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A modified Tikhonov regularization method for a Cauchy

problem of a time fractional diffusion equation

CHENG Xiao-liang YUAN Le-le LIANG Ke-wei”

Abstract. In this paper, we consider a Cauchy problem of the time fractional diffusion equation
(TFDE) in z € [0, L]. This problem is ubiquitous in science and engineering applications. The ill-
posedness of the Cauchy problem is explained by its solution in frequency domain. Furthermore,
the problem is formulated into a minimization problem with a modified Tikhonov regularization
method. The gradient of the regularization functional based on an adjoint problem is deduced
and the standard conjugate gradient method is presented for solving the minimization problem.
The error estimates for the regularized solutions are obtained under H? norm priori bound

assumptions. Finally, numerical examples illustrate the effectiveness of the proposed method.

81 Introduction

Time fractional diffusion equations have attracted wide attentions in the recent decade
which can be used to describe anomalous diffusion phenomena (superdiffusion and subdiffusion
phenomena) instead of classical diffusion procedure. If the initial concentration distribution and
boundary conditions are given, a complete recovery of the unknown solution is attainable from
solving a well-posed forward problem [7,8]. However, in some practical problems, the boundary
data on the whole boundary cannot be obtained. We may only know the noisy data on a part
of the boundary or at some interior points of the concerned domain. These situations will lead
to inverse problems, i.e. fractional inverse diffusion problems (FIDP) in finite domain or half
space. The research of FIDP in half space can be found in [6,10,13,16,19,22-24]. For the case
of finite domain, we usually aim to determine the Cauchy data on inaccessible boundary from
the known data of accessible boundary.

In the early paper [12] about the Cauchy problems, Murio solved time fractional inverse

heat problems based on space marching and finite difference method, but without analysis.
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Zheng et al. in [23,25] solved the Cauchy problems of the time fractional diffusion equations
on a strip domain with a Fourier truncation method and a convolution regularization method.
They showed the ill-posedness of the Cauchy problems and derived error estimates for the
approximations under a prior bound of the solution. Xu et al. in [21] proved a conditional
stability of a Cauchy problem with a special time fractional derivative order & = 1/2. In
[1], a kernel-based meshless method has been proposed for a Cauchy problem of the time-
fractional diffusion equation on a one-dimensional bounded domain. The recovery of a nonlinear
boundary condition from the lateral Cauchy data was studied in [14] by using an integral
equation approach and a convergent fixed point iteration method. Wei et al. in [18] used
a boundary element method with a generalized Tikhonov regularization to solve a Cauchy
problem. In [5], Liu et al. changed the fractional diffusion equation into an ordinary differential
equation and constructed a regularizing scheme by a mollified operator for the reconstruction
of boundary flux in a finite slab sideways problem. In [20], Xiong et al. proved a conditional
stability estimate on the solution of a time fractional diffusion equation, then solved the Cauchy
problem with a modified Tikhonov method. Recently, in [15], A. Taghavi et al. presented a
convergent numerical algorithm for solving a time fractional inverse heat conduction problem,
which is based on the finite difference scheme.

From a theoretical point of view, the recovery of unknown solutions is more difficult when
the spatial position of the unknown solutions is far away from the location of the observation
data. Especially, it is not easy to get the convergent regularized solutions on the inaccessible
boundary # = L. The authors in [20, 25] gave convergent approximation solutions on z = L
under H? norm priori bound assumption (||u (L, ) ||z» < 00) and in interior domain under L?
norm priori bound assumption (||u (L, -) ||f2 < 00). In this paper, we solve a Cauchy problem of
a TFDE in {x|z € (0, L]} through formulating it into a minimization problem with a modified
Tikhonov regularization method with H? penalty functional. The standard conjugate gradient
method is applied with the adjoint problem. Moreover, error estimates for any {z|z € (0, L]}
is presented under H? norm priori bound assumption. From the definition of H? norm, L?
norm is a special case of HP norm, i.e., p = 0. According to Theorem 4.4, with a proper
p, the regularized solution can have higher convergence rates than that under L? norm priori
assumption.

The reminder of this paper is constructed as follows. In Section 2, we introduce some
preliminaries which will be needed in the following sections. The ill-posedness of the Cauchy
problem is studied in Section 3. We reformulate the Cauchy problem into a minimization
problem and give the error estimates of the regularized solutions in Section 4. Section 5 is
devoted to a conjugate gradient algorithm and two numerical examples are presented to show

the validity of the algorithm. Finally, we give a conclusion in Section 6.

82 Preliminary

Definition 2.1. The Fourier transform of a continuous function h(t) absolutely integrable in
(=00, +00) is defined by
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oo

E@=Fwawa=/ e~ (1) dt.

— 00

The original h(t) can be restored from its Fourier transform /Az(ﬁ ) with the help of inverse Fourier

h) = POt = 5 [ R© e

Definition 2.2. [2]. Assume 0 < p < oo and u € L? (R), then u € HP (R) if (1 + |¢[P) T (€) €
L? (R). For a noninteger p, we set

[ullze = | (L + [€7) 6 (€) [ L2 (w) -
Extend a function v € L2?(0,T) to the whole line —co < t < +o0o with zero to the extension
part, then v € H?(0,T) if the extended function belongs to H? (R). And we have

transform

[l v 0,1y := llull -
Definition 2.3. [4]. Let u(t) € L(0,T). The Riemann-Liouville fractional left-sided integral
(I§w)(t) and right-sided integral (I2_w)(t) of the order a(a € (0,1]) are defined by
1 K a—1
1, = — t— d 0<t<T
(g 0t) = gy [ =9 uleds 0 <t<T)
and

1 T o
(I3 u)(t) == 7/ (s — )" " u(s)ds 0<t<T),
' I'(a) J;
respectively. Here I'(8) is the Gamma function.

Definition 2.4. [4]. If u(t) € AC[0,T] (AC|0,T] is the space of functions u(t) which are
absolutely continuous on [0, T.), then for a(a € [0, 1]) the Caputo fractional left-sided derivative
(“Dgu)(t) and right-sided derivative (“D$_u)(t) are defined by
1 t —a,,
| (t—7) % (7)dr, 0<a<]l,
(CD0+ t“)(t) = F/(lia) fO( ) ™
v (t)7 a=1,

and

’

(CDoc )( ) _ F(l a) ft (T)dTa 0<ax< ]-7
" —v'(t), a=1.

Lemma 2.5. [17]. Suppose u(t),v(t) € AC[0,T], for 0 < o < 1, then

/OT (CD3+,tu) (t) v(t)dt = —u(0) (I;ﬁ'y’tv) (0) + (Ié+°t‘ ) (T) v(T) + /OT u(t) (CD%,’tv) (t)dt.

83 Mathematical formulation and ill-posedness of Cauchy problem

At the beginning of this section, we give the following note for the paper: in order to apply
the Fourier transform, we extend all the functions to the whole line —co < t < +o00 with zero
for the extension part and assume that all involved functions are L? in R with respect to t.

Here, and in the following sections, || - || denotes the L? norm, i.e.

|ﬂM=(AVWQé
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Consider the following Cauchy problem of the time fractional diffusion equation

(CD8‘+t )(x,t): Ugy (2, 1), O<zxz<L,0<t<T,
u(z,0)= 0, O0<zxz<L,t=0, (1)
w(0,t) = f(t), r=0,0<t<T,
ug (0,8) = g (¥), r=00<t<T,

where a(0 < a < 1). The Cauchy problem is to solve the unknown solutions u(z,t), u,(x,t)(0 <
x < L) from the given data f(t), g(t). In reality, the measurement data f(t), g(¢) contain noises
and the solutions, therefore, have to be sought from the noisy data functions.

Using Fourier transform to (1) with respect to t, we get
(i&)%u(w, &) — (1€)* tu(x,0) = Upe(z,€), 0<z <L, —00 <& < 400,
u(0,¢) = f(«f), x=0, —00 < & < 400,
u:(0,6) = 9(8), z =0, —00 <& < Fo0,
where £ is the frequency parameter. When ¢ is fixed, the above formula can be regarded as an

ordinary differential equation with respect to =, and the solution in frequency domain can be
obtained from the initial value condition of (1),
sinh (7 (€) )

U (z,€) = cosh (n (&) x) f (€) + TR (2)
(n

U (2,€) = /(&) sinh (n(€) 2) ] (€) + cosh (n () 2) G (). (3)

where 7 (§) = (2{)0‘/2 €]%/2 (cos (Za) + i sign () sin (Za)). When € = 0, the above expres-

sion has its meaning because W approaches = as £ tends to zero.

Now, we will explain the ill-posedness of this Cauchy problem. For any (0 < = < L), the
values of |cosh (n () x) | and |%| are unbounded as |¢| — co. In order to get a solution
u(z,t) € L? (R), the Cauchy data f and § must decay rapidly to zero as || — oo. However, if f
and g contain noise, such a decay is less likely to occur. Thus, the small perturbations of f and g

in high frequency components will be amplified by | cosh (n (§) z) | and |W |, respectively.

Especially, when |¢] is big enough, the perturbation of fin high frequency components is more

smh(&(g)x) ‘
7
Similarly to (2), the flux @, (z,€) in (3) does not depend continuously on the given Cauchy

sensitive to the solution than that of g, because |cosh (1 (§)z)| is bigger than |

data. Thus the Cauchy problem is ill-posed and some kinds of regularization techniques must
be required for the stable numerical reconstruction of the solutions.

84 A modified Tikhonov regularization method and error estimates

4.1 A modified Tikhonov regularization method

Assume that there exists a constant M > 0 such that the following priori bound exists
[l (L, )| o = (1 + [E17) w0 (L, €|

|1+ I¢l) cosh (n (€) L) T (©)| + H“ ) 0

sinh (1 (§) L)

)] <
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For a fixed 2 € (0, L], let h(®0) (t) = u (20, ), hro) (t) = ug (x0,t). In the absence of confusion,
we use h(t) and h,(t) instead of h{*0)(t) and hgf‘))(t), respectively. Then the inverse problem
we'll study below is to recover h(t) and h,(t) from the given f(¢) and g(t). We consider a
modified Tikhonov regularization method with H? penalty functional and define the following

quadratic functional

1 €
J (B (1)) = 5 Ak () = FB)72 + 5 1RO, - (5)
The positive constant € is the regularization parameter and A : h(t) — u(0,¢) is the forward

operator of the following problem

(CDgttu)(a:,t) = Ugg(x,t), O<z<z, 0<t<T,
u(z,0) = 0, 0<x<mg, t=0, (©)
u(zo,t) = h(t), r=u1x9, 0<t<T,
ugp(0,t) = g(t), r=0, 0<t<T.
We now reformulate the inverse problem to the following minimization problem
J(he(t)) = min J(h(t)). (7)

h(t)eH?(0,T)
The first order necessary optimality condition of (7) takes the form
T (h(1)) (g(£) =0, Va(t) € H"(0,T), (8)
Here J' (h€(t)) (q(t)) is the gradient of .J (h(t)), which is defined through the Géateaux differential
of J(h(t)) at he(t) along the direction ¢(¢). Note that the equality (8) is also the sufficient
condition of (7) because the quadratic functional J (h(t)) is convex, which will be proved in
Theorem 4.1.

Now the key point is how to efficiently compute the gradient of the objective functional

J (h(t)). To this end, we introduce the adjoint state equation of the forward problem (6)

(CD%,)tz)(x,t) = Zpg (2, 1), x € (0,z9), t €(0,T)

z(0,t) = u(0,t) — f(t), x=0, te(0,T), ©)
z (zo,t) =0, x =z, t€(0,T),

z(z,T) =0, z € (0,29), t="T.

Theorem 4.1. Let z(x,t) be the solution of the adjoint state equation (9), then there ezists a
unique solution he(t) € HP(0,T) of the minimization problem (7). Furthermore, the gradient
of J (h(t)) at h(t) along the direction q(t) can be obtained through

’

T 1) @) = [ a0z @y dee [ R(FHAFENEEIPHA+EN ) de. (10)

The symbol R (-) represents the real part of a complex function.

Proof. Let us consider the perturbation of h(t), h(t) — h(t) := h(t) + 7q(t), where the real
parameter 7 tends to 0 and ¢(t) € H? (R). Let @(x,t) be the solution of the forward problem

subject to the above perturbed h(t). We define w as w(z, t) = lim, 0 M Then it is
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readily seen that w is the solution of the following problem

(CDgJr W) (,t) = wae(a,t), x € (0,z0), t€(0,7),
w(z,0) =0, x € (0,20), t=0, (11)
('TOa ) = Q(t)’ T =g, t € (OvT)v
w,(0,1) =0, z=0, te(0,T).

By virtue of (5), we have

, I (h) = 7 (kv
T (h(0)) (a(t)) = lim

SO0 — FOF - [w0,0) — FOdt+ e [, 1+ 1) [ ©)] - 1+ 1) R )] de
:lli% 2T
iy [ OO ZUODTON 20D [y gy HORO FOTO),

~

= [ 0.0 @0.t) ~ fO) e+ ime [ 1 ey RO RO E g

where

}E%G/R(lﬂﬂp)z h(€h(§) —h(Eh(E) ,

€

= 5 [ (RO TTEPIGE + (1+161)3(©) 1+ 6 (©)) de

R
= [P+ e R OF A+ R E +F 1+ 1€ A1 + eP) T (€)a
= o [R(FHATED RO+ aE)) ar

then
T =
T (000 (1) = [ (0.) (u0.)=F(O) e RFHA+EPIREIF {1+ ) 2 (€)}) .
(12)

Similarly, the second order Gateaux derivative of J (h(t)) is given by

T (RD) (a0) = T (1) (a(0)
J" (1)) (alt), g(0)) = linm

T—0 T

T

200+ [ R(FHOTERDTOF 0 +MT©) ¢ 19

0

- / 2(0, t)dt + ¢ / (L4 €Y 7(6)2dé > 0
0 R

which means that J is uniformly convex and therefore (7) admits a unique solution h€(t).

To prove (10), we multiply each side of the first equation in (11) by z(z,t) the solution
of the adjoint state equation (9). Then we integrate the resulted equation on the domain
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Q =10, z0] x [0,7] and get
/ (CDaﬂ)tw) (x,t)z(z, t)dxdt = / Wea (z, ) 2(2, t)dadt.
Q Q
According to Lemma 2.5 in Section 2, the above equation is converted to

0= /Ox 2(@,7) (Ior5w) (@, T)de + /Q (9§ 12) (@) = 2wl 1)) i, )t
_/Ox" w(z,0) (I%iojfz) (m,O)d:E—/O [wz (2, t) 2 (z,t)]52 zOdH—/o w(z, t) zo(z,1)]"=20dt.

Taking into account the initial and boundary conditions in (9) and (11), we get

T T
/ w(0.8) (u(0,£) — £(1)) dt = / a(t)zs (w0, 1) dt,
0 0

Substituting the above expression into (12) yields (10). O

According to (2) and Plancherel’s theorem, the problem (7) can be rewritten as

in
2

cosh(n(§)zo) 77(5)‘?05}1(77(5)$0)g

Let hAe(f) be the minimal solution which satisfies the following Euler equation
1 2\ e sinh (n (&) zg) . 1 ~
(oo a0+ P77 (61 = 1© ok (n© a0 T @y

Thus the regularized solutions /¢ (&) and Eg (&) can be given as

T e G

sinh(n(§)zo)

) = @ ; cosh ( (&) zo) 6
© S @ o @ e P T T (1t e [cosh (1 @z B
he cosh (1 (§) zo) - n (€) sinh (1 (€) z0) -
he = , ! 2
O @ o @ P T T+ 167 leosh (n @ o)
B e(1+ [¢7)? sinh(n(&)zo) o7
(1+ e(1 + [¢[*)?[ cosh(n <s>xo>|2>2< ne) 9+ coshn(®) )f) .
(cosh(n(€)z0)n(€) sinh(n(€)o) + cosh(n(€)zo)n(€) sinh(n(€)o)) - (15)

4.2 FError estimates

For a clear explanation, we now distinguish between the exact Cauchy data f(t),g(¢) and
the measured noisy Cauchy data fo(t), ¢°(t):

1120 = f@) + [|l9°@) = 9(®)]| <6, (16)
where the level of the tolerance § > 0 represents a bound on the measurement error. We denote
heO(t), hS(t) as the regularized solutions of the Cauchy problem at z = xo with f°(t) and
g°(t), and have

sinh(n(£§)zo)
Ted n(§) 3 5 cosh (77 (5) iEo) /E(é)
2 s

h5,6 — S
© = Tt @ lcosh @ a0 O T+ )7 [cosh (n (€) 20)]
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hy? cosh (5 (£) o) > n(©sinh(n(©z0)
(g) L+ e (1+ [¢]7)” |cosh (1 (&) zo) [ (€)+1+e(1+|§|p)2 |cosh(77(£)x0)|2f ©
_ e(1+[¢")? sinh(n(§)zo) 5 o 7
(14 e(1 + |€]7)2| cosh(n(&)zo)|?)? ( n(6) g% + cosh(n(&)xo) f ) x
(COSh("?(f)fCO)U(ﬁ) sinh(n(§)zo) + COSh(n(f)xo)mSinh(m‘ro)) . (17)

In order to obtain L? estimates for the differences h*(t) — h(t) and hS%(t) — h,(t), we can
equivalently, in view of Parseval relation, estimate L? norm of the Fourier transform of these

quantities

+o0 +oo oo
€,0 o 2: €,0 . 2 _ €,0 o 2 —
|h° () —h(t)]| /0 |R°(t)—h(t)| dt Lm |h°(t)—h(t)|" dt [m

“+oo .
o)~ hatol = [ [Ret(©) ~ hue

— 00

Ted 7 2
GENGINS

We set
C = max { sup
£eR

1 — e—2z0n(§)

1 — e—2Ln(§) EER

sinh(n(&)zo) sup
n(&)zo cosh(n(§)wo) |’

£ER

1 +e 2xon(§)

1+e‘2L”(5)‘ tek [simh(n(€)0) |’
sinh(n(£)xo)

cosh(n(&)x) }

We note here that the positive constant C is bounded. Now we give two lemmas for error

n(€)zo

(18)

sup
£ER

estimates.

Lemma 4.2. Let 0 < a<1,0<zxz<L,p>0,¢e>0. Then

e(1+ [€17)] cosh(n(&)2)|* | sinh(n(¢)z) = ( ;) T ez

P T (1 + €2 cosh(n@)a)F |smh(n(e)D)| = ¢\ - (19)
e(1 + [¢7) | cosh(n(©)a)[> | cosh(n(&)z) f( 1) (Ea) con(f )

S Tr e(i + €72 cosh(n@a)F |cosh(n(e)D)| = C\""e) € - (20

4 -1
where 1 = (p + (z+ L) cos (Za)) .
eq

Proof. Set r = (jp + (z+ L)cos (T a))_l. Firstly, let’s proof
P)p(3z—L)|€] % cos(Za) —2p ]
6(1 + |§| )6 _ 4 S 9 <7" In 1> ET(szc) cos(Ga) (21)
€eR 1 4 (1 + [¢]p)2e2wlél % cos(Fa) ¢
by analyzing the two cases [¢]% > rln% and [¢]2 < rln%. Secondly, by (21) and the mono-

tonicity of the left side of (19) with respect to | cosh(n(¢)x)|?, we can easily obtain the results
in the lemma. Let’s prove them in detail as following.

a) If [¢]2 > rInl, then
e(1+ |§|P>e(31—L)|€|icos(%a) - e(x—L)|€]2 cos(Fa - (7’ In 1) r(L—a)cos(Fa)
1+ e(1 + |€[r)2e2e1€l% cos(5a) — 1+ [¢]P - €

) 2
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b) If [£]2 < rlnl, then
e(1 + |€[P)eBz—DIElE cos(Fa)
14 e(1+ |¢|p)2e2elé1% cos(§a)
(i) For z € (0, %], we have

5 o 1.2
1+ eI 1) < (14 gy < e (14 0 D).

< e(1 + [¢[P)eBr—DIIEIR cos(Fa)

(ii) For z € (%, L], we have
2

6(1 + |£|p)e(3w7L)\£|% cos(§a) <e (1 + (rlni)rf) e(3a:7L)rlnécos(%a)

_ (1 + (7, ln]')z:f) 6177‘(317[/) cos(%a).

€

It is simple to show that

_2
max {e (1 + (rln 1)?> , (1 + (rln 1)2017> el_T(3"—L)C°S(Za)} <2 (7“ In 1) % er(L—z) cos(Fa)
€ € €

So we obtain (21).

e(1 + [&]7)[ cosh(n(§)z)]?
1+ €(1 4 [¢[P)?| cosh(n(&)z)[?
and | cosh(n(€)z)| < e*1€1% cos(9) e have

e(L+[€[7)| cosh(n©m)[P  _ (1 + [gr)eel cos(Fe)

Because 2

is monotonically increasing with respect to | cosh(n(€)x)|

o . 22
L+ e(1+ [€]P)?| cosh(n(&)x)? — 1 4 e(1 + |€[p)2e27I€] % cos(Fa) (22)
Furthermore, by (18), we have
sinh(n()2) | | oy | L= 7| = (a)ielF cos(za)
sinh(n(¢&)L)| ‘6 ‘ 1_e2n® | < Ce ' (23)
and
cosh((€)z) | _ | _—amo | | L+ | ()6 cos(Ta)
cosh(n(é)L)| ‘6 ‘ 14 e 2n® | < Ce ’ (24)

Substitute (22), (23) and (24) into the left side of (19) and (20). Then by (21), we prove the
lemma.

O

Lemma 4.3. Let0<a§1,0<x<L,p>%,0<e<(%)ﬁ. Then

c(1 + [€]")| cosh(n(©x)[* | n(§) cosh(n(§)z)| _ (@
L

—(22-1)

1 < (L—z)pcos(Za)
sup i - lni) ‘ B
PR T4 (1 + |72 cosh (@) | sinh(n(€)L)

@
L€ coshm©)> [ n(€) sinh(n(©)z)| _ (2C DTV ooz (26
eek T+ e(1+[€7)2 cosh(n()2)] | cosh(n(€)L) S( 3)(‘“ ) @)

L+ [EP)] cosh(n(©a)*  [n(§)sinh(n()a) | _ (2C WD) T ez (27
o e P @ | st |< (7 +2)(en ) D

p _q -1
where p = | & + (2z + L) cos (Fa) .
e
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4p -1

1
Proof. Set p=| *—— 4 (2 + L) cos (Za)) and p > 5. We only prove the first inequality
e

(25) and similarly we can prove (25) and (27). We illustrate (1) by discussing the cases of
€72 > pln L and |¢[*/2 < jln L

1 +62(u1n%)xcos(%a)
< 3.

a) If |¢|*/2 > pln ! and e is sufficiently small, i.e., € < (%)ﬁ, we have G Dlen(Ga)

Then we have

wp L €| coshn(©)ao)l?
s 1+ (1 + €92 cosh(n(E) o)

[€]*/2 | cosh(n(€) o)
~ 14 [¢JP | sinh(n(¢)L)

S|€‘*(P*%)6*(L*x)|5|a/2 cos(fa)

n(€) cosh(n(&)o)
sinh(n(&) L)

|£|a/2 e|g|a/2cos(ga)x+e,|€|a/2cos(%a)w
z

1+ [€]P clél* 2 cos(Fa)l _ g—[&]/2 cos(

a)L
1 +672|§|°‘/2 cos(Fa)x
1— e—2|§|°‘/2 cos(Fa)L

2p 2p

*(E*l) —2(pln L s(Za)x *(E*l)
< (M In 1) ((L-mucos(zay L+ € i) (: ) <3 (ﬂ In 1) ((L—z)pcos(Fa).
€ 1 €

1 _6—2(;411(1 )cos(Za)L

n(é)L
sinh(n(¢)L)
sup e(1 + [€]P)| cosh(n(&)zo) [*
elo/2<pm 2 1+ €e(L+1€P)?| cosh(n(§)zo)|?

LG
g6 <

2p — 2p
2,1 (o)) ot < (o (1)) st
€ - L €

It is easy to verify the following inequality
<1 + (pIn - ) > 1=3zpcos(F0) < 9(yIn 1) (% -1) (L—a)pcos(Fa)
€

b) If [¢]*/2 < pIn i, from (18), we know

‘ < C, then we have

§)zo)
L)

(14 [¢P)e 3z[¢| 2 cos(Ta)

n(&) cosh(n
sinh(n(¢

<e(L+[¢]")] cosh(n(§)x)|*

h\Q\ v’*

Together with a) and b), we obtain (25). O

Theorem 4.4. Suppose 0 < xo < L. Let h(t) and h,(t) be the exact solutions of u(x,t) and
ug(x,t) of (1) at x = mg. And let h°(t), hS2(t) be the regularized approzimations of h(t),
hy(t), as in (17) and (17). Assume that the measured data f(t) and ¢°(t) satisfy (16) and
u(L,t) satisfies the prior condition (4). If e = M, then for sufficiently small §, we have the
following error estimates

|he? () — h(t)|| < #m\/&r ACM (r1n %)*QW(%)NL%NOS(%@), m >0, (28)
and

1hg° (8) = ha (t)]]

(1+3C+C)\FW+(2C+4> (TC+3)(M1HM 0

@2m-1) Y
jmen(

>1
, M Y
2

(29)

5+ 5 - (B0 cos(F)
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where r = (42 + (o + L) cos (ga))_l, p= (=L 4 (229 + L) cos (%a))_l.

Proof. Because the proof is quite involved, using (15), (17) and triangle inequality, we divide
the estimates of h*%(t) — h(t) and hS°(t) — h,(t) into several steps in terms of Ay, By, Cy, D,
A27 B27 027 D27 E27 FQa G27 H2~

[h<°(t) — h(t)|| < Ay + By + Cy + Dy, (30)
where .
A = | T P @ (€ 7))
. H T+l +_C|(%S(|S()E|(f%:ﬁzn(g>xo)|2 (Fie)- 7))
N S |s|p>i&)cosh<n<s>xo>|2 - Smh%)mm@l| ’
i = | e Rt ~ @ e

For A; and By, by (18), we know \n(fsmhw| < C, then we can deduce

)z cosh(n(&)xo)
sinh(?z(gf)):co) N
3 n ) 7
A T TP oo | 14O ~9C
2ol sinh(n(&)zo) 19CH
S0 9 Ve | 1o cosh(n(€)zo) | = 22
and
B, <sup|——cohn(&)zo) [173(6)— Fle) | < sup |- oshm()ao) I(;Sé,

cer|L+e(1+[E]7)2] cosh(n(£)zo) | cer [2/e(1+[€[7) cosh(n(&)zo)
For Cy and D1, we have

T+ {1+ €2l eosh(n(€)z0)? cosh(n(é)L)
sy (L 1€ cosh(n(€)20) P cosh(n()ao)
= Geb T4 e(L+ €72 cosh(n{€)z0) cosh(n()1)

Let p=ma, m >0and r = (477” + (zo + L) cos (%a))_l. We can apply Lemma 4.2 and obtain

|| e+ €)Y  cosh(n(€)zo) | sinh(n(€)zo) pySinh(n(§)L) .
= | T P sk e )P ST O 4 ey 7|
sup L )] cosh(n(©zo) 2 _|[sinh(n(€)zo) [,
T eer L+ e(1 + [€]P)?| cosh(n(§)wo)|? | sinh(n(€)L) |
and
€ P)| cos zo)]?  cos T ~

_ 1\ 2™ x _ 1 oz
¢, <2CM (r In ) ¢r(bmwo)eos(3) ) < 90 M (rIn =) ~2mer(Ewo) cos(Fa)
€ €

The sum of Ay, B1,Cq and Dy is
IE06 +1

. 1 —2m .
|R°(t) — h(t)|| < € 25 +4CM <r In > ¢ (L—wo) cos(fa)
€

Choosing € = 2, we have (28).
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We are now on a position to prove (29).

|hS0 (1) — hy(t)|| < Ag 4+ By + Cy + Dy + Ey 4+ Fy + Go + Ho,

where h( (f) )
. cos ) ~ P
te=| et )(5)%”2(9 © -3
1(&) sinh =
B = |t e e O~ )i’
|| 261+ [€1)2m(€) sinh(n(€)o) cosh(n(€)o )| LS (g9 (¢) — §(€))
2 (1 + e(1+ [€]7)2] cosh(n(€)a0)?)?
D,  ||2€0L+ 1€ n(©) sinh((€)o) cosh(n(€)wo)| cosh(n(©)zo) (F(6) ~
(1 + e(1 + [€]7)2[ cosh(n(€)ao)[?)?
cosh(n(€)xo) _
H(l+€ (1 + |€]7)2] cosh(n(€)zo) 2 cosh(ﬁ(f)m)) g(f)’,
B n(€) sinh(7(€)o) N =
= H (T bt ~ MOS0 66
261 + [€17)2n(€) sinh(n(€)o) cosh(n(€)ao) | PO ()
2 (1 + (1 + [€]7)2[ cosh(n(€)zo)[2)? ’
o _ |26+ 1) 1n(€) sinh (n(€)o) cosh(n(©)ao)| cosh(m(€)ro) F(€)
? (1 + (1 + [€]7)2[ cosh(n(€) o) 2)? '
fe ()r0)
_ cosh(n(&)xo -~ . 4]
42 = H T e+ ep) cosh(m@zo)P & © ‘f’@’H NG
B, : Choosing p > §, by (18), we have :)2}111((778?2; < C, we have
1 [¢*/? |sinh(p(&)wo)| . Co
2 S 3T [eosbat@re) | = 2
Cg :
| sinh(n(€)zo)|?
2¢(1 + [£]7)?| cosh(n(€)zo)|? Tcosh(n(€)zo)] > TP
C2 < 890 T 1 |€7)2  cosh(n(&)o) E 1+ e(1 1 [€)2] cosh(n(@zo) 19 (&) ~9E)N
| sinh(n(&)zo)|? Q |sinh(n(§)zo)] =
S S e cosh(n(@)zo) B0 S Ve (" | cosh(n(€)o))| <C>'
Dz .
2¢(1 + [€]7)?| cosh(n(&)o)|” |n(€) sinh(n(&)zo) ey
D2 < 89D T T+ 1€7)2] cosh(n(©)o) P 1+ (1 + €1)2] cosh(n@zo)p &) =7

| a1 |sinh(p(&)zo)] _ =
o)’ S ve ™ 2 (by|cosh<n<e>xo>|<c>'

(n
L [el#]sinh(n(©)zo)
= S0P (1 + 1€]7)] cosh(n(€

Let p=ma, m > 3, p = (¥2=L + (229 + L) cos(Tar)) ! and € < (%)w From Lemma 4.3, we

obtain
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e+ ) cosh(n©ao)? n(E) cosh(n()zo) . . . sinh(n()L) -
Bz *H1+e<1+|§|p)2|cosh<n<exo>|2 smhne)n) DT g“)H

sy €O+ € coshn€)20)° [ 0f€) cosh(n(€)0)

<SP T el + 18)2 cosh(n(©)ao) | simh(n(€)L)

— —(2m—1)
<M (% +3) (,un 1) T et s L
€

le

e + ) cosh(r©@an) 9@ sinh(n©ao) ;oo .
F2‘H1+e<1+|s|p>2|cosh<n<exo>|2 cosh(ne)z) T IE) h("(f)”f“)“

[P cosh(n(©)zo) _n(E) sinh(n(E)ao)
< T+ R cosh@en)E con@L)

(2m—1)
<M (£ +3) (#ln l) G(szomcos(za)’ m> %
€

L

G

T[T (eI +IgP) T cosh(n(©zo) 7)? sinh(n(£)L) n(&)
0)

26(1+[€]7)| cosh(n(£)z0) |2 n(€) sinh(n(&)zo) sinh(n(&
§S“péeR’1+e<1+\s|P>2|cosh(n(&)mﬂz simh(n(§)L)  cosh(n(€)zo)
)

- c(LH[€]7)] cosh(n(&)z0)|” _ | n(€) sinh(n()e
< 20M SUD¢eR Tre(at/ep) T cosh(n(©)w0)? | smB(n(E)L)

< QGM(% +3)(pln 1)=@m-e(l—zoucos(fa), p=ma, m >
[sinb(n(€)r0)| _ 5
| cosh(n(&)zo)|

2e(1+(€]”)n(€) sinh(n(§)xo) cosh(n(£)zo) sinh(n(€)zo ((1+ |£|p)smh(n(£)L) (@)H
)T
)T

N|—=

Here the penultimate inequality is proved by

H21

o 2¢(14]€|P)| cosh(n(€)xo)|? &) sinh(n(&)x iy

= H (1+5((1+\'g"p))2'|cosh?&é)iﬂﬂ\z)z n(zc)osh(n((z()L)) ol ((1 + [€]7) COSh(ﬂ(ﬁ)Uf(ﬁ)) H
2¢(1+¢]")| cosh(n(§)zo)|®  n(§) sinh(n(§)zo)

S SUPger ’ T e(THE ) Tcosh(m©e0)?  cosn(n@L) | M

S 2M (% _|_ 3) (/J;ln %)—(Qm_l) G(L_zo)pcos(%a)7 p=ma, m > %.

The sum of A27BQ,CQ,D2,E2,F2,G2 and H2 is

€, 1 3C — é — 1 1 ~(@m—1) (L—zg)pcos(Za)
1h° (L) — ()||_< + 5 +C>ﬁ+(20+4)M<L+1> <ﬂ1n€> € Fe),

=ma, m> —.
p 2

Choosing e = 2, we can get (29). O

Note 1. It can be observed from Theorem 4.4 that the rate of convergence degenerates to
being logarithmic when zq = L, since both (£ )"(E=e0)cos(§) in (28) and (L )E—zoncos(fa)
n (29) become 1.
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85 Numerical implementation

5.1 Numerical expression for the gradient of the regularization func-

tional

We will deduce the gradient of the quadratic functional (5) with respect to h(t). Denote
1 2 €
J(h(t) = 5 | Ah@) = F @[] 2 + 5 1RO £ Ti((D) + eT2(R(2)),

where
1

Bh(H) = 10+ DRI = SIRE I + RO + SR

= I + 1EDE I + I Dy R @)
For 0 < 8 < oo, the bigger the fractional derivative order f is, the more complex numerical
expression of || (CDg+ h)(t)||? is. In fact, B8 € (0,1] is enough from numerical investigation in the
subsection of numerical examples. So we only consider this case in the following sections. Denote
temporal step size by At. Let t, = kAt, hy = h(t) and h = [ho, b1, ,hy)T, k=0,1,--- | n

T 2 n—l et 9
IEDg O = [ (EDgno) =3 [ (€0 mw)

k=0 "tk
2
- n—1 1 k
© _ o .
;( Dy h)(tm—l)) AtNkZ:o T2 —3)(A1)° ;ba(hkﬂ—y hi—;) | At
n—1
Z Agh)?At =Y " h" AL AghAt = hT AT ARAL,
k=0 k=0
where bg = 1,b, = (k )P — kB k=1,--- ,n— 1. The n-dimensional matrix A has the
form AT = [AT AT . Ag_l], where the size of A is 1 X (n+ 1) and
1
Aq = _ oo
0 F(Z*,B)(At)'g[ b03b0707 70]7
1
A = W[—bk»bk —bg—1,-++ ;b1 — bo, by, 0, ,0], k=1,2,---,n—1
Due to
ICDE (B2 ~ KT AT ARAL, (€D, ()| ~ KT BT BhAt,

the discrete form of the gradient of Ja(h(t)) is
Jy(h) ~ h+2AT Ah + BT Bh.
From Theorem 4.1, we have

, T
J1(h(£))(g(t)) = / o(8) (2 (0, ).

Denote 2z, (70) = [22(70,t0), 22 (70, 1), -+, 22(20,t,)]T, and have

J' (h) = zp(x0) + ¢h + 2¢AT Ah + e BT Bh. (31)
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5.2 Reformulation of the adjoint problem

Let z(x,t) be the solution of the adjoint problem (9). We introduce z(x,t) = z(x,T — t)
and get

(CDQ T)(x t) (- a) fT Zi(wt)sa) ds = F= a) fT t ’(Zé,(fCT_;)@ d¢
f t ?%(TtTC)C‘B ¢ =ty Jo (;C(: <<) ¢ (let 7 =T —1)
= e fJ ELgrde = (O DG, D)(w, 7).

The adjoint problem (9) can be transformed into a forward initial boundary value problem
(CD(‘;‘+7T%)(37,1€) = Zpo (2, 1), xz € (0,20), 7€ (0,T)
2:(0,t) =w(0, T —7) — f(T — 1), x=0, 7€ (0,T), (32)
Z (xo,7) =0, x =z, T € (0,T),
z (z,0) =0, z € (0,z9), 7=0,

5.3 The conjugate gradient algorithm for solving the minimization
problem

We present the conjugate gradient procedure for the Cauchy problem of time fractional

diffusion equation.

1. Give the initial guess hy;

2. Solve the forward problem (6) with h = hgy by the unconditionally stable implicit finite
difference scheme (IFDS) of [11];

3. Solve the adjoint problem (32) and determine J' (hg) in (31). Since h(0) can be determined

from the initial condition, we take .J’ (0) = 0;

4. Let go = —J (ho): po = ||J (ho) || v := 0;
Begin CG iterations:

5. The step size 7, = arg min,~o J(h, (t)+7g,(t)) can be obtained in the following deduction.
From (5), we have

T(ho(8) + 7q0(8)) :%/0 (0 (0,0) 7000, 2) = P2 ()t + & 1o (t) + (1) o

1

:5/0 (uu(o,t)+TwV(0,t)_fé(t))gdt+§/0 (hu(t)+7qy(t))2dt

+ el “DE, (hu () + rau ()] + %IICD§+ (hu () + Tau ()],

where h,, and ¢, are the vector forms of h,(t) and ¢, (t), and w,(z,t) is the solution of
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Table 1: Errorl for Example 1.
a=0.8 a=0.5 a=0.2
error level 20=10 | 20=0.7 | 20=04 | 20 =10 | 20 =0.7 | 10=04 | 20 =1.0 | 20 =0.7 | o =04
0o =01 =0.1 0.1233 0.0496 0.0238 0.0976 0.0541 0.0289 0.0815 0.0525 0.0308
0o =061 =0.05 | 0.1115 0.0352 0.0140 0.0602 0.0367 0.0175 0.0556 0.0332 0.0216
0o =061 =0.01 | 0.0872 0.0220 0.0049 0.0200 0.0088 0.0047 0.0274 0.0232 0.0049

the sensitivity problem (11) with ¢(¢) = ¢, (¢). From

dJ (hy (t) + 14, (t)) _ / T(uy(o, £) 4+ 1wy (0,8) — f2(t))w, (0, t)dt
dr, 0

T
+e / (hy (t) + 70q (£)) g (1) dt + 2eqT AT A(hy, + 7,q,) At + eqF BT B(h,, 4 7,q,) At = 0,
0

we can get a step size

_ -l ) (un(0,8) = £2(£)wn (0,8)dt + € [} ho(t)qu (t)dt + eqi (2AT A+ BT B)h, At]
fOT w2(0,t)dt + € fOT q2(t)dt + eqf (2AT A+ BT B)q, At 7

Tv

6. Update hyy1 := hy, + Tuqy;
7. Solve the forward problem (1) with h = h,41; And compute the residual F, = ||u,(0,t) —
PO+ ()2 (0,8) — g (@)]I-
8. Compute J/(h,,H);
9. pur = |17 (husn) |
10. Ay = put1/pu;
11. Update g1 := —J (hus1) + Ay

12. vi=v+1;

End CG iterations when a stopping criterion is satisfied.

We use the well-known Morozov discrepancy principle [9] to find a suitable stopping rule.
And v is obtained as follows
E, <od<E, 1,
where o > 1 is a constant. In the following two examples, we take o = 1.01 [3] and ho(t) = 0.

5.4 Numerical examples

In this section, we present two examples to demonstrate the efficiency of conjugate gradient

algorithm in Section 5.3. The exact solution u(z, t) is obtained by solving the following problem

(CD8‘+’tu)(x,t)= Ugq (T, 1), O<az<L, 0<t<T,
0,t)= f(b), =0,0<t<T,
w0, = 710 . )
WLty = (), r=L0<t<T,
u(z,0) = 0, O<z<L,t=0,
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Table 2: Error2 for Example 1.
a=0.8 a=05 a=0.2
error level Tog = 1.0 Tog = 0.7 Tog = 0.4 Tog = 1.0 Tog = 0.7 To = 0.4 Tog = 1.0 To = 0.7 Tog = 0.4
dp =061 =01 0.5274 0.2104 0.0973 0.2398 0.1323 0.0755 0.1251 0.0908 0.0747
0o =91 =0.05 | 0.4814 0.1624 0.0645 0.1566 0.0917 0.0448 0.0798 0.0529 0.0457
dp =01 =0.01 | 0.4002 0.1108 0.0261 0.0590 0.0262 0.0142 0.0395 0.0267 0.0088

Table 3: Errorl for Example 2.
a=0.8 a=0.5 a=0.2
error level 20=10 | 20=0.7 | 20=04 | 20=1.0 | 20 =07 | 20=04 | 20=1.0 | 20=0.7 | 2o =04
0o =061 =0.05 | 0.1508 0.0473 0.0230 0.1258 0.0577 | 0.0.0302 | 0.0770 0.0500 0.0300
0g =061 =0.03 | 0.1346 0.0365 0.0171 0.1041 0.0442 0.0222 0.0495 0.0321 0.0218
0o =061 =0.01 | 0.1119 0.0235 0.0091 0.0617 0.0238 0.0097 0.0176 0.0113 0.0077

where L = 1, T = 1. The grid sizes for space and time domain are taken to be h, = ﬁ,
hy = %. The exact flux u,(z,t) is approximated by the backward difference scheme. We
choose g(t) = u4(0,t).

In the following examples, we consider the cases of a = 0.2,0.5,0.8,1.0 and 2o = 0.4,0.7, 1,

and compute the L? errors
Errorl = ||h(t) — u(:co,t)||L2(07T), Error2 = ||h(t) — Ux(ﬁo,t)HL?(o,T)-
Example 1: Consider the direct problem with f(t) = 1 —e~* and ¢(t) = 2sin(4nt). The noisy

data are
f0 = f(1+ 61 (2rand(size(f)) — 1)), ¢° = g(1 + do(2rand(size(g)) — 1))

where §p = 0.1,0.05,0.01 and §; = dp.

Because ¢(t) € H'(0,1) we choose p = 1. In Table 1, we tabulate L? errors of u, Errorl, for
various &y, o and xg. In Table 2, we tabulate L? errors of u,, Error2. Both Errorl and Error2
dependent on three parameters dg, o and xg. With the fixed o and zg, the error increases with
do. With the fixed o and dg, the error increases with xg.

We plot the numerical/exact solutions in Figures 1-8. The values of u or u, appear in the
vertical direction and the time in the horizontal. From Figures 1-8, it can be observed that the
curve of numerical solutions match well that of the exact solutions.

From Figure 2, it can be observed that the curve of numerical solution match well that of
the exact solution except several time intervals, such as the location around ¢ = 0.9. Indeed,

if we compare three sub-figures in Figure 2, we should agree that the sub-figure (c) has the

Table 4: Error2 for Example 2.
a=0.8 a=0.5 a=0.2
error level 20=10 | 20=0.7 | 20=04 | 20=1.0 | 20 =07 | 20=04 | 20=1.0 | 20=0.7 | 2o =04
0o =061 =0.05 | 0.7631 0.1991 0.0870 0.3748 0.1644 0.0694 0.1165 0.0728 0.0408
0p =061 =0.03 | 0.7236 0.1677 0.0684 0.3230 0.1316 0.0580 0.0756 0.0468 0.0280
0o =061 =0.01 | 0.6502 0.1259 0.0402 0.1991 0.0752 0.0267 0.0270 0.0164 0.0098
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— = 0,=0.01
" 0.4 : . L
0 0.2 0.4 0.6 0.8 1

(¢) zo=0.4.

0 0.2 0.4 0.6 0.8 1

(a) zo=1.

Figure 1: Reconstruction of u(zg,t) for Example 1 with o = 1.0.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 - 0 0.2 0.4 0.6 0.8 1

(a) zo=1. (b) £0=0.7. (¢) zo=0.4.

Figure 2: Reconstruction of u(zg,t) for Example 1 with « = 0.8.

smallest L? error. In fact, for the case of u, it is also evident from Figures 6, 7, 8 that for the
fixed §p and «, the error of x¢g = 0.4 is smaller than those of ¢ = 0.7 and 2y = 1.

Example 2: Now consider the forward problem with f(¢) = 0 and discontinuous right boundary
condition ¢(t) = H(t — 0.4) — H(t — 0.8). The noisy Cauchy data are

fo = f + 61 (2rand(size(f)) — 1), g° = g + do(2rand(size(g)) — 1)

where 6o = §; = 0.05,0.03,0.01.

We choose p = 0.45, because u(L,t) € H?(0,1) in the case of p € [0, ). The values of Errorl
and Error2 are presented in Table 3 and Table 4 respectively. We observe that the smallest dg,
a and z give the smallest errors in all cases. As any one of three parameters dg, o and g
increases, the L? errors Errorl and Error2 increase. Figures 9-16 illustrate the numerical /exact
solutions. It can be observed that the numerical solutions are in good agreement with the exact
solutions.

The two numerical examples illustrate that the proposed algorithm is robust to noise for
both smooth and nonsmooth examples. It also shows that this fractional inverse problem is
better behaved than the standard parabolic counterpart (o = 1.0).
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8 5 exact
— t
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2 ° . 1 5,20.05
——3,=005 — 00
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(a) zo=1. (b) 20=0.7. (¢) zo=0.4.

Figure 3: Reconstruction of u(zg,t) for Example 1 with o = 0.5.
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05¢ >
0
-3 1.5 0.5
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
(a) zo=1. (b) £o=0.7. (¢) ©o=0.4.
Figure 4: Reconstruction of u(zg,t) for Example 1 with o = 0.2.
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exact exact
15" ——0,=0.1
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0.5
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151
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
(a) zo=1. (b) £o=0.7. (¢) zo=0.4.

Figure 5: Reconstruction of u,(xg,t) for Example 1 with a = 1.0.
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exact exact
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0 02 0.4 06 08 1 0 0.2 0.4 0.6 08 1 0 02 0.4 06 08 1
(a) zo=1. (b) 20=0.7. (¢) zo=0.4.

Figure 6: Reconstruction of u,(z,t) for Example 1 with o = 0.8.
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Figure 7: Reconstruction of u,(zo,t) for Example 1 with o = 0.5.
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(a) zo=1. (b) £o=0.7. (¢) zo=0.4.

Figure 8: Reconstruction of u,(xg,t) for Example 1 with a = 0.2.
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exact
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(a) zo=1. (b) 20=0.7. (¢) zo=0.4.

Figure 9: Reconstruction of u(zg,t) for Example 2 with o = 1.0.

0.2 0.4 0.6 0.8 1 s 0 0.2 0.4 0.6 0.8 1 s 0 0.2 04 0.6 0.8 1

(a) zo=1. (b) £o=0.7. (¢) ©o=0.4.

Figure 10: Reconstruction of u(z,t) for Example 2 with o = 0.8.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1

(a) zo=1. (b) £o=0.7. (¢) zo=0.4.

Figure 11: Reconstruction of u(xg,t) for Example 2 with o = 0.5.
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1

(a) zo=1. (b) 20=0.7. (¢) zo=0.4.

Figure 12: Reconstruction of u(zg,t) for Example 2 with a = 0.2.

0 0.2 0.4 0.6 0.8 1 s 0 0.2 0.4 0.6 0.8 1 - 0 0.2 0.4 0.6 0.8 1

(a) zo=1. (b) £o=0.7. (¢) ©o=0.4.

Figure 13: Reconstruction of wu,(z,t) for Example 2 with o = 1.0.

’ 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 "o 0.2 04 0.6 0.8 1

(a) zo=1. (b) £o=0.7. (¢) zo=0.4.

Figure 14: Reconstruction of u,(zo,t) for Example 2 with o = 0.8.
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3
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Figure 15: Reconstruction of u,(zo,t) for Example 2 with o = 0.5.

051

0 0.‘2 0.‘4 0:6 0?8 1 0 0.2 0.4 OtG 0:8 1 0 0j2 0.‘4 0i6 Uja 1
(a) zo=1. (b) £0=0.7. (¢) o=0.4.

Figure 16: Reconstruction of u,(zo,t) for Example 2 with o = 0.2.
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86 Conclusions.

This paper is devoted to solving a Cauchy problem of the time fractional diffusion equation
in z € [0, L]. The Cauchy problem becomes much more difficult with z is farther from 0. We
formulate the problem into a minimization problem with a modified Tikhonov regularization
method. A conjugate gradient method is employed to solve the corresponding minimization
problem. Numerical examples illustrate that the proposed algorithm is robust to noise, and can
more effectively recover either the smooth or the nonsmooth solutions. The error estimates of

numerical solutions are provided.
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