gamma asymmetric kernels for the unknown jump intensity function of a

diffusion process with finite activity jumps. Under mild conditions, we obtain the asymptotic

normality for the proposed estimator. Moreover, we have verified the better finite-sampling

properties such as bias correction and efficiency gains of the underlying estimator compared

with other nonparametric estimators through a Monte Carlo experiment.

§1 Introduction

The diffusion process with jumps can characterize the statistical and economical dynamics

of the underlying state variables such as asset prices or interest rates, which is defined as follows:

dXt = µ(Xt−)dt+ σ(Xt−)dWt + dJt, t ∈ [0, T ], (1)

where Jt is a finite activity (FA) pure jump semimartingale. Jt is usually assumed to be a

compound Poisson process and can be written as

Jt =

∫ t

0

∫
R

x ·m(ds, dx) :=

Nt∑
i=1

γi,

where m is the jump random measure of Jt, Nt :=
∫ t

0

∫
R 1 ·m(ds, dx) is a a.s. finite Poisson

process with a jump intensity stochastic process λ(·), and each γi is the size of the jump,

more details in Cont and Tankov (2004). Many statisticians and economists focused on the

theoretical properties and empirical applications for models (1). Hanif (2012) considered local
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linear estimator for the volatility function σ2(x)+λ(x)σ2
J , where λ and σ2

J are the jump intensity

and the variance of Jt respectively. Moreover, Lin and Wang (2010) or Hanif et al. (2012)

improved the nonparametric estimation for the volatility. The description of jumping behaviors

can help explain the sharp fluctuations for the underlying assets, whereas less research is done

independently for the characteristic of jumps, especially the parameter λ(x) which characterizes

the frequency of jumps. In view of an economical point, how to effectively estimate this intensity

parameter for a jump-diffusion process has also been a fundamental problem.

Assuming the parametric design for the diffusion model with jumps (1) such as one-factor

CKLS model including jumps, Das (2002) and Andersen et al. (2004) considered the char-

acteristic of jump through the parametric estimators. However, due to complex structure of

data in the analysis process, people often can not make simple assumptions about the overall

distribution pattern. At this time, the method of parameter estimation is no longer applicable.

Nonparametric approach does not rely on the assumptions of overall distribution or some of

the overall parameter characteristics such as variance, which, to some extent, can reduce the

errors caused by errors from misspecified model. Based on the fourth and sixth infinitesimal

conditional moments of jump-diffusion process, Johannes (2004) and Bandi and Nguyen (2003)

constructed nonparametric estimator for the identify parameter λ(x). However, they didn’t ob-

tain the central limit theorem for the underlying estimator. Mancini and Renò (2011) improved

the nonparametric estimator for intensity function λ(x) combining Nadaraya-Watson method

with the threshold function and proved the central limit theorem for it.

As is known to all, there exists a “boundary effect” problem for Nadaraya-Watson estimator

at the boundary point. Chen (2000) proposed the Gamma asymmetric kernels for nonparamet-

ric estimation of positive supported densities and also mentioned that the kernel estimator

constructed with gamma probability densities were free of boundary bias. In addition, the

variance of nonparametric estimator constructed with gamma asymmetric kernels is inversely

proportional to the location of the design point x away from the origin, which could bring about

variance reduction. Gospodinov and Hirukawa (2012) proposed nonparametric estimation con-

structed with gamma asymmetric kernels for scalar diffusion models with application to bond

and option pricing using U.S. interest rates. They also proved the asymptotic theorem for this

approach and illustrated its advantages such as bias correction and efficiency gains through

Monte Carlo experiments. In this paper, we introduce and analyze the bias free nonparametric

threshold estimator as Nadaraya-Watson estimator constructed with Gamma asymmetric ker-

nels for the unknown intensity coefficients in the jump-diffusion model. The main contributions

of this paper are twofold. Theoretically, different from Song and Wang (2018), the asymptotic

normality for the proposed estimator which is a stochastic integral driven by a pure jump Lévy

martingale not a Wiener process, is obtained by Jacod’s stable convergence theorem. Practical-

ly, compared with the estimator constructed with Gaussian kernels considered in Mancini and

Renò (2011), the better finite-sample performance of our estimators, especially bias correction

at the boundary points, is verified through a Monte Carlo experiment.

An outline of the paper is as follows: Section 2 introduces the bias free threshold estimator
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constructed with Gamma asymmetric kernels for jump intensity function. Moreover, the regular

conditions and main results are shown here. Section 3 presents the finite-sample performance of

the underlying estimator through Monte-Carlo simulation study. Section 4 collects the technical

lemmas and the detailed proof for the main results.

§2 Bias free threshold estimator and Main results

Chen (2000) introduced nonparametric kernel estimation for positive supported densities

constructed with Gamma asymmetric kernels which are defined as

KG(x/hn+1,hn)(u) =
ux/hn exp(−u/hn)

hn
x/hn+1Γ(x/hn + 1)

, 0 ≤ u ≤ ∞, (2)

where Γ(m) =
∫∞
0

ym−1 exp(−y)dy, m > 0 is the Gamma function and hn is the smoothing

parameter. The local nonparametric estimator using Gamma kernel functions does not bring

about boundary bias for nonnegative variables or nonnegative part of underlying variables due

to the fact that the support of the Gamma density function is [0,∞). Since KG(x/hn,hn)(u) is

unbounded near at x = 0, we use modified Gamma kernel functions KG(x/hn+1,hn)(u) instead

of KG(x/hn,hn)(u). The Gamma function has shapes varying with the smoothing parameter

and the design point x, which behaves as the variable bandwidth method. Furthermore, the

asymptotic variance of the nonparametric Gamma kernel estimation is inversely proportional

to the design point x, which yields the variance reduction of nonnegative kernels.

Here we firstly consider Nadaraya-Watson estimation for the unknown coefficient of the dif-

fusion model with jumps (1) constructed with the Gamma asymmetric kernels. The Nadaraya-

Watson estimator λ̂AS(x) for λ(x) constructed with the Gamma asymmetric kernels is

λ̂AS(x) =

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)ci,nI{|Xi∆n−X(i−1)∆n |2>ϑ(∆n)}

∆n

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
, (3)

where {Xi∆n ; i = 1, 2, · · · } are discrete sampling observations for the process (1), ci,n is a double

array of constants with i = 1, ..., n and ϑ(∆n) is the threshold function.

We impose the following assumptions throughout the paper. Assume that D = (l, u) with

−∞ ≤ l < u ≤ ∞ is the range of the process Xt.

Assumption 1. For model (1), the jump intensity λt := λ(Xt−) is bounded and nonnegative,

and the coefficients µt and σt are twice continuously differentiable and progressively measurable

processes with càdlàg paths satisfying the following conditions:

(i) For each n ∈ N, there exists a positive constant Ln such that for any |x| ≤ n, |y| ≤ n,

|µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ Ln|x− y|;
(ii) There exists a positive constant C, such that for all x ∈ R,

|µ(x)|+ |σ(x)| ≤ C(1 + |x|);
(iii) σ2(x) is strictly positive.

Assumption 2. The solution of model (1) is Harris recurrent.

Assumption 3. The local time LX(T, x) for model (1) satisfies

sup
|u|≤1

|LX(T, x+ uan)− LX | = op(LX(T, x)),
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as an → 0.

Remark 2.1. The assumptions (i) and (ii) in Assumption 1 guarantee that the SDE (1)

has a unique strong solution which is adapted and right continuous with left limits on [0, T ],

see Jacod and Shiryaev (2003) for more details. The Assumption 2 guarantees the existence

of a unique invariant measure s(x), that is, s(A) =
∫

D P (X
(x)
t ∈ A)s(dx), ∀A ∈ B(D). The

Assumption 2 with positive Harris recurrent condition implies that the process Xt has a time-

invariant probability measure given by p(dx) = s(x)
s(D) at any initial level x ∈ D . Assumption

3 actually arises from Theorem 1 in Eisenbaum and Kaspi (2007), which was mentioned as

assumption 5 in Wang and Zhou (2017).

In the following theorem, we will obtain the corresponding asymptotic normality of Nadaraya-

Watson threshold estimator constructed with Gamma asymmetric kernels (3) by letting n,

T → ∞ and ∆n = T/n → 0.

Theorem 1. [recurrent case] In model (1), under Assumptions 1, 2 and 3, and we also

assume that

(i) Jt is such that ∀ε > 0, P{|γi| < ε} ≤ cε and the jump sizes {γi}i are independent of Nt;

(ii) ϑ(∆n) = ∆η
n, η ∈ (0, 1), with n∆

1+η/2
n → 0 and

∆n ln( 1
∆n

)

ϑ(∆n)
→ 0;

(iii) the bandwidth parameter is of the form hn = ∆ϕ
n with ϕ ∈ (0, η/2);

(iv) as n, T → ∞ and hn, ∆n → 0, we have for all visited x

(∆nln(
1
∆n

))
1
2

h2
n

→ 0,
(∆n ln

1
∆n

)
1
2

hn
L̂♯
T (x)

a.s.−→ 0, hnL̂
♯
T (x)

a.s.−→ ∞,

but h
5
2
n L̂

♯
T (x) = OP (1), where L̂♯

T (x) = ∆n

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

).

Then if ci,n is a double array of constants with i = 1, ..., n such that ∀x,
√
h
1/2
n L̂♯

T (x) supi |1−
ci,n| → 0 as n → ∞, then, for the interior x visited by X, we have√

h
1/2
n L̂♯

T (x)

(
λ̂AS(x)− λ(x)−

[
λ

′
(x)

{
1 + x

s
′
(x)

s(x)

}
+

x

2
λ

′′
(x)

]
· hn

)
d→

N

(
0, λ(x) · 1

2
√
πx1/2

)
;

for the boundary x visited by X, we have√
hnL̂

♯
T (x)

(
λ̂AS(x)− λ(x)

)
d→ N

(
0, λ(x) · Γ(2κ+ 1)

21+2κΓ2(κ+ 1)

)
,

where “interior x” if “x/hn −→ ∞” or “boundary x” if “x/hn −→ κ” for x ∈ D .

Theorem 2. [positive recurrent case] Under Assumptions 1, 2 with positive Harris re-

current condition, 3 and n∆nh
5
2
n = OP (1), then, for the interior x visited by X, we can obtain√

n∆nh
1/2
n

(
λ̂AS(x)− λ(x)−

[
λ

′
(x)

{
1 + x

s
′
(x)

s(x)

}
+

x

2
λ

′′
(x)

]
· hn

)
d→

N

(
0, λ(x) · 1

2
√
πx1/2p(x)

)
;

for the boundary x visited by X, we have√
n∆nhn

(
λ̂AS(x)− λ(x)

)
d→ N

(
0, λ(x) · Γ(2κ+ 1)

21+2κΓ2(κ+ 1)p(x)

)
.
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Remark 2.2. For the positive recurrent case of Assumption 2, the local time L̄X(T, x) increases

consistently with T as
L̄X(T, x)

T

a.s.−→ p(x), ∀x ∈ D . (4)

So we can deduce Theorem 2 by means of Theorem 1 easily with the property (4) above.

Remark 2.3. Under some regular conditions and h5
nL̂X(T, x) = Oa.s.(1), Mancini and Renò

(2011) obtained asymptotic normality of Nadaraya-Watson estimator constructed with Gaus-

sian symmetric kernels for the unknown quantity λ(x),√
hnL̂X(T, x)

(
λ̂NW (x)− λ(x)− h2

n · 1
2

[
λ

′′
(x) +

λ
′
(x)s

′
(x)

s(x)

])
d→ N

(
0, λ(x) · 1

2
√
π

)
, (5)

where

L̂X(T, x) =
1

hn

n∑
i=1

K
(X(i−1)∆n

− x

hn

)
∆n,

and

λ̂NW (x) =

∑n
i=1 K

(X(i−1)∆n−x

hn

)
ci,nI{|Xi∆n−X(i−1)∆n |2>ϑ(∆n)}∑n

i=1 K
(X(i−1)∆n−x

hn

)
∆n

.

There are two main differences between the asymptotic result in Theorem 1 and that in

Mancini and Renò (2011) above: on one hand, the convergence rate of Nadaraya-Watson esti-

mator using Gamma asymmetric kernel is various for the location of the design point x such as

“interior x” and “boundary x”; on the other hand, the variance of of Nadaraya-Watson esti-

mator using Gamma asymmetric kernel for “interior x” is inversely proportional to the design

x, which implies that the estimator (3) is resistant to sparse design point x. More theoretical

comparison between the results, one can refer to Song et al. (2019) for more details.

It is very important to consider the choice of the bandwidth hn for the nonparametric

estimation. Based on the mean square error (MSE), the optimal bandwidth of Nadaraya-

Watson threshold estimator with Gaussian kernels (5) for both interior and boundary points is

given

hNW
n,opt =

(
λ(x)

L̂X(T, x)2
√
πA2(x)

) 1
5

= OP

(
LX(T, x)−

1
5

)
,

where A(x) = 1
2

[
λ

′′
(x) + λ

′
(x)s

′
(x)

s(x)

]
. The optimal bandwidth of nonparametric threshold esti-

mator constructed with Gamma asymmetric kernels (3) based on Theorem 1 for “interior x” is

given

hAS
n,opt =

(
λ(x)

L♯
T (x)2

√
πx1/2B2(x)

) 2
5

= OP

(
LX(T, x)−

2
5

)
,

where B(x) =

[
λ

′
(x)

{
1 + x s

′
(x)

s(x)

}
+ x

2λ
′′
(x)

]
.

We can observe that for “interior x”, the optimal smoothing parameter

hAS
n,opt = OP

(
LX(T, x)−

2
5

)
= OP (h

NW
n,opt)

2,

which shows that the asymptotic variance of the nonparametric threshold estimator construct-

ed with Gamma asymmetric kernels is OP

(
LX(T, x)−

4
5

)
, the same as that constructed with
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symmetric kernels. For the further study of the theoretical optimal value of the bandwidth, one

can refer to Aı̈t-Sahalia and Park (2016) and Wang and Zhou (2017) for more details.

§3 Simulation study

In this section, the finite-sample performance of various nonparametric threshold estimators

is constructed through a simple Monte Carlo simulation experiment. For simplicity, nonpara-

metric threshold estimator using Gamma asymmetric kernels studied here is denoted as AS and

Nadaraya-Watson estimator mentioned in Mancini and Renò (2011) is denoted as NW.

A jump-diffusion model defined as

dXt = 0.103Xtdt+ 0.178XtdWt + dJt, (6)

is considered here, where Jt =
∑Nt

i=1 Zi with the arrival intensity λ = 1 and jump size Zn ∼
N (0, 0.0362). One sample path of Xt with T = 10, n = 480, X0 = 0.1, ∆n = T

n = 1
48 for

model (6) is shown in FIG 1. The difference ofXt and its time-varying threshold function ϑ(∆n)

depicted in FIG 2, which is implemented as that in Mancini and Renò (2011) and effectively

disentangle the jumps.
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Figure 1: One sample path of Xt for model (6)
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Throughout this section, we take Gaussian density K(x) = 1√
2π

e−
x2

2 and the practical
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bandwidth hNW
n = 2.8·Ŝ ·T− 1

5 for Nadaraya-Watson threshold estimator and hAS
n = 2.8·Ŝ ·T− 2

5

for nonparametric threshold estimator constructed with Gamma asymmetric kernels, where

Ŝ denotes the standard deviation of the data. The sequence ci,n is implemented as that in

Mancini and Renò (2011). The plot of estimators and their corresponding biases at various

quantile points of sample Xt in model (6) are demonstrated in FIG 3 and Table 1. From FIG

3 and Table 1, it is observed that AS threshold estimator performs better than NW threshold

estimator in terms of bias, especially at the right sparse design point.
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Figure 3: Various Nonparametric Threshold Estimators for λ(x) = 1

Table 1: The biases of NW and AS at various quantile points of sample Xt in model (6)

Bias
Quantile points of sample Xt

10% 20% 30% 40% 50% 60% 70% 80% 90%

NW 0.0446 0.0470 0.0484 0.0477 0.0441 0.0370 0.0261 0.0111 -0.0079
AS 0.0308 0.0280 0.0253 0.0225 0.0192 0.0153 0.0105 0.0049 -0.0018

Furthermore, the overall finite-sample performance between Nadaraya-Watson threshold es-

timator considered in Mancini and Renò (2011) and bias free nonparametric threshold estimator

constructed with Gamma asymmetric kernels for the intensity function λ is calculated via the

following four measures used in Fan et al. (2007).

Measure 1: Absolute Mean Error (AME): AME = 1
N

∣∣∣∑N
k=1[λ̂(xk)− λ(xk)]

∣∣∣ ;
Measure 2: Root Mean Square Error (RMSE): RMSE =

√
1
N

∑N
k=1[λ̂(xk)− λ(xk)]2;

Measure 3: Ideal Mean Absolute Deviation Error (IMADE):

IMADE = 1
N

∑N
k=1

∣∣∣λ̂(xk)− λ(xk)
∣∣∣ ;

Measure 4: Relative Ideal Mean Absolute Deviation Error (RIMADE):

RIMADE =
1

N

N∑
k=1

∣∣∣λ̂(xk)− λ(xk)
∣∣∣

λ(xk)
,

where λ̂(x) is the various nonparametric threshold estimator for λ(x) and {xk}N1 are chosen

uniformly to cover the range of sample path of Xt. From Table 2, we can find that the AS
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estimator performs better than the NW estimator for various jump intensities and various

measures.

Table 2: Comparisons between different nonparametric threshold estimators for intensity func-
tion with various measures

Measures Estimators λ = 1 λ = 3 λ = 5

AME
NW 0.1943 1.6557 2.8967
AS 0.1883 1.6311 2.8520

RMSE
NW 0.1949 1.6571 2.8972
AS 0.1903 1.6322 2.8554

IMADE
NW 0.1943 1.6557 2.8967
AS 0.1883 1.6311 2.8520

RIMADE
NW 0.1943 0.5519 0.5793
AS 0.1883 0.5437 0.5704

Finally, the QQ plots of nonparametric threshold estimator using Gamma asymmetric k-

ernels for λ(x) = 1 at the left or right boundary point and in the interior point are displayed

in FIG 4, which confirms the normality of the underlying nonparametric threshold estimator

shown in Theorem 1.
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Figure 4: QQ plot of Nonparametric Threshold Estimators constructed with Gamma Asym-
metric kernels for λ(x) = 1

§4 Proof for main result

We recall that ∆n = T
n , ti = i∆n,∆iX = Xi∆n − X(i−1)∆n

. Note that throughout this

article, we use C to denote a generic constant, which may vary from line to line. By σ.W we

denote the stochastic integral of σ with respect to W . We denote by
(
τj
)
j∈N the jump instants

of Jt and by τ (i) the instant of the first jump in (ti−1, ti], if ∆iN ≥ 1.
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Lemma 4.1. [The occupation time formula] Let Xt be a semimartingale with local time

(LX(·, a))a∈D . Let g be a bounded Borel measurable function. Then∫ ∞

−∞
LX(t, a)g(a)da =

∫ t

0

g(Xs−)d[X]cs, a.s., (7)

where [X]c is the continuous part of the quadratic variation of X and D denotes the the admis-

sible range of the process of interest.

Lemma 4.2. [Jacod’s stable convergence theorem] A sequence of R−valued variables

{ζn,i : i ≥ 1} defined on the filtered probability space (Ω,F , (F )t≥0, P ) is Fi∆n−measurable

for all n, i. Assume there exists a continuous adapted R−valued process of finite variation Bt

and a continuous adapted and increasing process Ct, for any t > 0, we have

sup
0≤s≤t

∣∣ [s/∆n]∑
i=1

E
[
ζn,i | F(i−1)∆n

]
−Bs

∣∣ P−→ 0, (8)

[t/∆n]∑
i=1

(
E
[
ζ2n,i | F(i−1)∆n

]
− E2

[
ζn,i | F(i−1)∆n

])
− Ct

P−→ 0, (9)

[t/∆n]∑
i=1

E
[
ζ4n,i | F(i−1)∆n

] P−→ 0. (10)

Assume also
[t/∆n]∑
i=1

E
[
ζn,i∆

i
nH | F(i−1)∆n

] P−→ 0, (11)

where either H is one of the components of Wiener process W or is any bounded martingale

orthogonal (in the martingale sense) to W and ∆i
nH = Hi∆n −H(i−1)∆n

.

Then the process
[t/∆n]∑
i=1

ζn,i
S−L−→ Bt +Mt,

where Mt is a continuous process defined on an extension
(
Ω̃, P̃ , F̃

)
of the filtered probabil-

ity space
(
Ω, P,F

)
and which, conditionally on the the σ−filter F , is a centered Gaussian

R−valued process with Ẽ
[
M2

t | F
]
= Ct.

Remark 4.1. For lemma 4.2, one can refer to Jacod (2012) (Lemma 4.4) for more details.

The stable convergence implies the following crucial property required in the detailed proof of

Theorem 1.

If Zn
S−L−→ Z and if Yn and Y are variables defined on (Ω,F , P ) and with values in the same

Polish space F, then

Yn
P−→ Y ⇒ (Yn, Zn)

S−L−→ (Y, Z), (12)

which implies that Yn × Zn
S−L−→ Y × Z through the continuous function g(x, y) = x× y.

Lemma 4.3 (Song et al. (2019)). Under Assumptions 1, 2 and 3, we have

∆n

n−1∑
i=1

KG(x/hn+1,hn)(Xi∆n)g(Xi∆n) =

∫ T

0

KG(x/hn+1,hn)(Xs−)g(Xs−)ds+ op(1). (13)

Remark 4.2. Denote gL̄X(T, y) := g(y)·L̄X(T, y) and ξ ∼ Γ(x/hn+1, hn), then E(ξ) = x+hn

and V ar(ξ) = xhn + h2
n. For model (1) we have d[X]cs = σ2(Xs−)ds, and by the occupation
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time formula in Lemma 4.1,∫ T

0

KG(x/hn+1,hn)(Xs−)g(Xs−)ds

=

∫ T

0

KG(x/hn+1,hn)(Xs−)g(Xs−)
σ2(Xs−)ds

σ2(Xs−)

=

∫ T

0

KG(x/hn+1,hn)(Xs−)g(Xs−)
d[X]cs

σ2(Xs−)

=

∫ ∞

0

KG(x/hn+1,hn)(u)g(u)L̄X(T, u)du

= E[gL̄X(T, ξ)] = E[gL̄X(T,E(ξ) + ξ − E(ξ))]

= E[gL̄X(T, x+Op(
√
hn))] := E[gL̄X(T, x+ an)]

= E[g(T, x+ an)L̄X(T, x+ an)− g(x)L̄X(T, x+ an)]

+E[g(x)L̄X(T, x+ an)− g(x)L̄X(T, x)] + E[g(x)L̄X(T, x)]

= g(x)L̄X(T, x) + op(L̄X(T, x))

combining the Assumptions 1 and 3, where an =
√
hn and L̄X(T, x) = LX(T,x)

σ2(x) .

Remark 4.3. If g ≡ 1, then

∆n

n−1∑
i=1

KG(x/hn+1,hn)(Xi∆n)
P−→ L̄X(T, x). (14)

For stationary case,

1

n

n−1∑
i=1

KG(x/hn+1,hn)(Xi∆n)g(Xi∆n)
P−→ g(x)p(x). (15)

4.1 The proof of Theorem 1

Proof. Denote

L̂♯
T (x) := ∆n

n∑
i=1

KG(x/hn+1,hn)(X(i−1)∆n
)

and the regularization coefficient R(hn) =
{ √

h
1/2
n , if x/hn → ∞ (“interior x”);√

hn, if x/hn → κ (“boundary x”).

Write

R(hn)

√
L̂♯
T (x)(λ̂AS(x)− λ(x))

=R(hn)

√
L̂♯
T (x)

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)(ci,n − 1)I{(∆iX)2>ϑ(∆n)}

L̂♯
T (x)

+R(hn)

√
L̂♯
T (x)

(∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)I{(∆iX)2>ϑ(∆n)}

L̂♯
T (x)

− λ(x)

)
.
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Firstly, for the second part of R(hn)
√
L̂♯
T (x)(λ̂AS(x)− λ(x)),

Rn,T :=R(hn)

√
L̂♯
T (x)

(∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)I{(∆iX)2>ϑ(∆n)}

L̂♯
T (x)

− λ(x)

)

=R(hn)

√
L̂♯
T (x)

(∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)(I{(∆iX)2>ϑ(∆n)} −∆iN)

L̂♯
T (x)

+

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
(
∆iN −

∫ ti
ti−1

λsds
)

L̂♯
T (x)

+

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
∫ ti
ti−1

(
λs − λ(x)

)
ds

L̂♯
T (x)

)
:=R1n,T

+R2n,T
+R3n,T

.
As for R1n,T

, we can show it tends to zero in probability similarly as the detailed proof in

Mancini and Renò (2011) replacing K
(

Xti−1
−x

hn

)
with KG(x/hn+1,hn)(X(i−1)∆n

).

As for R2n,T , in order to obtain

R(hn)

√
L̂♯
T (x)

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
(
∆iN −

∫ ti
ti−1

λsds
)

L̂♯
T (x)

d−→ N
(
0, λ(x) ·R2(h)Bh(x)

)
,

we firstly show the numerator of
R(hn)

T
√
T

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
∫ ti
ti−1

ν̄(ds)

L̂♯
T (x)

T
√
T

:=

R(hn)

T
√
T

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
(
∆iN −

∫ ti
ti−1

λsds
)

L̂♯
T (x)

T
√
T

(16)

converges stably in law to M1, where ν̄(dt) = Ntdt − λ(Xt−)dt, M1 is a Gaussian martingale

defined on an extension
(
Ω̃, P̃ , F̃

)
of our filtered probability space and having Ẽ[M2

1 |F ] = λ(x)·

R2(hn) ·Bhn(x) ·
L̄X(T,x)

T 3 with Bhn(x) =
{ 1

2
√
π
h
−1/2
n x−1/2, if x/hn → ∞ (“interior x”);

Γ(2κ+1)
21+2κΓ2(κ+1)h

−1
n , if x/hn → κ (“boundary x”).

Denote
∑n

i=1 qi :=
R(hn)

T
√
T

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
∫ ti
ti−1

ν̄(ds), and Jacod’s stable con-

vergence theorem tells us that the following arguments,

V1 =
n∑

i=1

Ei−1[qi]
P→ 0,

V2 =
n∑

i=1

(
Ei−1[q

2
i ]− E2

i−1[qi]
) P→ λ(x) ·R2(hn) ·Bhn(x) ·

L̄X(T, x)

T 3
,

V3 =
n∑

i=1

Ei−1[q
4
i ]

P→ 0,

V4 =

n∑
i=1

Ei−1[qi∆iH]
P→ 0,

imply
∑n

i=1 qi
S−L−→ M1, where either H = W or H is any bounded martingale orthogonal (in

the martingale sense) to W, Ei−1[ · ] = E[ · |X(i−1)∆n
].



320 Appl. Math. J. Chinese Univ. Vol. 34, No. 3

Considering KG(x/hn+1,hn)(X(i−1)∆n
) is measurable with respect to the σ-algebra generated

by {Xu, 0 ≤ u ≤ ti−1}, qi is a martingale difference sequence, so V1 ≡ 0.

For V2,

V2 =

n∑
i=1

(
Ei−1[q

2
i ]− E2

i−1[qi]
)

=
R2(hn)

T 3

n∑
i=1

K2
G(x/hn+1,hn)

(X(i−1)∆n
)Ei−1

(∫ ti

ti−1

ν̄(ds)

)2


=
R2(hn)

T 3

n∑
i=1

K2
G(x/hn+1,hn)

(X(i−1)∆n
)Ei−1

[∫ ti

ti−1

λ(Xs−)ds

]

=
R2(hn)

T 3

n∑
i=1

K2
G(x/hn+1,hn)

(X(i−1)∆n
)×

Ei−1

[∫ ti

ti−1

λ(X(i−1)∆n
)ds+

∫ ti

ti−1

(λ(Xs−)− λ(X(i−1)∆n
))ds

]

=
R2(hn)

T 3

n∑
i=1

K2
G(x/hn+1,hn)

(X(i−1)∆n
)λ(X(i−1)∆n

)∆n

+
R2(hn)

T 3

n∑
i=1

K2
G(x/hn+1,hn)

(X(i−1)∆n
)Ei−1

[∫ ti

ti−1

(λ(Xs−)− λ(X(i−1)∆n
))ds

]
=: V21 + V22.

For V21 :

V21 =
R2(hn)

T 3

n∑
i=1

K2
G(x/hn+1,hn)

(X(i−1)∆n
)λ(X(i−1)∆n

)∆n

=
R2(hn)

T 3

n∑
i=1

K2
G(x/hn+1,hn)

(X(i−1)∆n
)

∫ ti

ti−1

(λ(X(i−1)∆n
)− λ(Xs))ds

+
R2(hn)

T 3

n∑
i=1

∫ ti

ti−1

(K2
G(x/hn+1,hn)

(X(i−1)∆n
)λ(Xs)−K2

G(x/hn+1,hn)
(Xs)λ(Xs))ds

+
R2(hn)

T 3

n∑
i=1

∫ ti

ti−1

K2
G(x/hn+1,hn)

(Xs)λ(Xs)ds

=: V211 + V212 + V213,

where V211
a.s.→ 0 and V212

a.s.→ 0 can be dealt with in analogy to (b3) and (b4) in Mancini and

Renò (2011) replacing K
(

Xti−1
−x

hn

)
with KG(x/hn+1,hn)(X(i−1)∆n

). Using the occupation time

formula in Lemma 4.1, Assumption 3 and the result (3.2) in Chen (2000), we can obtain that

V213
a.s.−→ λ(x) ·R2(hn) ·Bhn(x) ·

L̄X(T, x)

T 3
.

For V22, we define the random sets for each n,

I0,n = {i ∈ {1, ..., n} : ∆iN = 0},
and

I1,n = {i ∈ {1, ..., n} : ∆iN ̸= 0}.
Applying the mean-value theorem for λ(·), neglecting the terms with i ∈ I1,n similarly as
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the detailed proof for Lemma 4.3 and bounding |Xs − X(i−1)∆n
| by the property of uniform

boundedness of the increments of Xt paths when i ∈ I0,n (denoted as UBI property), we can

reach
R2(hn)

T 3

n∑
i=1

K2
G(x/hn+1,hn)

(X(i−1)∆n
)∆n · sup

x
|λ

′
(x)| ·

√
∆nln

1

∆n

= Oa.s.

(R2(hn)

T 3

∑
i∈I0,n

K2
G(x/hn+1,hn)

(X(i−1)∆n
)∆n ·

√
∆nln

1

∆n

)
= Oa.s.

(R2(hn)

T 3

n∑
i=1

K2
G(x/hn+1,hn)

(X(i−1)∆n
)∆n ·

√
∆nln

1

∆n

)
= Oa.s.

(
R2(hn) ·Bhn

(x) · L̄X(T, x)

T 3

)
·
√
∆nln

1

∆n

a.s.−→ 0.

For V3, by Burkholder-Davis-Gundy inequality, Lemma 4.3 and Lemma 4.1 in Rosa and Nogueira

(2016), we get

V3 =
n∑

i=1

Ei−1[q
4
i ]

=
R4(hn)

T 6

n∑
i=1

K4
G(x/hn+1,hn)

(X(i−1)∆n
)Ei−1

(∫ ti

ti−1

ν̄(ds)

)4


≤ Op (1) ·
R4(hn)

T 6

n∑
i=1

K4
G(x/hn+1,hn)

(X(i−1)∆n
)(∆2

n +∆n)

= Op (1) ·
(
R4(hn) ·

1 + ∆n

T 5
· LX(T, x)

T
·B(4, hn, x)

)
= Op (1) ·

(
R4(hn) ·

1 + ∆n

T 5
· LX(T, x)

T
·
{ h

−3/2
n , if x/hn → ∞ (“interior x”);

h−3
n , if x/hn → κ (“boundary x”).

)
P−→ 0.

For V4, in addition, when H = W, according to the model assumption that Jt is independent

of Wt, we easily get V4 ≡ 0. Moreover, when H is any bounded martingale orthogonal (in the

martingale sense) to W,
n∑

i=1

Ei−1 [qi∆iH] =
R(hn)

T
√
T

n∑
i=1

KG(x/hn+1,hn)(X(i−1)∆n
)Ei−1

[∫ ti

ti−1

ν̄(ds)∆iH

]

= OP

(
R(hn)

T
√
T

n∑
i=1

KG(x/hn+1,hn)(X(i−1)∆n
)Ei−1

[∫ ti

ti−1

ν̄(ds)

])

= OP

(
R(hn)

T
√
T

n∑
i=1

KG(x/hn+1,hn)(X(i−1)∆n
)∆

1
2
n

)

= OP

(√
nR2(hn)

T 2

n∑
i=1

KG(x/hn+1,hn)(X(i−1)∆n
)∆n

)

= OP

(√
nR2(hn)

T
· L̄X(T, x)

T

)
P−→ 0,
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provided the bounded of H such that ∆iH ≤ C for the second equality, Hölder inequality and

Burkerholder-Davis-Gundy inequality for the third equality, the equation (14) by Lemma 4.3

for the fifth equality and √
nR2(hn)

T
= oP (1)

as T −→ ∞.

As for R3n,T , ∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
∫ ti
ti−1

(λs − λ(x))ds

L̂♯
T (x)

=

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
∫ ti
ti−1

(λs − λti−1)ds

L̂♯
T (x)

+

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
∫ ti
ti−1

(λti−1 − λ(x))ds

L̂♯
T (x)

:=D1n,T
+D2n,T

,

(17)

where L̂♯
T (x)

P−→ L̄X(T, x) as the equation (14) by Lemma 4.3.

We now obtain the asymptotic bias for the expressions D1n,T and D2n,T above. That is,

D1n,T
= oP (D2n,T

).

By the Taylor expansion for λti−1 − λ(x) in D2n,T
up to order 2,

λti−1 − λ(x) = λ
′
(x)(X(i−1)∆n

− x) +
1

2
λ

′′
(x)(x+ θ(X(i−1)∆n

− x))(X(i−1)∆n
− x)2,

where θ is a random variable satisfying θ ∈ [0, 1].

For D2n,T
, by Lemma 4.3 and the results in Chen (2002), we get

D2n,T
=

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
∫ ti
ti−1

(λti−1 − λ(x)) ds

L̂♯
T (x)

=

∑n−1
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)(X(i−1)∆n
− x)∆n · λ′

(x)

L̂♯
T (x)

+

∑n−1
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)(X(i−1)∆n
− x)2∆n · 1

2λ
′′
(x+ θ(X(i−1)∆n

− x))

L̂♯
T (x)

P−→ hn

[
λ

′
(x)

{
1 + x

s
′
(x)

s(x)

}
+

x

2
λ

′′
(x)

]
,

using

E(ξ − x) = hn, E(ξ − x)2 = hn(x+ 2hn)

and

E(ξ − x)l = O(h2
n)

for 3 ≤ l and ξ ∼ Γ(x/hn + 1, hn).
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Furthermore, we use the mean-value theorem to λs − λti−1 for D1n,T
, then

D1n,T =

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
∫ ti
ti−1

(λs − λti−1)ds

L̂♯
T (x)

=

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
∫ ti
ti−1

λ
′
(ξi)(Xs −X(i−1)∆n

) ds

L̂♯
T (x)

P
≤ 1

L̄X(T, x)
×(∆nln
1

∆n

) 1
2

· supx|λ
′
(x)| ·

∑
i∈I0,n

KG(x/hn+1,hn)(Xi∆n)∆n + 2CN1∆n (for i ∈ I1,n)


→ O

[(
∆nln

1

∆n

) 1
2

]
= o(hn)

by the UBI property of i ∈ I0,n.

We prove that D1n,T = oP (D2n,T ), so the dominant bias arises from D2n,T , which is

hn

[
λ

′
(x)

{
1 + x

s
′
(x)

s(x)

}
+

x

2
λ

′′
(x)

]
.

Finally, we can show the first part of R(hn)
√
L̂♯
T (x)(λ̂AS(x)− λ(x)),

R(hn)

√
L̂♯
T (x)

1
hn

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)(ci,n − 1)I{(∆iX)2>ϑ(∆n)}

L̂♯
T (x)

≤ sup
i

|1− ci,n|R(hn)

√
L̂♯
T (x)

1
hn

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)I{(∆iX)2>ϑ(∆n)}

L̂♯
T (x)

= sup
i

|1− ci,n|R(hn)

√
L̂♯
T (x)

1
hn

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)
(
I{(∆iX)2>ϑ(∆n)} − λ(x)∆n

)
L̂♯
T (x)

+ sup
i

|1− ci,n|R(hn)

√
L̂♯
T (x)

1
hn

∑n
i=1 KG(x/hn+1,hn)(X(i−1)∆n

)λ(x)∆n

L̂♯
T (x)

= sup
i

|1− ci,n|
(
Op(1) + λ(x)R(hn)

√
L̂♯
T (x)

)
=Op

(
sup
i

|1− ci,n|R(hn)

√
L̂♯
T (x)

)
−→ 0,

with the help of asymptotic normality for Rn,T .

Combining the results (12), (14) and the above conclusions, we can obtain that for the

interior x visited by X,√
h
1/2
n L̂♯

T (x)

(
λ̂AS(x)− λ(x)−

[
λ

′
(x)

{
1 + x

s
′
(x)

s(x)

}
+

x

2
λ

′′
(x)

]
· hn

)
d→

N

(
0, λ(x) · 1

2
√
πx1/2

)
,

for the boundary x visited by X,√
hnL̂

♯
T (x)

(
λ̂AS(x)− λ(x)

)
d→ N

(
0, λ(x) · Γ(2κ+ 1)

21+2κΓ2(κ+ 1)

)
.
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