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On a certain classes of meromorphic functions with

positive coefficients

R. Asadi A. Ebadian S. Shams Janusz Sokó l

Abstract. In this paper certain classes of meromorphic functions in punctured unit disk are

defined. Some properties including coefficient inequalities, convolution and other results are

investigated.

§1 Introduction and preliminaries

Let Σ denote the class of functions of the form

f(z) =
1

z
+

∞∑
n=1

anz
n,

which are analytic in D = {z : 0 < |z| < 1}, having a simple pole at the origin. Motivated by

M. L. Mogra [1] we define the following class of meromorphic functions and investigate some

properties of this class.

A function f ∈ Σ is said to be in the class Σ(A,B, λ) if it satisfies the condition

zf ′(z) + λz2f ′′(z)

(1 − λ)f(z) + λzf ′(z)
= −1 + Aω(z)

1 + Bω(z)
, (1.1)

where ω(z) is analytic and |ω(z)| ≤ |z| in the unit disc U ; A and B are real constants satisfying

0 < −A ≤ B < 1 and λ is a real constant satisfying 0 ≤ λ ≤ 1, λ ̸= 1/2. From (1.1), we have

that f(z) ∈ Σ(A,B, λ) if and only if

zF ′(z)

F (z)
= −1 + Aω(z)

1 + Bω(z)
, (1.2)

where

F (z) =
1

1 − 2λ
{(1 − λ)f(z) + λzf ′(z)} =

1

z
+ · · · . (1.3)

Let C(A,B, λ) be the class of functions f ∈ Σ such that −zf ′(z) ∈ Σ(A,B, λ). Also let Σp be

the class of functions of the form

f(z) =
1

z
+

∞∑
n=1

anz
n, an ≥ 0, (1.4)
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which are analytic and in D. We define Σp(A,B, λ) = Σp ∩ Σ(A,B, λ) and Cp(A,B, λ) =

Σp ∩Cp(A,B, λ). The convolution or Hadamard product of two meromorphic functions f(z) =
1
z +

∑∞
n=1 anz

n and g(z) = 1
z +

∑∞
n=1 bnz

n with an, bn ≥ 0 is defined by

f(z) ∗ g(z) =
1

z
+

∞∑
n=1

anbnz
n. (1.5)

The main aim of the present paper is to establish certain result concerning the convolution of

meromorphic functions analogous to Padmanabhan and Ganesan [3]. Also M.L Mogra etal [2]

have studied some convolution properties of a special class of meromorphic univalent functions

which is close to our class and we extend their results in some directions. On the other hand we

extend some corresponding results in A Schild and H. Silverman [4] for meromorphic functions

with positive coefficients in our class.

In the sequel for real constants A, B and λ satisfying 0 < −A ≤ B < 1, 0 ≤ λ ≤ 1, λ ̸= 1/2,

we define

Un,λ(A,B) =
(1 + λ(n− 1))(n(B + 1) + A + 1)

|1 − 2λ|(B −A)
. (1.6)

§2 Main results

Theorem 2.1. If an univalent function f(z) is in Σp(A,B, λ) with 0 < −A ≤ 1/3, −A ≤ B ≤
(1 + A)/2, then G(z) = z2F (z) is starlike univalent in |z| < 1, where F (z) is given in (1.3).

Moreover,
zG′(z)

G(z)
≺ 1 + (2B −A)z

1 + Bz
, (2.1)

where ≺ denotes the subordination.

Proof. If G(z) = z2F (z), then
zG′(z)

G(z)
=

zF ′(z)

F (z)
+ 2.

Applying (1.2), we obtain
zG′(z)

G(z)
=

1 + (2B −A)ω(z)

1 + Bω(z)
.

where ω(z) is analytic and |ω(z)| ≤ |z| in the unit disc U . This gives (2.1) because under the

assumptions, we have 2B −A ≤ 1. Moreover, in this case we have

Re

{
1 + (2B −A)ω(z)

1 + Bω(z)

}
> 0 |z| < 1,

then G(z) = z2F (z) is starlike univalent in |z| < 1.

Theorem 2.2. A function f(z) = 1
z +

∑∞
n=1 anz

n, an ≥ 0 is in Σp(A,B, λ) if and only if
∞∑

n=1

Un,λ(A,B)an ≤ 1 (2.2)

also f is in Cp(A,B, λ) if and only if
∞∑

n=1

nUn,λ(A,B)an ≤ 1. (2.3)
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Proof. Let f(z) = 1
z +

∑∞
n=1 anz

n, an ≥ 0 and (2.2) holds. We show that f ∈ Σ(A,B, λ). It is

sufficient to show that the function

ω(z) =

∑∞
n=1(n + 1)(1 + λ(n− 1))anz

n+1

(1 − 2λ)(B −A) −
∑∞

n=1(A + nB)(1 + λ(n− 1))anzn+1
(z ∈ U) (2.4)

is analytic, ω(0) = 0 and |ω(z)| ≤ 1.

We show that ω is analytic, i.e the denominator in (2.4) is not zero. By the assumption

(2.2) we have

0 ≤ |1 − 2λ|(B −A) −
∞∑

n=1

(A + 1 + n(B + 1))(1 + λ(n− 1))an

< |1 − 2λ|(B −A) −
∞∑

n=1

(A + nB)(1 + λ(n− 1))an

So

|(1 − 2λ)(B −A) −
∞∑

n=1

(A + nB)(1 + λ(n− 1))anz
n+1|

≥ |1 − 2λ|(B −A) − |
∞∑

n=1

(A + nB)(1 + λ(n− 1))anz
n+1|

≥ |1 − 2λ|(B −A) −
∞∑

n=1

(A + nB)(1 + λ(n− 1))an|z|n+1

≥ |1 − 2λ|(B −A) −
∞∑

n=1

(A + nB)(1 + λ(n− 1))an > 0 (z ∈ U).

This shows that the denominator in (2.4) is not zero.

By (2.2) we have

|ω(z)| ≤
∑∞

n=1(n + 1)(1 + λ(n− 1))an
|1 − 2λ|(B −A) −

∑∞
n=1(A + nB)(1 + λ(n− 1))an

≤ 1.

Conversely let f(z) = 1
z +

∑∞
n=1 anz

n ∈
∑

p(A,B, λ). From (2.4) ω satisfies ω(0) = 0 and

|ω(z)| ≤ 1, also ω is analytic in the unit disk U . Since Reω(z) ≤ |ω(z)| ≤ 1(z ∈ U), so for

z = r(0 < r < 1), we have

ω(r) = Reω(r) ≤ |ω(r)| ≤ 1,

thus ∑∞
n=1(n + 1)(1 + λ(n− 1))anr

n+1

|(1 − 2λ)|(B −A) −
∑∞

n=1(A + nB)(1 + λ(n− 1))anrn+1
≤ 1.

Letting r → 1−, we get ∑∞
n=1(n + 1)(1 + λ(n− 1))an

|(1 − 2λ)|(B −A) −
∑∞

n=1(A + nB)(1 + λ(n− 1))an
≤ 1.

Therefore (2.2) now is obtained. For the proof of the second part of the theorem we apply the

first part for the function g(z) = −zf ′(z).

Theorem 2.3. If f(z) = 1
z +
∑∞

n=1 anz
n and g(z) = 1

z +
∑∞

n=1 bnz
n are in Σp(A,B, λ), then the

Hadamard product f(z) ∗ g(z) = 1
z +

∑∞
n=1 anbnz

n is in Σp(A1, B1, µ) with 0 < −A1 ≤ B1 < 1,
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0 ≤ µ ≤ µ0, where

µ0 =
α−

√
α2 − 2βγ

β
α = 4U2

2,λ(A,B) − 3U2
1,λ(A,B) + 1, β = 12U2

1,λ(A,B),

γ = 2U2
2,λ(A,B) − 3U2

1,λ(A,B) − 1

−A1 ≤ K(λ, µ0)

2 −K(λ, µ0)
,
K(λ, µ0) + A1

1 −K(λ, µ0)
≤ B1

K(λ, µ0) =
2|1 − 2λ|2(B −A)2

|1 − 2λ|2(B −A)2 + (1 − 2µ0)(B + A + 2)2
.

The bounds for A1 and B1 cannot be improved.

Proof. Suppose f(z) and g(z) are in Σp(A,B, λ). In view of Theorem 2.2, we have
∞∑

n=1

Un,λ(A,B)an ≤ 1 (2.5)

and
∞∑

n=1

Un,λ(A,B)bn ≤ 1. (2.6)

We wish to find values of A1, B1 and µ for which f(z) ∗ g(z) ∈ Σp(A1, B1, µ). Equivalently we

want to determine A1, B1 and µ satisfying
∞∑

n=1

Un,µ(A1, B1)anbn ≤ 1. (2.7)

Using Cauchy Schwarz inequality together with (2.5) and (2.6) we get

∞∑
n=1

Un,λ(A,B)
√
anbn ≤

( ∞∑
n=1

Un,λ(A,B)an

) 1
2
( ∞∑

n=1

Un,λ(A,B)bn

) 1
2

. (2.8)

From (2.5), (2.6) and (2.8), we get
∞∑

n=1

Un,λ(A,B)
√
anbn ≤ 1.

So the inequality (2.7) is satisfied if

Un,µ(A1, B1)anbn ≤ Un,λ(A,B)
√
anbn

for n ≥ 1.

That is if

Un,µ(A1, B1)
√

anbn ≤ Un,λ(A,B).

Since Un,λ(A,B) ≥ 1 so from (2.8), we have√
anbn ≤ 1

Un,λ(A,B)
.

Thus it is enough to find Un,µ(A1, B1) such that

Un,µ(A1, B1) ≤ U2
n,λ(A,B). (2.9)

The inequality (2.9) is equivalent to

(1 + µ(n− 1))(n(B1 + 1) + A1 + 1)

|1 − 2µ|(B1 −A1)
≤
(

(1 + λ(n− 1))(n(B + 1) + A + 1)

|1 − 2λ|(B −A)

)2

:= u2.
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This yields

A1 ≤ u2|1 − 2µ|B1 + (1 + µ(n− 1))(n(B1 + 1) + 1)

1 + µ(n− 1) + u2|1 − 2µ|
. (2.10)

Now (2.10) gives on simplification

B1 −A1

B1 + 1
≥ (1 + µ(n− 1))(n + 1)

1 + µ(n− 1) + U2
n,λ(A,B)|1 − 2µ|

. (2.11)

It is easy to see that the right hand of (2.11) decreases as n increases and it is maximum for

n = 1, provided that 0 ≤ µ ≤ µ0 and

B1 −A1

B1 + 1
≥ 2|1 − 2λ|2(B −A)2

|1 − 2λ|2(B −A)2 + (1 − 2µ0)(B + A + 2)2
:= K(λ, µ0), (2.12)

where

µ0 =
α−

√
α2 − 2βγ

β
, α = (4U2

2,λ(A,B) − 3U2
1,λ(A,B) + 1)

and where

β = 12U2
1,λ(A,B), γ = 2U2

2,λ(A,B) − 3U2
1,λ(A,B) − 1.

It is clear that K(λ, µ0) < 1. Fixing A1 in (2.12), we get B1 ≥ K(λ,u0)+A1

1−K . It is easy to verify

that 0 < −A1 ≤ B1 < 1. If we take

f(z) = g(z) =
1

z
+ |1 − 2λ| B −A

B + A + 2
z,

then

Un,µ0(A1, B1) =
(1 − 2µ0)K(λ, µ0)

2 −K(λ, µ0)
.

So we get f(z) ∗ g(z) ∈ Σp

(
− K(λ,µ0)

2−K(λ,µ0)
, K(λ,µ0)
2−K(λ,µ0)

)
with K(λ, µ0) as in (2.12).

Corollary 2.1. Let f(z) and g(z) be as in Theorem 2.3. Then

h(z) =
1

z
+

∞∑
n=1

un,λ(A,B)
√
anbnz

n ∈ Σp(A,B, λ).

Proof. The result follows immediately from (2.8) using the Cauchy-Schwarz inequality. For the

same functions as in Theorem 2.3, the result is best possible.

Theorem 2.4. If f(z) ∈ Σp(A,B, λ) and g(z) ∈ Σp(A′, B′, θ) then f(z) ∗ g(z) ∈ Σp(A1, B1, µ)

with 0 < −A1 ≤ B1 < 1, 0 ≤ µ ≤ µ0, where

µ0 =
α−

√
α2 − 2βγ

β

α = 4U2,λ(A,B)U2,θ(A′, B′) − 3U1,λ(A,B)U1,θ(A′, B′) + 1

β = 12U1,λ(A,B)U1,θ(A′, B′)

γ = 2U2,λ(A,B)U2,θ(A′, B′) − 3U1,λ(A,B)U1,θ(A′, B′) − 1

−A1 ≤ K(λ, θ, µ0)

2 −K(λ, θ, µ0)
,
K(λ, θ, µ0) + A1

1 −K(λ, θ, µ0)
≤ B1

K(λ, θ, µ0) =
2|1 − 2λ||1 − 2θ|(B −A)(B′ −A′)

|1 − 2λ||1 − 2θ|(B −A)(B′ −A′) + (1 − 2µ0)(B + A + 2)(B′ + A′ + 2)
.

The bounds for A1 and B1 cannot be improved.

Proof. Proceeding exactly as in Theorem 2.3, we require to show that

Un,µ(A1, B1) ≤ Un,θ(A′, B′)Un,λ(A,B)
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for all n ≥ 1. This on simplification yields

B1 −A1

B1 + 1
≥ (1 + µ(n− 1))(n + 1)

1 + µ(n− 1) + Un,λ(A,B)un,θ(A′, B′)|1 − 2µ|
. (2.13)

The right hand of (2.13) decreases as n increases and it is maximum for n = 1 provided that

0 ≤ µ ≤ µ0 and

B1 −A1

B1 + 1
≥ 2|1 − 2λ||1 − 2θ|(B −A)(B′ −A′)

|1 − 2λ||1 − 2θ|(B −A)(B′ −A′) + (1 − 2µ0)(B + A + 2)(B′ + A′ + 2)
, (2.14)

where

µ0 =
α−

√
α2 − 2βγ

β
α = 4U2,λ(A,B)U2,θ(A′, B′) − 3U1,λ(A,B)U1,θ(A′, B′) + 1

β = 12u1,λ(A,B)u1,θ(A′, B′)

γ = 2U2,λ(A,B)U2,θ(A′, B′) − 3U1,λ(A,B)U1,θ(A′, B′) − 1.

Clearly K(λ, θ, µ0) < 1. Fixing A1 in (2.14) we get

K(λ, θ, µ0) + A1

1 −K(λ, θ, µ0)
≤ B1.

It is easily seen that the result is best possible for the functions

f(z) =
1

z
+ |1 − 2λ| B −A

B + A + 2
z,

g(z) =
1

z
+ |1 − 2θ| B −A

B + A + 2
z.

Corollary 2.2. If f(z), g(z), h(z) ∈
∑

p(A,B, λ) then f(z) ∗ g(z) ∗ h(z) ∈
∑

p(A1, B1, µ) with

0 ≤ µ ≤ µ0 where µ0 is as in Theorem 2.4, 0 ≤ θ ≤ θ0 and

θ0 =
α−

√
α2 − 2βγ

β

α = 4U2
2,λ(A,B) − 3U2

1,λ(A,B) + 1, β = 12U2
1,λ(A,B),

γ = 2U2
2,λ(A,B) − 3U2

1,λ(A,B) − 1

−A1 ≤ K(λ, θ, µ0)

2 −K(λ, θ, µ0)
,
K(λ, θ, µ0) + A1

1 −K(λ, θ, µ0)
≤ B1

K(λ, θ, µ0) =
2|1 − 2λ||1 − 2θ|(B −A)(B′ −A′)

|1 − 2λ||1 − 2θ|(B −A)(B′ −A′) + (1 − 2µ0)(B + A + 2)(B′ + A′ + 2)

−A′ ≤ K(λ, θ0)

2 −K(λ, θ0)
,
K(λ, θ0) + A

1 −K(λ, θ0)
≤ B′

K(λ, θ0) =
2|1 − 2λ|2(B −A)2

|1 − 2λ|2(B −A)2 + (1 − 2θ0)(B + A + 2)2
.

Proof. Since f(z), g(z) ∈
∑

p(A,B, λ) by Theorem 2.4, we have f(z) ∗ g(z) ∈
∑

p(A′, B′, θ),

where −A′ ≤ K(λ,θ0)
2−K(λ,θ0)

, K(λ,θ0)+A
1−K(λ,θ0)

≤ B′ with

K(λ, θ0) =
2|1 − 2λ|2(B −A)2

|1 − 2λ|2(B −A)2 + (1 − 2θ0)(B + A + 2)2
.

Now letting f(z) ∗ g(z) ∈
∑

p(A′, B′, θ) and h(z) ∈
∑

p(A,B, λ) the result follows by Theorem

2.4.
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Theorem 2.5. If f(z) ∈ Cp(A,B, λ) and g(z) ∈ Cp(A′, B′, θ) then f(z) ∗ g(z) ∈ Cp(A1, B1, θ),

where

−A1 ≤ K(λ, θ, µ0)

2 −K(λ, θ, µ0)
,
K(λ, θ, µ0) + A1

1 −K(λ, θ, µ0)
≤ B1

with 0 ≤ µ ≤ µ0 and µ0 as in Theorem 2.4. The result is best possible.

Theorem 2.6. If f(z) = 1
z +

∑∞
n=1 anz

n, an ≥ 0 belongs to Σp(A,B, λ) and g(z) = 1
z +∑∞

n=1 bnz
n with |bn| ≤ 1, n ≥ 1, then f(z) ∗ g(z) ∈ Σ(A,B, λ).

Proof. Since f(z) ∈ Σp(A,B, λ), we have

Σ∞
n=1Un,λ(A,B)an ≤ 1.

Furthermore |bn| ≤ 1, n ≥ 1. Therefore,

Σ∞
n=1Un,λ(A,B)|anbn| =

∞∑
n=1

Un,λ(A,B)an|bn| ≤ 1,

this shows that f(z) ∗ g(z) ∈ Σ(A,B, λ).

Corollary 2.3. If f(z) ∈
∑

p(A,B, λ) and g(z) = 1
z +

∑∞
n=1 bnz

n; 0 ≤ bn ≤ 1 for n ≥ 1 then

f(z) ∗ g(z) ∈
∑

p(A,B, λ).

Theorem 2.7. If f(z) and g(z) are in
∑

p(A,B, λ), then h(z) = 1
z +

∑∞
n=1(a2n + b2n)zn ∈∑

p(A1, B1, µ), where

0 ≤ µ ≤ µ0 =
α−

√
α2 − 2βγ

β
,

α = 4U2
2,λ(A,B) − 3U2

1,λ(A,B) + 2, β = 12U2
1,λ(A,B),

γ = 2U2
2,λ(A,B) − 3U2

1,λ(A,B) − 2,

−A1 ≤ K(λ, µ0)

2 −K(λ, µ0)
,
K(λ, µ0) + A1

1 −K(λ, µ0)
≤ B1

K(λ, µ0) =
4|1 − 2λ|2(B −A)2

2|1 − 2λ|2(B −A)2 + (1 − 2µ0)(B + A + 2)2
.

The result is best possible.

Proof. Since f(z), g(z) ∈
∑

p(A,B, λ), then
∞∑

n=1

Un,λ(A,B, λ)an ≤ 1

and
∞∑

n=1

Un,λ(A,B, λ)bn ≤ 1.

Therefore,
∞∑

n=1

U2
n,λ(A,B, λ)a2n ≤ 1

and
∞∑

n=1

U2
n,λ(A,B, λ)b2n ≤ 1.

Hence
∞∑

n=1

1

2
U2
n,λ(A,B, λ)(a2n + b2n) ≤ 1. (2.15)
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We want to find values of A1, B1 and µ such that
∞∑

n=1

U2
n,µ(A1, B1, µ)(a2n + b2n) ≤ 1. (2.16)

Comparing (2.16) with (2.15) we see that (2.16) is true if

2Un,µ(A1, B1, µ) ≤ U2
n,µ(A,B, λ)

or
B1 −A1

B1 + 1
≥ 2(1 + µ(n− 1))(n + 1)

2(1 + µ(n− 1)) + U2
n,λ(A,B)|1 − 2µ|

(2.17)

for all n ≥ 1. The right hand side of (2.17) is a decreasing function of n and is maximum for

n = 1 provided that 0 ≤ µ ≤ µ0 and

B1 −A1

B1 + 1
≥ 4|1 − 2λ|2(B −A)2

2|1 − 2λ|(B −A)2 + (1 − 2µ0)(B + A + 2)2
:= K(λ, µ0). (2.18)

Keeping A1 fixed in (2.18) we get K(λ,µ0)+A1

1−K(λ,µ0)
≤ B1 and −A1 ≤ K(λ,µ0)

2−K(λ,µ0)
with K(λ, µ0) given

as in (2.18). The functions f(z) = g(z) = 1
z + |1 − 2λ| B−A

B+A+2z show that our result is best

possible.
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