On a certain classes of meromorphic functions with positive coefficients

R. Asadi A. Ebadian S. Shams Janusz Sokół

Abstract. In this paper certain classes of meromorphic functions in punctured unit disk are defined. Some properties including coefficient inequalities, convolution and other results are investigated.

§1 Introduction and preliminaries

Let Σ denote the class of functions of the form

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n,$$

which are analytic in $D = \{z : 0 < |z| < 1\}$, having a simple pole at the origin. Motivated by M. L. Mogra [1] we define the following class of meromorphic functions and investigate some properties of this class.

A function $f \in \Sigma$ is said to be in the class $\Sigma(A, B, \lambda)$ if it satisfies the condition

$$\frac{zf'(z) + \lambda z^2 f''(z)}{(1-\lambda)f(z) + \lambda z f'(z)} = -\frac{1+A\omega(z)}{1+B\omega(z)},$$
(1.1)

where $\omega(z)$ is analytic and $|\omega(z)| \leq |z|$ in the unit disc U; A and B are real constants satisfying $0 < -A \leq B < 1$ and λ is a real constant satisfying $0 \leq \lambda \leq 1$, $\lambda \neq 1/2$. From (1.1), we have that $f(z) \in \Sigma(A, B, \lambda)$ if and only if

$$\frac{zF'(z)}{F(z)} = -\frac{1 + A\omega(z)}{1 + B\omega(z)},$$
(1.2)

where

$$F(z) = \frac{1}{1 - 2\lambda} \{ (1 - \lambda)f(z) + \lambda z f'(z) \} = \frac{1}{z} + \cdots$$
(1.3)

Let $C(A, B, \lambda)$ be the class of functions $f \in \Sigma$ such that $-zf'(z) \in \Sigma(A, B, \lambda)$. Also let Σ_p be the class of functions of the form

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n, \ a_n \ge 0,$$
(1.4)

Received: 2016-01-13. Revised:2019-06-14.

MR Subject Classification: Primary 30C45, Secondary 30C80.

Keywords: Hadamard product, univalent, meromorphic functions.

Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-019-3432-8.

which are analytic and in D. We define $\Sigma_p(A, B, \lambda) = \Sigma_p \cap \Sigma(A, B, \lambda)$ and $C_p(A, B, \lambda) = \Sigma_p \cap C_p(A, B, \lambda)$. The convolution or Hadamard product of two meromorphic functions $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$ and $g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n$ with $a_n, b_n \ge 0$ is defined by

$$f(z) * g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n b_n z^n.$$
 (1.5)

The main aim of the present paper is to establish certain result concerning the convolution of meromorphic functions analogous to Padmanabhan and Ganesan [3]. Also M.L Mogra etal [2] have studied some convolution properties of a special class of meromorphic univalent functions which is close to our class and we extend their results in some directions. On the other hand we extend some corresponding results in A Schild and H. Silverman [4] for meromorphic functions with positive coefficients in our class.

In the sequel for real constants A, B and λ satisfying $0 < -A \le B < 1, 0 \le \lambda \le 1, \lambda \ne 1/2$, we define

$$U_{n,\lambda}(A,B) = \frac{(1+\lambda(n-1))(n(B+1)+A+1)}{|1-2\lambda|(B-A)}.$$
(1.6)

§2 Main results

Theorem 2.1. If an univalent function f(z) is in $\Sigma_p(A, B, \lambda)$ with $0 < -A \le 1/3, -A \le B \le (1+A)/2$, then $G(z) = z^2 F(z)$ is starlike univalent in |z| < 1, where F(z) is given in (1.3). Moreover,

$$\frac{zG'(z)}{G(z)} \prec \frac{1 + (2B - A)z}{1 + Bz},$$
(2.1)

where \prec denotes the subordination.

Proof. If $G(z) = z^2 F(z)$, then

$$\frac{zG'(z)}{G(z)} = \frac{zF'(z)}{F(z)} + 2.$$

Applying (1.2), we obtain

$$\frac{zG'(z)}{G(z)} = \frac{1 + (2B - A)\omega(z)}{1 + B\omega(z)}$$

where $\omega(z)$ is analytic and $|\omega(z)| \leq |z|$ in the unit disc U. This gives (2.1) because under the assumptions, we have $2B - A \leq 1$. Moreover, in this case we have

$$\Re \mathfrak{e} \left\{ \frac{1+(2B-A)\omega(z)}{1+B\omega(z)} \right\} > 0 \quad |z|<1,$$
 then $G(z)=z^2F(z)$ is starlike univalent in $|z|<1.$

Theorem 2.2. A function $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n, a_n \ge 0$ is in $\Sigma_p(A, B, \lambda)$ if and only if

$$\sum_{n=1}^{\infty} U_{n,\lambda}(A,B)a_n \le 1$$
(2.2)

also f is in $C_p(A, B, \lambda)$ if and only if

$$\sum_{n=1}^{\infty} n U_{n,\lambda}(A,B) a_n \le 1.$$
(2.3)

R. Asadi, et al.

Proof. Let $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n, a_n \ge 0$ and (2.2) holds. We show that $f \in \Sigma(A, B, \lambda)$. It is sufficient to show that the function

$$\omega(z) = \frac{\sum_{n=1}^{\infty} (n+1)(1+\lambda(n-1))a_n z^{n+1}}{(1-2\lambda)(B-A) - \sum_{n=1}^{\infty} (A+nB)(1+\lambda(n-1))a_n z^{n+1}} \quad (z \in U)$$
(2.4)
c. $\omega(0) = 0 \text{ and } |\omega(z)| \le 1.$

is analytic, $\omega(0) = 0$ and $|\omega(z)| \le 1$.

We show that ω is analytic, i.e the denominator in (2.4) is not zero. By the assumption (2.2) we have

$$0 \leq |1 - 2\lambda|(B - A) - \sum_{n=1}^{\infty} (A + 1 + n(B + 1))(1 + \lambda(n - 1))a_n$$

$$< |1 - 2\lambda|(B - A) - \sum_{n=1}^{\infty} (A + nB)(1 + \lambda(n - 1))a_n$$

 So

$$|(1-2\lambda)(B-A) - \sum_{n=1}^{\infty} (A+nB)(1+\lambda(n-1))a_n z^{n+1}|$$

$$\geq |1-2\lambda|(B-A) - |\sum_{n=1}^{\infty} (A+nB)(1+\lambda(n-1))a_n z^{n+1}|$$

$$\geq |1-2\lambda|(B-A) - \sum_{n=1}^{\infty} (A+nB)(1+\lambda(n-1))a_n |z|^{n+1}$$

$$\geq |1-2\lambda|(B-A) - \sum_{n=1}^{\infty} (A+nB)(1+\lambda(n-1))a_n > 0 \quad (z \in U).$$

This shows that the denominator in (2.4) is not zero.

By (2.2) we have

$$|\omega(z)| \le \frac{\sum_{n=1}^{\infty} (n+1)(1+\lambda(n-1))a_n}{|1-2\lambda|(B-A) - \sum_{n=1}^{\infty} (A+nB)(1+\lambda(n-1))a_n} \le 1.$$

Conversely let $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \in \sum_p (A, B, \lambda)$. From (2.4) ω satisfies $\omega(0) = 0$ and $|\omega(z)| \leq 1$, also ω is analytic in the unit disk U. Since $\Re \omega(z) \leq |\omega(z)| \leq 1 (z \in U)$, so for z = r(0 < r < 1), we have

$$\omega(r) = \Re \mathfrak{e}\omega(r) \le |\omega(r)| \le 1,$$

 thus

$$\frac{\sum_{n=1}^{\infty} (n+1)(1+\lambda(n-1))a_n r^{n+1}}{|(1-2\lambda)|(B-A) - \sum_{n=1}^{\infty} (A+nB)(1+\lambda(n-1))a_n r^{n+1}} \le 1.$$

Letting $r \to 1^-$, we get
 $\sum_{n=1}^{\infty} (n+1)(1+\lambda(n-1))a_n$

$$\frac{\sum_{n=1}^{n} (n+1)(1+\lambda(n-1))a_n}{|(1-2\lambda)|(B-A) - \sum_{n=1}^{\infty} (A+nB)(1+\lambda(n-1))a_n} \le 1.$$

Therefore (2.2) now is obtained. For the proof of the second part of the theorem we apply the first part for the function g(z) = -zf'(z).

Theorem 2.3. If $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$ and $g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n$ are in $\Sigma_p(A, B, \lambda)$, then the Hadamard product $f(z) * g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n b_n z^n$ is in $\Sigma_p(A_1, B_1, \mu)$ with $0 < -A_1 \le B_1 < 1$,

 $0 \leq \mu \leq \mu_0$, where

$$\begin{split} \mu_0 &= \frac{\alpha - \sqrt{\alpha^2 - 2\beta\gamma}}{\beta} \\ \alpha &= 4U_{2,\lambda}^2(A,B) - 3U_{1,\lambda}^2(A,B) + 1, \ \beta = 12U_{1,\lambda}^2(A,B), \\ \gamma &= 2U_{2,\lambda}^2(A,B) - 3U_{1,\lambda}^2(A,B) - 1 \\ -A_1 &\leq \frac{K(\lambda,\mu_0)}{2 - K(\lambda,\mu_0)}, \frac{K(\lambda,\mu_0) + A_1}{1 - K(\lambda,\mu_0)} \leq B_1 \\ K(\lambda,\mu_0) &= \frac{2|1 - 2\lambda|^2(B - A)^2}{|1 - 2\lambda|^2(B - A)^2 + (1 - 2\mu_0)(B + A + 2)^2}. \end{split}$$

The bounds for A_1 and B_1 cannot be improved.

Proof. Suppose f(z) and g(z) are in $\Sigma_p(A, B, \lambda)$. In view of Theorem 2.2, we have

$$\sum_{n=1}^{\infty} U_{n,\lambda}(A,B)a_n \le 1$$
(2.5)

and

$$\sum_{n=1}^{\infty} U_{n,\lambda}(A,B)b_n \le 1.$$
(2.6)

We wish to find values of A_1 , B_1 and μ for which $f(z) * g(z) \in \Sigma_p(A_1, B_1, \mu)$. Equivalently we want to determine A_1 , B_1 and μ satisfying

$$\sum_{n=1}^{\infty} U_{n,\mu}(A_1, B_1) a_n b_n \le 1.$$
(2.7)

Using Cauchy Schwarz inequality together with (2.5) and (2.6) we get

$$\sum_{n=1}^{\infty} U_{n,\lambda}(A,B) \sqrt{a_n b_n} \le \left(\sum_{n=1}^{\infty} U_{n,\lambda}(A,B) a_n\right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} U_{n,\lambda}(A,B) b_n\right)^{\frac{1}{2}}.$$
 (2.8)

From (2.5), (2.6) and (2.8), we get

$$\sum_{n=1}^{\infty} U_{n,\lambda}(A,B)\sqrt{a_n b_n} \le 1.$$

So the inequality (2.7) is satisfied if

$$U_{n,\mu}(A_1, B_1)a_nb_n \le U_{n,\lambda}(A, B)\sqrt{a_nb_n}$$

for $n \ge 1$. That is if

$$U_{n,\mu}(A_1, B_1)\sqrt{a_n b_n} \le U_{n,\lambda}(A, B).$$

Since $U_{n,\lambda}(A, B) \ge 1$ so from (2.8), we have

$$\sqrt{a_n b_n} \le \frac{1}{U_{n,\lambda}(A,B)}$$

Thus it is enough to find $U_{n,\mu}(A_1, B_1)$ such that

$$U_{n,\mu}(A_1, B_1) \le U_{n,\lambda}^2(A, B).$$
 (2.9)

The inequality (2.9) is equivalent to

$$\frac{(1+\mu(n-1))(n(B_1+1)+A_1+1)}{|1-2\mu|(B_1-A_1)} \le \left(\frac{(1+\lambda(n-1))(n(B+1)+A+1)}{|1-2\lambda|(B-A)}\right)^2 := u^2.$$

R. Asadi, et al.

This yields

$$A_1 \le \frac{u^2 |1 - 2\mu| B_1 + (1 + \mu(n-1))(n(B_1 + 1) + 1)}{1 + \mu(n-1) + u^2 |1 - 2\mu|}.$$
(2.10)

Now (2.10) gives on simplification

$$\frac{B_1 - A_1}{B_1 + 1} \ge \frac{(1 + \mu(n-1))(n+1)}{1 + \mu(n-1) + U_{n,\lambda}^2(A, B)|1 - 2\mu|}.$$
(2.11)

It is easy to see that the right hand of (2.11) decreases as n increases and it is maximum for n = 1, provided that $0 \le \mu \le \mu_0$ and

$$\frac{B_1 - A_1}{B_1 + 1} \ge \frac{2|1 - 2\lambda|^2 (B - A)^2}{|1 - 2\lambda|^2 (B - A)^2 + (1 - 2\mu_0)(B + A + 2)^2} := K(\lambda, \mu_0),$$
(2.12)

where

$$\mu_0 = \frac{\alpha - \sqrt{\alpha^2 - 2\beta\gamma}}{\beta}, \quad \alpha = (4U_{2,\lambda}^2(A, B) - 3U_{1,\lambda}^2(A, B) + 1)$$

and where

 $\beta = 12U_{1,\lambda}^2(A,B), \quad \gamma = 2U_{2,\lambda}^2(A,B) - 3U_{1,\lambda}^2(A,B) - 1.$ It is clear that $K(\lambda,\mu_0) < 1$. Fixing A_1 in (2.12), we get $B_1 \ge \frac{K(\lambda,\mu_0) + A_1}{1-K}$. It is easy to verify that $0 < -A_1 \leq B_1 < 1$. If we take

$$f(z) = g(z) = \frac{1}{z} + |1 - 2\lambda| \frac{B - A}{B + A + 2} z,$$

then

$$U_{n,\mu_0}(A_1, B_1) = \frac{(1 - 2\mu_0)K(\lambda, \mu_0)}{2 - K(\lambda, \mu_0)}.$$

So we get
$$f(z) * g(z) \in \Sigma_p\left(-\frac{K(\lambda,\mu_0)}{2-K(\lambda,\mu_0)}, \frac{K(\lambda,\mu_0)}{2-K(\lambda,\mu_0)}\right)$$
 with $K(\lambda,\mu_0)$ as in (2.12).

Corollary 2.1. Let f(z) and g(z) be as in Theorem 2.3. Then

$$h(z) = \frac{1}{z} + \sum_{n=1}^{\infty} u_{n,\lambda}(A, B) \sqrt{a_n b_n} z^n \in \Sigma_p(A, B, \lambda).$$

Proof. The result follows immediately from (2.8) using the Cauchy-Schwarz inequality. For the same functions as in Theorem 2.3, the result is best possible.

Theorem 2.4. If $f(z) \in \Sigma_p(A, B, \lambda)$ and $g(z) \in \Sigma_p(A', B', \theta)$ then $f(z) * g(z) \in \Sigma_p(A_1, B_1, \mu)$ with $0 < -A_1 \le B_1 < 1, \ 0 \le \mu \le \mu_0$, where

$$\mu_0 = \frac{\alpha - \sqrt{\alpha^2 - 2\beta\gamma}}{\beta}$$

$$\alpha = 4U_{2,\lambda}(A, B)U_{2,\theta}(A', B') - 3U_{1,\lambda}(A, B)U_{1,\theta}(A', B') + 1$$

$$\beta = 12U_{1,\lambda}(A, B)U_{1,\theta}(A', B')$$

$$\gamma = 2U_{2,\lambda}(A, B)U_{2,\theta}(A', B') - 3U_{1,\lambda}(A, B)U_{1,\theta}(A', B') - 1$$

$$-A_1 \leq \frac{K(\lambda, \theta, \mu_0)}{2 - K(\lambda, \theta, \mu_0)}, \frac{K(\lambda, \theta, \mu_0) + A_1}{1 - K(\lambda, \theta, \mu_0)} \leq B_1$$

$$K(\lambda, \theta, \mu_0) = \frac{2|1 - 2\lambda||1 - 2\theta|(B - A)(B' - A')}{|1 - 2\lambda||1 - 2\theta|(B - A)(B' - A')}$$

$$The bounds for A_1 and B_1 cannot be improved.$$

Proof. Proceeding exactly as in Theorem 2.3, we require to show that

$$U_{n,\mu}(A_1, B_1) \le U_{n,\theta}(A', B')U_{n,\lambda}(A, B)$$

257

for all $n \ge 1$. This on simplification yields

$$\frac{B_1 - A_1}{B_1 + 1} \ge \frac{(1 + \mu(n-1))(n+1)}{1 + \mu(n-1) + U_{n,\lambda}(A, B)u_{n,\theta}(A', B')|1 - 2\mu|}.$$
(2.13)

The right hand of (2.13) decreases as n increases and it is maximum for n = 1 provided that $0 \le \mu \le \mu_0$ and

$$\frac{B_1 - A_1}{B_1 + 1} \ge \frac{2|1 - 2\lambda||1 - 2\theta|(B - A)(B' - A')}{|1 - 2\lambda||1 - 2\theta|(B - A)(B' - A') + (1 - 2\mu_0)(B + A + 2)(B' + A' + 2)}, \quad (2.14)$$

where

$$\mu_{0} = \frac{\alpha - \sqrt{\alpha^{2} - 2\beta\gamma}}{\beta}$$

$$\alpha = 4U_{2,\lambda}(A, B)U_{2,\theta}(A', B') - 3U_{1,\lambda}(A, B)U_{1,\theta}(A', B') + 1$$

$$\beta = 12u_{1,\lambda}(A, B)u_{1,\theta}(A', B')$$

$$\gamma = 2U_{2,\lambda}(A, B)U_{2,\theta}(A', B') - 3U_{1,\lambda}(A, B)U_{1,\theta}(A', B') - 1.$$

Clearly $K(\lambda, \theta, \mu_0) < 1$. Fixing A_1 in (2.14) we get $K(\lambda, \theta, \mu_0) + A_1 < B$

$$\frac{K(\lambda,\theta,\mu_0) + M_1}{1 - K(\lambda,\theta,\mu_0)} \le B_1$$

It is easily seen that the result is best possible for the functions

$$f(z) = \frac{1}{z} + |1 - 2\lambda| \frac{B - A}{B + A + 2} z,$$

$$g(z) = \frac{1}{z} + |1 - 2\theta| \frac{B - A}{B + A + 2} z.$$

Corollary 2.2. If $f(z), g(z), h(z) \in \sum_p (A, B, \lambda)$ then $f(z) * g(z) * h(z) \in \sum_p (A_1, B_1, \mu)$ with $0 \le \mu \le \mu_0$ where μ_0 is as in Theorem 2.4, $0 \le \theta \le \theta_0$ and

$$\theta_0 = \frac{\alpha - \sqrt{\alpha^2 - 2\beta\gamma}}{\beta}$$

$$\begin{split} \alpha &= 4U_{2,\lambda}^2(A,B) - 3U_{1,\lambda}^2(A,B) + 1, \ \beta = 12U_{1,\lambda}^2(A,B), \\ \gamma &= 2U_{2,\lambda}^2(A,B) - 3U_{1,\lambda}^2(A,B) - 1 \\ -A_1 &\leq \frac{K(\lambda,\theta,\mu_0)}{2 - K(\lambda,\theta,\mu_0)}, \frac{K(\lambda,\theta,\mu_0) + A_1}{1 - K(\lambda,\theta,\mu_0)} \leq B_1 \\ \frac{2|1 - 2\lambda||1 - 2\theta|(B - A)(B' - A')}{|1 - 2\lambda||1 - 2\theta|(B - A)(B' - A') + (1 - 2\mu_0)(B + A + 2)(B' + A' + 2)} \\ -A' &\leq \frac{K(\lambda,\theta_0)}{2 - K(\lambda,\theta_0)}, \frac{K(\lambda,\theta_0) + A}{1 - K(\lambda,\theta_0)} \leq B' \\ K(\lambda,\theta_0) &= \frac{2|1 - 2\lambda|^2(B - A)^2}{|1 - 2\lambda|^2(B - A)^2 + (1 - 2\theta_0)(B + A + 2)^2}. \end{split}$$

Proof. Since $f(z), g(z) \in \sum_{p} (A, B, \lambda)$ by Theorem 2.4, we have $f(z) * g(z) \in \sum_{p} (A', B', \theta)$, where $-A' \leq \frac{K(\lambda, \theta_0)}{2 - K(\lambda, \theta_0)}, \frac{K(\lambda, \theta_0) + A}{1 - K(\lambda, \theta_0)} \leq B'$ with

$$K(\lambda, \theta_0) = \frac{2|1 - 2\lambda|^2(B - A)^2}{|1 - 2\lambda|^2(B - A)^2 + (1 - 2\theta_0)(B + A + 2)^2}.$$

Now letting $f(z) * g(z) \in \sum_{p} (A', B', \theta)$ and $h(z) \in \sum_{p} (A, B, \lambda)$ the result follows by Theorem 2.4.

258

 $R.\ Asadi,\ et\ al.$

259

(2.15)

Theorem 2.5. If $f(z) \in C_p(A, B, \lambda)$ and $g(z) \in C_p(A', B', \theta)$ then $f(z) * g(z) \in C_p(A_1, B_1, \theta)$, where $K(\lambda, \theta, u, \lambda) = K(\lambda, \theta, u, \lambda) + A$

$$-A_1 \leq \frac{K(\lambda, \theta, \mu_0)}{2 - K(\lambda, \theta, \mu_0)}, \frac{K(\lambda, \theta, \mu_0) + A_1}{1 - K(\lambda, \theta, \mu_0)} \leq B_1$$

with $0 \le \mu \le \mu_0$ and μ_0 as in Theorem 2.4. The result is best possible.

Theorem 2.6. If $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$, $a_n \ge 0$ belongs to $\sum_p (A, B, \lambda)$ and $g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n$ with $|b_n| \le 1, n \ge 1$, then $f(z) * g(z) \in \Sigma(A, B, \lambda)$.

Proof. Since $f(z) \in \Sigma_p(A, B, \lambda)$, we have

$$\sum_{n=1}^{\infty} U_{n,\lambda}(A,B)a_n \le 1.$$

Furthermore $|b_n| \leq 1, n \geq 1$. Therefore,

$$\sum_{n=1}^{\infty} U_{n,\lambda}(A,B) |a_n b_n| = \sum_{n=1}^{\infty} U_{n,\lambda}(A,B) |a_n| |b_n| \le 1,$$

this shows that $f(z) * g(z) \in \Sigma(A, B, \lambda)$.

Corollary 2.3. If $f(z) \in \sum_{p} (A, B, \lambda)$ and $g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n; 0 \le b_n \le 1$ for $n \ge 1$ then $f(z) * g(z) \in \sum_{p} (A, B, \lambda).$

Theorem 2.7. If f(z) and g(z) are in $\sum_{p}(A, B, \lambda)$, then $h(z) = \frac{1}{z} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) z^n \in \sum_{p} (A_1, B_1, \mu)$, where

$$\begin{split} 0 &\leq \mu \leq \mu_0 = \frac{\alpha - \sqrt{\alpha^2 - 2\beta\gamma}}{\beta}, \\ \alpha &= 4U_{2,\lambda}^2(A, B) - 3U_{1,\lambda}^2(A, B) + 2, \ \beta = 12U_{1,\lambda}^2(A, B), \\ \gamma &= 2U_{2,\lambda}^2(A, B) - 3U_{1,\lambda}^2(A, B) - 2, \\ -A_1 &\leq \frac{K(\lambda, \mu_0)}{2 - K(\lambda, \mu_0)}, \frac{K(\lambda, \mu_0) + A_1}{1 - K(\lambda, \mu_0)} \leq B_1 \\ K(\lambda, \mu_0) &= \frac{4|1 - 2\lambda|^2(B - A)^2}{2|1 - 2\lambda|^2(B - A)^2 + (1 - 2\mu_0)(B + A + 2)^2}. \end{split}$$

The result is best possible.

Proof. Since $f(z), g(z) \in \sum_{p} (A, B, \lambda)$, then

$$\sum_{n=1}^{\infty} U_{n,\lambda}(A, B, \lambda) a_n \le 1$$

and

Therefore,

$$\sum_{n=1}^{\infty} U_{n,\lambda}(A, B, \lambda) b_n \leq 1.$$
$$\sum_{n=1}^{\infty} U_{n,\lambda}^2 (A, B, \lambda) a_n^2 \leq 1$$
$$\sum_{n=1}^{\infty} U_{n,\lambda}^2 (A, B, \lambda) b_n^2 \leq 1.$$
$$\sum_{n=1}^{\infty} \frac{1}{2} U_{n,\lambda}^2 (A, B, \lambda) (a_n^2 + b_n^2) \leq 1.$$

Hence

and

We want to find values of A_1,B_1 and μ such that

$$\sum_{n=1}^{\infty} U_{n,\mu}^2(A_1, B_1, \mu)(a_n^2 + b_n^2) \le 1.$$
(2.16)

Comparing (2.16) with (2.15) we see that (2.16) is true if

$$2U_{n,\mu}(A_1, B_1, \mu) \leq U_{n,\mu}^2(A, B, \lambda)$$

or

$$\frac{B_1 - A_1}{B_1 + 1} \ge \frac{2(1 + \mu(n-1))(n+1)}{2(1 + \mu(n-1)) + U_{n,\lambda}^2(A, B)|1 - 2\mu|}$$
(2.17)

for all $n \ge 1$. The right hand side of (2.17) is a decreasing function of n and is maximum for n = 1 provided that $0 \le \mu \le \mu_0$ and

$$\frac{B_1 - A_1}{B_1 + 1} \ge \frac{4|1 - 2\lambda|^2 (B - A)^2}{2|1 - 2\lambda|(B - A)^2 + (1 - 2\mu_0)(B + A + 2)^2} := K(\lambda, \mu_0).$$
(2.18)

Keeping A_1 fixed in (2.18) we get $\frac{K(\lambda,\mu_0)+A_1}{1-K(\lambda,\mu_0)} \leq B_1$ and $-A_1 \leq \frac{K(\lambda,\mu_0)}{2-K(\lambda,\mu_0)}$ with $K(\lambda,\mu_0)$ given as in (2.18). The functions $f(z) = g(z) = \frac{1}{z} + |1-2\lambda| \frac{B-A}{B+A+2} z$ show that our result is best possible.

References

- M L Mogra. Convolutions of certain classes of meromorphic univalent functions with positive coefficients, Mathematica Pannonica, 1988, 9(1): 47-55.
- [2] M L Mogra, T R Reddy, O P Juneja. Meromorphic univalent functions with positive coefficients, Bull Australian Math Soc, 1985, 32: 161-176.
- [3] K S Padmanabhan, M S Ganesan. Convolutions of certain classes of univalent functions with negative coefficients, Indian J Pure Appl Math, 1998, 19(9): 880-889.
- [4] A Schild, H Silverman. Convolutions of univalent functions with negative coefficients, Ann Univ Marie Curie-Skłodowska Sect A, 1975, 29: 99-107.

Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.

Email: reza810asady@gmail.com

Email: a.ebadian@mail.urmia.ac.ir

Email: sa40shams@yahoo.com

University of Rzeszów, Faculty of Mathematics and Natural Sciences, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland.

Email: jsokol@ur.edu.pl

260