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Existence and Stability of Solutions to Highly Nonlinear

Stochastic Differential Delay Equations Driven by

G-Brownian Motion

FEI Chen1 FEI Wei-yin2* YAN Li-tan1

Abstract. Under linear expectation (or classical probability), the stability for stochastic dif-

ferential delay equations (SDDEs), where their coefficients are either linear or nonlinear but

bounded by linear functions, has been investigated intensively. Recently, the stability of highly

nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper,

by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions

to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth

conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs

are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.

§1 Introduction

By using Peng’s theory of sublinear expectations, the research of the probability model with

ambiguity makes a significant progress. In fact, a sublinear expectation can be represented

as the upper expectation of a subset of linear expectations. Moreover, some researchers are

focusing on the stochastic calculus of G-Brownian motion (e.g., see, Deng et.al. [4], Fei and

Fei [6], Fei and Fei [9], Li and Peng [17], Peng [25], and Zhang [32]).

Next, the importance of the study of stochastic differential equations from both the theo-

retical points of view and their applications is well known. The classical stochastic differential

equations with Brownian motion don’t take the model uncertainty into consideration. Thus, in
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some complex environments, these equations are too restrictive to describe some phenomena.

Recently, with uncertainty, a kind of stochastic differential equations driven by G-Brownian

motion is investigated by Bai and Lin [3], Gao [14], Li et al. [16], Lin [19], Lin [20], Luo and

Wang [21], etc.

We know that the stability of the classical stochastic differential equations is an important

topic in the study of stochastic systems (e.g., see, Mao [23], Mao and Yuan [24], reference

therein). Recently, Hu et.al. [15] initiate the investigation on the stability of hybrid highly

nonlinear stochastic delay differential equations driven by Brownian motion. Based on highly

nonlinear hybrid SDDEs, the stability of systems is further studied in [7, 8, 11–13,29–31].

On the one hand, based on the system disturbed by G-Brownian motion providing charac-

terization of the real world with both randomness and ambiguity, it is necessary to investigate

the stability of the stochastic differential equations which is similar to a classical stochastic dif-

ferential equation. One kind of exponential stability for stochastic differential equations driven

by G-Brownian motion is discussed by Zhang and Chen [33] where quasi-sure analysis is used.

Fei and Fei [10] investigated quasi-sure exponential stability by G-Lyapunov functional method

in order to obtain the stability results. The stability of solutions to stochastic differential equa-

tions driven by G-Brownian motion is also investigated by Ren et al. [26, 27]. The stability of

delayed Hopfield neural networks under a sublinear expectation is explored in Li and Yan [18].

On the other hand, in many real systems, such as science, industry, economics and finance

etc., we will run into time lag. So it is necessary to explore G-SDDEs. In this paper, we first

solve a basic problem in terms of the existence and uniqueness of the solutions to G-SDDEs

under the local Lipschitz and the linear growth conditions by Picard iteration method. Next,

the second kind of stability of the solution to G-SDDEs is discussed, and the dependence of

solution to G-SDDE on initial data has been analysed as well. Finally, we investigate the

existence and uniqueness, the asymptotic stability and the boundedness of the solutions to the

highly nonlinear G-SDDEs with the local Lipschitz condition.

The arrangement of the paper is presented as follows. In Section 2, we give preliminaries on

sublinear expectations and G-Bwownian motions. Furthermore, we characterize the properties

of G-Brownian motions and G-martingales. In Section 3, the existence and uniqueness theo-

rem of the solutions to G-SDDEs is proved. Moreover, in Section 4, under the linear growth

conditions, we discuss the stability of the solutions to G-SDDEs, and the dependence of the

solutions with respect to initial data. Section 5 investigates the existence and the stability of

the solution to highly nonlinear G-SDDEs. Finally, the conclusion appears in Section 6.
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§2 Preliminaries on Sublinear Expectation

In this section, we first give the notion of sublinear expectation space (Ω,H, Ê), where Ω is

a given state set and H a linear space of real valued functions defined on Ω. The space H can

be considered as the space of random variables. The following concepts stem from Peng [25].

Definition 2.1. A sublinear expectation Ê is a functional Ê: H → R satisfying

(i) Monotonicity: Ê[X] ≥ Ê[Y ] if X ≥ Y ;

(ii) Constant preserving: Ê[c] = c;

(iii) Sub-additivity: For each X,Y ∈ H, Ê[X + Y ] ≤ Ê[X] + Ê[Y ];

(iv) Positivity homogeneity: Ê[λX] = λÊ[X] for λ ≥ 0.

Definition 2.2. Let (Ω,H, Ê) be a sublinear expectation space. (X(t))t≥0 is called a d-dimensional

stochastic process if for each t ≥ 0, X(t) is a d-dimensional random vector in H.

A d-dimensional process (B(t))t≥0 on a sublinear expectation space (Ω,H, Ê) is called a

G-Brownian motion if the following properties are satisfies:

(i) B0(ω) = 0;

(ii) for each t, s ≥ 0, the increment B(t+s)−B(t) is N({0}×sΣ)-distributed and is independent

from (B(t1), B(t2), · · · , B(tn)), for each n ∈ N and 0 ≤ t1 ≤ · · · ≤ tn ≤ t, where Σ is a bounded,

convex and closed subset in the family of d × d nonnegative definite symmetric matrices. Let

< B > (·) be the quadratic variation process of B(·).

We now give the definition of the Itô integral. For the technical simplicity, in the rest of

the paper, we introduce Itô integral with respect to one-dimensional G-Brownian motion with

G(α) := 1
2 Ê[αB(1)2] = 1

2 (σ̄
2α+ − σ2α−), where Ê[B(1)2] = σ̄2, E [B(1)2] = σ2, 0 < σ ≤ σ̄ < ∞,

where lower expectation E [X] := −Ê[−X] for each X ∈ H.

Let p ≥ 1 be fixed. We consider the following type of simple processes: for a given partition

πT = (t0, · · · , tN ) of [0, T ], where T can take ∞, we get

η(t, ω) =
N−1∑
k=0

ξk(ω)I[tk,tk+1)(t),

where ξk ∈ Lp
G(Ωtk), k = 0, 1, · · · , N − 1 are given. The collection of these processes is denoted

by Mp,0
G (0, T ). We denote by Mp

G(0, T ) the completion of Mp,0
G (0, T ) with the norm

∥η∥Mp
G(0,T ) :=

{
Ê
∫ T

0

|η(t)|pdt

}1/p

< ∞.

More details on the notions of G-expectation Ê and G-Brownian motion, and the definition of

stochastic integral
∫ T

0
η(t)dB(t) on the sublinear expectation space (Ω,H, Ê) can be found in

Peng [25].
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For convenience, we give the following Burkholder-Davis-Gundy inequality (see, e.g., Gao

[14, Theorems 2.1-2.2]).

Lemma 2.3. (Burkholder-Davis-Gundy inequality) Let p ≥ 2 and ζ = {ζ(s), s ∈ [0, T ]} ∈
Mp

G(0, T ). Then, for all t ∈ [0, T ] such that

Ê sup
s≤u≤t

∣∣∣ ∫ u

s

ζ(v)d < B > (v)
∣∣∣p ≤ (t− s)p−1C1(p, σ̄)Ê

∫ t

s

|ζ(v)|pdv,

Ê sup
s≤u≤t

∣∣∣ ∫ u

s

ζ(v)dB(v)
∣∣∣p ≤ C2(p, σ̄)Ê

(∫ t

s

|ζ(v)|2dv
)p/2

,

where the constants Ci(p, σ̄), i = 1, 2 depend on parameters p and σ̄.

We provide the following property which stems from Denis et al. [5] or Zhang and Chen [33].

Proposition 2.4. Let Ê be G-expectation. Then there exists a weakly compact family of prob-

ability measures P on (Ω,B(Ω)) such that for all X ∈ H, Ê[X] = maxP∈P EP [X], where EP [·]
is the linear expectation with respect to P .

From the above proposition, we know that the weakly compact family of probability mea-

sures P characterizes the degree of Knightian uncertainty. Especially, if P is singleton, i.e. {P},
then the model has no ambiguity. Moreover, the related calculus reduces to a classical one. We

now define G-upper capacity V(·) and G-lower capacity V(·) by

V(A) = sup
P∈P

P (A), ∀A ∈ B(Ω),

V(A) = inf
P∈P

P (A), ∀A ∈ B(Ω).

Thus a property is called to hold quasi surely (q.s.) if there exists a polar set D with V(D) = 0

such that it holds for each ω ∈ Dc. We say that a property holds P-q.s. means that it holds

P -a.s. for each P ∈ P. If an event A fulfills V(A) = 1, then we call the event A occurs V-a.s.

§3 Existence and uniqueness of solutions to G-SDDEs

For convenience of expounding problem, throughout this paper, all stochastic processes take

values in R. If A is a subset of Ω, denote by IA its indicator function. Let (Ω,H, {Ωt}t≥0, Ê,V)
be a generalized filtered sublinear expectation space, and (B(t))t≥0 one-dimensionalG-Brownian

motion defined on the generalized filtered sublinear expectation space.

Let f, g, h : R × R × [0, T ] → R be Borel measurable functions. Consider one-dimensional



188 Appl. Math. J. Chinese Univ. Vol. 34, No. 2

highly nonlinear G-SDDE

dX(t) =f(X(t), X(t− τ), t)dt+ g(X(t), X(t− τ), t)d < B > (t)

+ h(X(t), X(t− τ), t)dB(t) (1)

on t ≥ 0 with nonrandom initial data

{X(t) = ξ(t) : −τ ≤ t ≤ 0} = ξ ∈ C([−τ, 0];R). (2)

The existence and uniqueness of solutions to stochastic differential equations driven by

G-Brownian motion (G-SDE) has been presently proved under Lipschitz coefficients with the

linear growth condition, see, e.g., Peng [25]. To our best knowledge, however, the existence and

uniqueness of G-SDDE with local Lipschtz coefficients and the linear growth condition has not

been proved yet. We now discuss the existence and uniqueness of solutions to G-SDDE (1).

Let us provide these conditions for our aim.

Assumption 3.1. Assume that for any m > 0, there exists a positive constant Km such that

|f(x, y, t)− f(x̄, ȳ, t)| ∨ |g(x, y, t)− g(x̄, ȳ, t)| ∨ |h(x, y, t)− h(x̄, ȳ, t)|

≤ Km(|x− x̄|+ |y − ȳ|) (3)

for all x, x̄, y, ȳ ∈ R with |x| ∨ |x̄| ∨ |y| ∨ |ȳ| ≤ m and all t ∈ [0, T ]. Assume moreover that there

exists constant K > 0 such that

|f(x, y, t)| ∨ |g(x, y, t)| ∨ |h(x, y, t)| ≤ K(1 + |x|+ |y|) (4)

for all x ∈ R, t ∈ [0, T ].

Next, in order to get the existence and uniqueness theorem of solutions to G-SDDEs under

Assumption 3.1, we first prove a lemma which gives a bound of the solution.

Lemma 3.2. Let the linear growth condition (4) hold. If X(·) is a solution to G-SDDE (1)

with the initial data (2), then we have

Ê
(

sup
0≤t≤T

|X(t)|2
)
≤ A1(T, σ̄, τ)e

A2(T,σ̄,τ)T , (5)

where

A1(T, σ̄, τ) =12K2T (T + TC1(2, σ̄) + C2(2, σ̄))

+ 4∥ξ∥2(1 + 3K2Tτ + 3K2TτC1(2, σ̄) + 3K2τC2(2, σ̄)),

A2(T, σ̄, τ) =24K2(T + TC1(2, σ̄) + C2(2, σ̄)),

and C1(2, σ̄) and C2(2, σ̄) are defined in Lemma 2.3. Specially, X(·) belongs to M2
G(0, T ).

Proof. For each integer m ≥ 1, define the stopping time

νm = T ∧ inf{t ∈ [0, T ]; |X(t)| ≥ m}.



FEI Chen, FEI Wei-yin, YAN Li-tan. SDDEs Driven by G-Brownian Motion 189

Clearly, νm ↑ T q.s. Set Xm(t) = X(t ∧ νm) for t ∈ [0, T ]. Then Xm(t) satisfies the equation

Xm(t) = X0 +

∫ t

0

f(Xm(s), Xm(s− τ), s)I[0,νm](s)ds

+

∫ t

0

g(Xm(s), Xm(s− τ), s)I[0,νm](s)d < B > (s) +

∫ t

0

h(Xm(s), Xm(s− τ), s)I[0,νm](s)dB(s).

By the Hölder inequality, the linear growth condition (4) and the Birkholder-Davis-Gundy

inequality for G-Brownian motion (see Lemma 2.3), we deduce

Ê
(

sup
0≤t≤T

|Xm(t)|2
)
≤ 4∥ξ∥2 + 4K2T Ê

∫ T

0

(1 + |Xm(s)|+ |Xm(s− τ)|)2ds

+ 4K2TC1(2, σ̄)Ê
∫ T

0

(1 + |Xm(s)|+ |Xm(s− τ)|)2ds

+ 4C2(2, σ̄)K
2Ê

∫ T

0

(1 + |Xm(s)|+ |Xm(s− τ)|)2ds

≤ 12K2T (T + TC1(2, σ̄) + C2(2, σ̄)) + 4∥ξ∥2(1 + 3K2Tτ + 3K2TτC1(2, σ̄) + 3K2τC2(2, σ̄))

+ 24K2(T + TC1(2, σ̄) + C2(2, σ̄))Ê
∫ T

0

|Xm(s)|2ds

≤ A1(T, σ̄, τ) +A2(T, σ̄, τ)

∫ T

0

Ê
(

sup
0≤s≤t

|Xm(t)|2
)
dt,

where we use
∫ 0

−τ
|Xm(s)|2ds ≤ ∥ξ∥2τ. Hence, from the Gronwall inequality, the required in-

equality follows by letting m → ∞. Thus the proof is complete. �

Theorem 3.3. Under Assumption 3.1, the G-SDDE (1) with the initial data (2) has a unique

solution X(·) ∈ M2
G(0, T ).

Proof. The whole proof is divided into two steps for assertion.

Step 1. Existence. Define X0(t) = ξ(t), t ∈ [−τ, 0] and X0(t) = ξ(0) for 0 ≤ t ≤ T . For

each n = 1, 2, · · · , set Xn(t) = ξ(t), t ∈ [−τ, 0] and define, by the Picard iterations,

Xn+1(t) = ξ(0) +

∫ t

0

f(Xn(s), Xn(s− τ), s)ds+ g(Xn(s), Xn(s− τ), s)d < B > (s)

+

∫ t

0

h(Xn(s), Xn(s− τ), s)dB(s) (6)

for t ∈ [0, T ]. Obviously, X0(·) ∈ M2
G(0, T ).

From (4), (6), the Hölder inequality, and Lemma 2.3, by a similar way as the proof of Lemma

3.2 we easily derive

Ê|Xn+1(t)|2 ≤ 4∥ξ∥2 + 4Ê
∣∣∣ ∫ t

0

f(Xn(s), Xn(s− τ), s)ds
∣∣∣2

+ 4Ê
∣∣∣ ∫ t

0

g(Xn(s), Xn(s− τ), s)d < B > (s)
∣∣∣2 + 4Ê

∣∣∣ ∫ t

0

h(Xn(s), Xn(s− τ), s)dB(s)
∣∣∣2

≤ K̂(T, σ̄, τ)

∫ t

0

Ê|Xn(s)|2ds
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for some constant K̂(T, σ̄, τ). Thus, by induction and Lemma 3.2, we know that Xn+1(·) ∈
M2

G(0, T ). Define now a stopping time τm := inf{t; there exists some i ∈ N such that |Xi(t)| ≥
m}. Then, we claim that for all n ≥ 0,

Ê
[

sup
0≤s≤t∧τm

| Xn+1(s)−Xn(s) |2
]
≤ Ĉ(Mmt)n

n!
, t ∈ [0, T ], (7)

where Mm = 12K2
m(t+C1t+C2), and C1 = C1(2, σ̄), C2 = C2(2, σ̄) > 0 are defined in Lemma

2.3, and Ĉ is defined below. Thus, we can easily show that

Ê
[

sup
0≤s≤t∧τm

| X1(s)−X0(s) |2
]

≤ 3K2t

∫ t∧τm

0

(1 + |ξ(0)|+ |ξ(s− τ)|)2ds

+ 3K2C1t

∫ t∧τm

0

(1 + |ξ(0)|+ |ξ(s− τ)|)2ds

+ 3C2K
2

∫ t∧τm

0

(1 + |ξ(0)|+ |ξ(s− τ)|)2ds

≤ 9K2t2(1 + |ξ(0)|2 + ∥ξ∥2)

+ 9K2C1t
2(1 + |ξ(0)|2 + ∥ξ∥2)

+ 9K2C2t(1 + |ξ(0)|2 + ∥ξ∥2) := Ĉ.

So (7) holds for n = 0. Next, assume (7) holds for some n− 1 ≥ 0. Then, we have

Ê
[

sup
0≤s≤t∧τm

| Xn+1(s)−Xn(s) |2
]

≤ 3K2
m(t+ C1t+ C2)Ê

∫ t∧τm

0

(|Xn(s)−Xn−1(s)|+ |Xn(s− τ)−Xn−1(s− τ)|)2ds

≤ 12K2
m(t+ C1t+ C2)Ê

∫ t∧τm

0

|Xn(s)−Xn−1(s)|2ds

≤ Mm

∫ t

0

Ê
[

sup
0≤r≤s∧τm

|Xn(r)−Xn−1(r)|2
]
ds

≤ Mm

∫ t

0

Ĉ[Mms]n−1

(n− 1)!
ds =

Ĉ[Mmt]n

(n)!
, (8)

where Mm := 12K2
m(t + C1t + C2). Thus, from the Chebyshev inequality for sublinear expec-

tation Ê (see, e.g., Chen et al. [2, Proposition 2.1 (2)]), we get

V
{

sup
0≤s≤t∧τm

|Xn+1(s)−Xn(s)| > 1

2n

}
≤ Ĉ[4Mmt]n

(n)!
.

Since
∑∞

n=0 Ĉ[4Mmt]n/(n)! < ∞, from the Borel-Cantelli lemma on upper capacity (see, Chen

[1, Lemma 2.7]), we obtain that there exists a positive integer n0 = n0(ω), ω ∈ Dc
0, where D0
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is a polar set with V(D0) = 0, such that

sup
0≤s≤t∧τm

|Xn+1(s)−Xn(s)| ≤ 1

2n
whenever n ≥ n0(ω).

Therefore, we have

X0(s) +

n−1∑
i=0

(Xi+1(s)−Xi(s)) = Xn(s) q.s.

are convergent uniformly in s ∈ [0, t∧τm]. Denote the limit ofXn(t) byX(t) which is continuous

and Ωt-adapted.

Form (7), we also know that {Xn(s)}n≥1, s ∈ [0, t∧ τm] is a Cauchy sequence in M2
G(0, T ).

Thus, we also have Xn(s) → X(s), s ∈ [0, t∧τm], and X(·) ∈ M2
G(0, t∧τm). Next we show that

X(·) fulfills equation (1). Obviusly, Xn(·), X(·) ∈ M2
G(0, t ∧ τm). Thus, by the Burkholder-

Davis-Gundy inequality for G-Brownian motion (see Lemma 2.3), we deduce

Ê
∣∣∣ ∫ t∧τm

0

(f(Xn(s), Xn(s− τ), s)− f(X(s), X(s− τ)), s)ds
∣∣∣2

+ Ê
∣∣∣ ∫ t∧τm

0

(g(Xn(s), Xn(s− τ), s)− g(X(s), X(s− τ)), s)d < B > (s)
∣∣∣2

+ Ê
∣∣∣ ∫ t∧τm

0

(h(Xn(s), xn(s− τ), s)− h(x(s), x(s− τ), s))dB(s)
∣∣∣2

≤ K2
m(t+ C1t+ C2)Ê

∫ t∧τm

0

(|Xn(s)−X(s)|+ |Xn(s− τ)−X(s− τ)|)2ds

≤ 4K2
m(t+ C1t+ C2)Ê

∫ t∧τm

0

|Xn(s)−X(s)|2ds → 0 as n → ∞.

Thus, letting n → ∞, we easily obtain X(s) satisfying equation (1) for s ∈ [0, t ∧ τm]. Then

by taking m → ∞ in (6), we obtain X(t) is the solution to (6) for t ∈ [0, T ]. Therefore, the

existence has also been proved.

Step 2. Uniqueness. Let X(t) and X̄(t) be the two solutions. Define stoping times τ̂m :=

inf{t; |X(t)| ∨ |X̄(t)| ≥ m}. Noting, for each t ≥ 0,

X(t ∧ τ̂m)− X̄(t ∧ τ̂m) =

∫ t∧τ̂m

0

[f(X(s), X(s− τ), s)− f(X̄(s), X̄(s− τ), s)]ds

+

∫ t∧τ̂m

0

[g(X(s), X(s− τ), s)− g(X̄(s), X̄(s− τ), s)]d < B > (s)

+

∫ t∧τ̂m

0

[h(X(s), X(s− τ), s)− h(X̄(s), X̄(s− τ), s)]dB(s).

By Assumption 3.1, the Cauchy-Schwartz inequality and the Burkholder-Davis-Gundy inequal-
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ity in Lemma 2.3, we can easily show that

Ê
[

sup
0≤s≤t∧τ̂m

| X(s)− X̄(s) |2
]
≤12K2

m(t+ C1t+ C2)Ê
∫ t∧τ̂m

0

|X(s)− X̄(s)|2ds

≤ 12K2
m(t+ C1t+ C2)

∫ t∧τ̂m

0

Ê
[

sup
0≤r≤s

| X(r)− X̄(r) |2
]
ds.

The Gronwall inequality then yields that, fixing m > 0 arbitrarily,

Ê
[

sup
0≤s≤t∧τ̂m

| X(s)− X̄(s) |2
]
= 0,∀t ∈ [0, T ],

which shows

Ê
[

sup
0≤s≤t

| X(s)− X̄(s) |2
]
= 0, ∀t ∈ [0, T ]

by letting m → ∞. This implies that X(t) = X̄(t) q.s. for t ∈ [0, T ]. Thus, the uniqueness has

been proved. Hence, the proof is complete. �
Next, although the existence and uniqueness of solutions to stochastic differential equations

driven by G-Brownian motion (G-SDE) has been presently proved under the non-Lipschitz

condition, but the coefficients of G-SDE is often bounded by a linear function, see, e.g., Lin [19].

However, if the coefficients ofG-SDDE (1) cannot be bounded by a linear function and are highly

nonlinear from the perspective of Hu et al. [15] and Fei et al. [11, 12], then the global solution

does not exist generally. By a similar discussion as in [24], we can prove the equation (1) has

a unique maximal solution under the following polynomial growth condition (9) instead of the

linear growth condition (4) of Assumption 3.1

|f(x, y, t)| ≤ K(1 + |x|q1 + |y|q1),

|g(x, y, t)| ≤ K(1 + |x|q2 + |y|q2),

|h(x, y, t)| ≤ K(1 + |x|q3 + |y|q3), (9)

for all x ∈ R, t ∈ [0, T ], and constants K > 0, qi ≥ 1, i = 1, 2, 3. The following theorem shows

that the maximal solution exists without the linear growth condition (related notion is referred

to Mao and Yuan [24, Definition 7.11]).

Theorem 3.4. Under Assumption 3.1 with (4) replaced by (9), the G-SDDE (1) with the initial

data (2) has a unique maximal solution X(·) ∈ M2
G(0, T ).

Proof. For every m ≥ 1, define, for x ∈ R,

x[m] =
{ x if |x| ≤ m,

mx
|x| if |x| > m.

Now define the truncation functions

fm(x, y, t) = f(x[m], y[m], t), gm(x, y, t) = g(x[m], y[m], t), hm(x, y, t) = hm(x[m], y[m], t).

Thus fm, gm, hm satisfy (3) in Assumption 3.1. By Theorem 3.3, there exists a unique solution
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Xm(·) ∈ M2
G(0, T ) to equation

dXm(t) =fm(Xm(t), Xm(t− τ), t)dt+ gm(Xm(t), Xm(t− τ), t)d < B > (t)

+ hm(Xm(t), Xm(t− τ), t)dB(t) (10)

on t ≥ 0 with nonrandom initial data

{Xm(t) = ξ(t);−τ ≤ t ≤ 0} = ξ ∈ C([−τ, 0];R).

Set the stopping time νm = T ∧ inf{t ∈ [0, T ]; ∥Xm,t∥ ≥ m}, where Xm,t = {Xm(t + u);−τ ≤
u ≤ 0}. Hence we see that

Xm(t) = Xm+1(t), t ∈ [−τ, νm], (11)

which shows that νm is increasing such that ν∞ = limm→∞ νm exists. Further, we define

{X(t);−τ ≤ t ≤ ν∞} by X(t) = ξ(t) on t ∈ [−τ, 0] and X(t) = Xm(t), t ∈ [νm−1, νm], m ≥ 1,

where ν0 = 0 and we set X(ν∞) = ∞ if ν∞ < T . From (11), we have X(t∧ νm) = Xm(t∧ νm).

Thus it follows from (10) that

X(t ∧ νm) =ξ(0) +

∫ t∧νm

0

f(X(s), X(s− τ, s))ds+

∫ t∧νm

0

g(X(s), X(s− τ), s)d < B > (s)

+

∫ t∧νm

0

h(X(s), X(s− τ), s)dB(s)

for any t ∈ [0, T ] and m ≥ 1. Also, it is easy to see that if ν∞ < T , then we have

lim sup
t→∞

|X(t)| = lim sup
m→∞

X(νm) = lim sup
m→∞

|Xm(νm)| = ∞.

Thus {X(t); 0 ≤ t ≤ ν∞} is a maximal local solution. By a standard discussion, we easily prove

the uniqueness of the solution. The proof thus is complete. �

§4 Second kind of stability for solutions

In this section, let T < ∞. We shall investigate the second kind of stability for strong

solutions to the G-SDDEs which is stability with respect to the equation coefficients f, g, h.

We will show that if approximations fn, gn, hn of the coefficients f, g, h converge to the exact

coefficients, then approximate solutions converge to the solution of the equation with exact

coefficients as well. Therefore, let X(·), Xn(·) denote strong solutions of the following highly

nonlinear G-SDDEs

dX(t) =f(X(t), X(t− τ), t)dt+ g(X(t), X(t− τ), t)d < B > (s)

+ h(X(t), X(t− τ), t)dB(t), t ∈ [0,∞), (12)

dXn(t) =fn(X
n(t), Xn(t− τ), t)dt+ gn(X

n(t), Xn(t− τ), t)d < B > (s)

+ hn(X
n(t), Xn(t− τ), t)dB(t), t ∈ [0,∞) (13)

with the same nonrandom initial data ξ = {ξ(t), t ∈ [−τ, 0]} ∈ C([−τ, 0];R).
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Theorem 4.1. Let f, g, h, fn, gn, hn : R×R× [0, T ] → R satisfy Assumption 3.1 with the local

Lipschitz condition (3) replaced by the global Lipschitz condition, where Km = K is independent

of m. Assume that for every x, y ∈ R it holds

φn(x, y, t) → φ(x, y, t), (14)

where φn = fn, gn, hn, respectively, and φ = f, g, h, respectively.

Then, for the solutions X,Xn : [−τ, T ]× Ω → R of the equations (12) and (13), we have

Ê
[

sup
t∈[0,T ]

|Xn(t)−X(t)|2
]
→ 0 as n → ∞. (15)

Proof. By assumptions of theorem, the solutions X to (12) and Xn to (13) exist and are

unique due to Theorem 3.3. Define τ̃m := inf{t; there exists some i ∈ N such that|Xi(t)| ≥ m}.
Obviously, τ̃m → ∞ as m → ∞. By the Cauchy-Schwartz inequality and Assumption 3.1, we

deduce

Ê sup
v∈[0,t∧τ̃m]

∣∣∣ ∫ v

0

(fn(X
n(s), Xn(s− τ), s)− f(X(s), X(s− τ), s))ds

∣∣∣2
≤ 2Ê sup

v∈[0,t∧τ̃m]

∣∣∣ ∫ v

0

(fn(X
n(s), Xn(s− τ), s)− fn(X(s), X(s− τ), s))ds

∣∣∣2
+ 2Ê sup

v∈[0,t∧τ̃m]

∣∣∣ ∫ v

0

(fn(X(s), X(s− τ), s)− f(X(s), X(s− τ), s))ds
∣∣∣2

≤ 4K2
mT Ê sup

v∈[0,t∧τ̃m]

∫ v

0

(|Xn(s)−X(s)|2 + |Xn(s− τ)−X(s)|2)ds

+ 2T Ê sup
v∈[0,t∧τ̃m]

∫ v

0

|fn(X(s), X(s− τ), s)− f(X(s), X(s− τ), s)|2ds

≤ 8K2
mT Ê sup

v∈[0,t∧τ̃m]

∫ v

0

|Xn(s)−X(s)|2ds

+ 2T Ê sup
v∈[0,t∧τ̃m]

∫ v

0

|fn(X(s), X(s− τ), s)− f(X(s), X(s− τ), s)|2ds. (16)
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By using Assumption 3.1, the Cauchy-Schwartz inequality and the Burkholder-Davis-Gundy

inequality on the stochastic integral of G-Brownian motion (see, Lemma 2.3), we have

Ê sup
v∈[0,t∧τ̃m]

∣∣∣ ∫ v

0

(gn(X
n(s), Xn(s− τ), s)− g(X(s), X(s− τ), s))d < B > (s)

∣∣∣2
≤ 2Ê sup

v∈[0,t∧τ̃m]

∣∣∣ ∫ v

0

(gn(X
n(s), Xn(s− τ), s)− gn(X(s), X(s− τ), s))d < B > (s)

∣∣∣2
+ 2Ê sup

v∈[0,t∧τ̃m]

∣∣∣ ∫ v

0

(gn(X(s), X(s− τ), s)− g(X(s), X(s− τ), s))d < B > (s)
∣∣∣2

≤ 4C1K
2T Ê sup

v∈[0,t∧τ̃m]

∫ v

0

(|Xn(s)−X(s)|2 + |Xn(s− τ)−X(s)|2)ds

+ 2C1T Ê sup
v∈[0,t∧τ̃m]

∫ v

0

|gn(X(s), X(s− τ), s)− g(X(s), X(s− τ), s)|2ds

≤ 8C1K
2T Ê sup

v∈[0,t∧τ̃m]

∫ v

0

|Xn(s)−X(s)|2ds

+ 2C1T Ê sup
v∈[0,t∧τ̃m]

∫ v

0

|gn(X(s), X(s− τ), s)− g(X(s), X(s− τ), s)|2ds (17)

and

Ê sup
v∈[0,t∧τ̃m]

∣∣∣ ∫ v

0

(hn(X
n(s), Xn(s− τ), s)− h(X(s), X(s− τ), s))dB(s)

∣∣∣2
≤ 2Ê sup

v∈[0,t∧τ̃m]

∣∣∣ ∫ v

0

(hn(X
n(s), Xn(s− τ), s)− hn(X(s), X(s− τ), s))dB(s)

∣∣∣2
+ 2Ê sup

v∈[0,t∧τ̃m]

∣∣∣ ∫ v

0

(hn(X(s), X(s− τ), s)− h(X(s), X(s− τ), s))dB(s)
∣∣∣2

≤ 4C2K
2Ê sup

v∈[0,t∧τ̃m]

∫ v

0

(|Xn(s)−X(s)|2 + |Xn(s− τ)−X(s)|2)ds

+ 2C2Ê sup
v∈[0,t∧τ̃m]

∫ v

0

|hn(X(s), X(s− τ), s)− h(X(s), X(s− τ), s)|2ds

≤ 8C2K
2Ê sup

v∈[0,t∧τ̃m]

∫ v

0

|Xn(s)−X(s)|2ds

+ 2C2Ê sup
v∈[0,t∧τ̃m]

∫ v

0

|hn(X(s), X(s− τ), s)− h(X(s), X(s− τ), s)|2ds. (18)
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Thus, from (16)-(18), we have, for t ∈ [0, T ],

Ê
[

sup
v∈[0,t∧τ̃m]

|Xn(v)−X(v)|2
]

≤ 3Ê sup
v∈[0,t∧τ̃m]

∣∣∣ ∫ v

0

(fn(X
n(s), Xn(s− τ), s)− f(X(s), X(s− τ), s))ds

∣∣∣2
+ 3Ê sup

v∈[0,t∧τ̃m]

∣∣∣ ∫ v

0

(gn(X
n(s), Xn(s− τ), s)− gn(X(s), X(s− τ), s))d < B > (s)

∣∣∣2
+ 3Ê sup

v∈[0,t∧τ̃m]

∣∣∣ ∫ v

0

(hn(X
n(s), Xn(s− τ), s)− hn(X(s), X(s− τ), s))dB(s)

∣∣∣2
≤ 24K2(T + C1T + C2)Ê sup

v∈[0,t∧τ̃m]

∫ v

0

|Xn(s)−X(s)|2ds

+ 6T Ê sup
v∈[0,t∧τ̃m]

∫ v

0

|fn(X(s), X(s− τ), s)− f(X(s), X(s− τ), s)|2ds

+ 6C1T Ê sup
v∈[0,t∧τ̃m]

∫ v

0

|gn(X(s), X(s− τ), s)− g(X(s), X(s− τ), s)|2ds

+ 6C2Ê sup
v∈[0,t∧τ̃m]

∫ v

0

|hn(X(s), X(s− τ), s)− h(X(s), X(s− τ), s)|2ds

=: Dn
1 +D2

∫ t

0

Ê
[

sup
r∈[0,s∧τ̃m]

|Xn(r)−X(r)|2
]
ds,

where

Dn
1 :=6T Ê sup

v∈[0,t∧τ̃m]

∫ v

0

|fn(X(s), X(s− τ), s)− f(X(s), X(s− τ), s)|2ds

+ 6C1T Ê sup
v∈[0,t∧τ̃m]

∫ v

0

|gn(X(s), X(s− τ), s)− g(X(s), X(s− τ), s)|2ds

+ 6C2Ê sup
v∈[0,t∧τ̃m]

∫ v

0

|hn(X(s), X(s− τ), s)− h(X(s), X(s− τ), s)|2ds,

D2 :=24K2(T + C1T + C2).

By the Gronwall inequality we obtain

Ê
[

sup
v∈[0,t∧τ̃m]

|Xn(v)−X(v)|2
]
≤ Dn

1 e
D2T .

Hence, from condition(14), we know that Dn
1 → 0 as n → ∞. Thus, we have (15) by letting

m → ∞. Therefore, the proof is complete. �

Now we discuss a stability of the solution with respect to initial data. This kind of stability

ensures that in the case of replacement of ξ by its approximate data η, the solution of equation

with initial data η does not differ much from the solution of equation with initial data ξ. We

will show that such the property holds for strong solutions of the G-SDDEs. We denote the
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strong solutions to the following G-SDDEs by X(·), Y (·)

dX(t) =f(X(t), X(t− τ), t)dt+ g(X(t), X(t− τ), t)d < B > (s)

+ h(X(t), X(t− τ), t)dB(t), t ∈ [0,∞), (19)

dY (t) =f(Y (t), Y (t− τ), t)dt+ g(Y (t), Y (t− τ), t)d < B > (s)

+ h(Y (t), Y (t− τ), t)dB(t), t ∈ [0,∞) (20)

with the nonrandom initial data ξ, η ∈ C([−τ, 0]), respectively.

Theorem 4.2. Let f, g, h : R×R× [0, T ] → R satisfy Assumption 3.1. Then, for the solutions

X,Y : [−τ, T ]× Ω → R of the equations (19) and (20) we have

Ê sup
s∈[0,t∧σm]

|X(s)− Y (s)|2 ≤ D(ξ, η,m)eD(m)t, ∀t ∈ [0, T ], (21)

where D(ξ, η,m) := (4 + 8τK2
m(t + C1t + C2))∥ξ − η∥2, D(m) := 16K2

m(t + C1t + C2), σm :=

inf{t; |X(t)| ∨ |Y (t)| ≥ m}. Moreover, if ξ = η, then X(t) = Y (t) q.s., ∀t ∈ [0, T ].

Proof. By Theorem 3.3, the solutions X to (19) and Y to (20) exist and are unique. For

t ≥ 0, by using Assumption 3.1, the Cauchy-Schwartz inequality and the Burkholder-Davis-

Gundy inequality on the stochastic integral of G-Brownian motion (see, Lemma 2.3), and from

(19)-(20), we have

Ê
[

sup
v∈[0,t∧σm]

|X(v)− Y (v)|2
]

≤ 4∥ξ − η∥2 + 4Ê sup
v∈[0,t∧σm]

∣∣∣ ∫ v

0

(f(X(s), X(s− τ), s)− f(Y (s), Y (s− τ), s))ds
∣∣∣2
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+ 4Ê sup
v∈[0,t∧σm]

∣∣∣ ∫ v

0

(g(X(s), X(s− τ), s)− g(X(s), X(s− τ), s))d < B > (s)
∣∣∣2

+ 4Ê sup
v∈[0,t∧σm]

∣∣∣ ∫ v

0

(h(X(s), X(s− τ), s)− h(X(s), X(s− τ), s))dB(s)
∣∣∣2

≤ 4∥ξ − η∥2 + 8K2
mtÊ sup

v∈[0,t∧σm]

∫ v

0

(|X(s)− Y (s)|2 + |X(s− τ)− Y (s− τ)|2)ds

+ 8K2
mtC1Ê sup

v∈[0,t∧σm]

∫ v

0

(|X(s)− Y (s)|2 + |X(s− τ)− Y (s− τ)|2)ds

+ 8K2
mC2Ê sup

v∈[0,t∧σm]

∫ v

0

(|X(s)− Y (s)|2 + |X(s− τ)− Y (s− τ)|2)ds

≤ 4∥ξ − η∥2 + 8K2
m(t+ tC1 + C2)

∫ 0

−τ

|ξ(s)− η(s)|2ds

+ 16K2
m(t+ C1t+ C2)

∫ t

0

Ê
[

sup
v∈[0,s∧σm]

|X(v)− Y (v)|2
]
ds

≤ D(ξ, η,m) +D(m)

∫ t

0

Ê
[

sup
v∈[0,s∧σm]

|X(v)− Y (v)|2
]
ds.

Again by the Gronwall inequality, we obtain (21). Especially, if ξ = η, thenX(t) = Y (t) q.s., ∀t ∈
[0,∞). Thus the proof is complete. �

§5 Stability and boundedness of solutions

In this section, let T = ∞. We shall discuss the existence and uniqueness, the stability and

boundedness of solutions to highly nonlinear G-SDDEs.

In condition (9), we have either q1 > 1, q2 > 1 or q3 > 1. It is known that the Lipschitz

condition in Assumption 3.1 only guarantees that the G-SDDE (1) with the initial data (2)

has a unique maximal solution, which may explode to infinity at a finite time. To avoid such

a possible explosion, we need to impose an additional condition by Lyapunov functions. To

this end, we need more notations. We denote C2,1(R×R+;R+) as the family of non-negative

functions U(x, t) defined on (x, t) ∈ R × R+ which are continuously twice differentiable in x

and once in t. We can now state another assumption.

Assumption 5.1. Let H(·) ∈ C(R × R+;R+). Assume that there exists a function U ∈
C2,1(R× S×R+;R+), q ≥ 2(q1 ∨ q2 ∨ q3), and nonnegative constants c0, c1, c2 such that

c2 < c1, xq ≤ U(x, t) ≤ H(x, t) (22)

and

LU(x, t) :=Ut(x, t) + Ux(x, t)f(x, y, t) +G(2g(x, y, t)Ux(x, t) + h2(x, y, t)Uxx(x, y, t))

≤c0 − c1H(x, t) + c2H(y, t− τ) (23)
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for all x ∈ R, t ∈ R+.

Theorem 5.2. Under Assumption 3.1 with (4) replaced by (9), and Assumption 5.1, the G-

SDDE (1) with the initial data (2) has the following assertions:

(i) For the G-SDDE (1) with the initial data (2), there exists a unique global solution on

[−τ,∞).

(ii) The solution X(t) obeys

lim sup
t→∞

Ê|X(t)|q ≤ c0
ε
, (24)

sup
−τ≤t<∞

Ê|X(t)|q < H(ξ(0), 0) + c2e
ετ

∫ 0

−τ

eεsH(ξ(s), s)ds+
c0
ε

< ∞ (25)

and

lim sup
t→∞

1

t
E
[ ∫ t

0

H(X(s), s)ds
]
≤ c0

c1 − c2
, (26)

where ε > 0 is the unique root to the equation

c1 = ε+ c2e
ετ . (27)

(iii) If, in addition, c0 = 0, then the solution has the moment properties that

lim sup
t→∞

1

t
log(Ê|X(t)|q) ≤ −ε (28)

and

E
[ ∫ ∞

0

H(X(t), t)dt
]
≤ 1

c1 − c2

(
H(ξ(0), 0) +

∫ 0

−τ

H(ξ(s), s)ds
)
; (29)

while it also has the sample (pathwise) property that∫ ∞

0

H(X(t), t)dt < ∞ V-a.s. (30)

Proof. We prove our claims by three steps.

Step 1. Global solution. From Theorem 3.4, we have verified that for the G-SDDE (1)

with the coefficients being locally Lipschitz continuous and any given initial data (2), there

is a unique maximal local solution X(t) for ∀t ∈ [−τ, σ∞), where σ∞ is the explosion time.

Let m0 > 0 be sufficiently large for m0 ≥ ∥ξ∥. For each integer m ≥ m0, define the stopping

time τ̌m = inf{t ∈ [0, σ∞) : |X(t)| ≥ m}, where, throughout this paper, inf ∅ = ∞. Clearly,

τ̌m is increasing as m → ∞. Set τ̌∞ = lim
m→∞

τ̌m, whence τ̌∞ ≤ σ∞ q.s. If we can show that

τ̌∞ = ∞ q.s., then σ∞ = ∞ q.s., i.e. the global solution exists. Next, we will show that

τ̌∞ = ∞ q.s. By the Itô formula (see, e.g., [25]) and condition (23), we can show that, for any

m ≥ m0 and t ≥ 0,

ÊŪ(X(τ̌m ∧ t), τ̌m ∧ t)− Ū(X(0), 0)

≤ Ê
∫ τ̌m∧t

0

(
c0 − c1H(X(s), s) + c2H(X(s− τ), s− τ)

)
ds.
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However, we deduce∫ τ̌m∧t

0

eεsH(X(s− τ), s− τ)ds

≤ eετ
∫ 0

−τ

eεsH(ξ(s), s)ds+ eετ
∫ τ̌m∧t

0

eεsH(X(s), s)ds. (31)

Thus, from (31) with ε = 0, we know

Ê|X(τ̌m ∧ t), t)|q ≤ K1 + c0t+ (c1 − c2)Ê
[
−
∫ τ̌m∧t

0

H(X(s), s)ds
]
, (32)

where K1 = H(ξ(0), 0) +
∫ 0

−τ
H(ξ(s), s)ds. Noting that

c1 > c2, Ê
[
−
∫ τ̌m∧t

0

H(X(s), s)ds
]
≤ 0,

we get, from (32),

Ê|X(τ̌m ∧ t), τ̌m ∧ t)|q ≤ K1 + c0t.

Then we have mqP (τ̌m ≤ t) ≤ K1 + c0t for each P ∈ P. Therefore, letting m → ∞ in the

inequality above, we have P (τ̌∞ ≤ t) = 0, which shows P (τ̌∞ > t) = 1. Due to arbitrariness of

t ≥ 0, we must have V(τ̌∞ = ∞) = minP∈P P (τ̌∞ = ∞) = 1 as required. That is, τ̌∞ = ∞ q.s.

as required.

Step 2. Asymptotic boundedness. By the Itô formula (see, e.g., [25]) and Assumption 5.1,

we obtain that for t ≥ 0,

Ê
[
eε(τ̌m∧t)U(X(τ̌m ∧ t), τ̌m ∧ t)

]
− U(X(0), 0)

= Ê
[ ∫ τ̌m∧t

0

eεs[Ut(X(s), s) + εU(X(s), s) + Ux(X(s), s)f(X(s), X(s− τ), s)]ds

+ eεs[Ux(X(s), s)g(X(s), X(s− τ), s)

+
1

2
Uxx(X(s), s)h2(X(s), X(s− τ), s)]d < B > (s)

]
≤ Ê

[ ∫ τ̌m∧t

0

eεs[εU(X(s), s) + LU(X(s), X(s− τ), s)]ds
]

(33)

≤ Ê
[ ∫ τ̌m∧t

0

eεs
(
c0 − (c1 − ε)H(X(s), s) + c2H(X(s− τ), s− τ)

)
ds
]

≤ c0
ε
eεt + Ê

[
− (c1 − ε)

∫ τ̌m∧t

0

eεsH(X(s), s)ds

+ c2

∫ τ̌m∧t

0

eεsH(X(s− τ), s− τ)ds
]
. (34)

Thus, we get from (31), (22) and (27) that

Ê
[
eε(τ̌m∧t)|X(τ̌m ∧ t)|q

]
≤ Ê

[
eε(τ̌m∧t)U(X(τ̌m ∧ t), τ̌m ∧ t)

]
≤ K̃ +

c0
ε
eεt,

where K̃ = H(ξ(0), 0) + c2e
ετ

∫ 0

−τ
eεsH(ξ(s), s)ds. Letting m → ∞ we get that

Ê
[
eεt|X(t)|q

]
≤ K̃ +

c0
ε
eεt. (35)
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Dividing both sides in (35) by eεt, we easily obtain the desired assertions (24) and (25).

In order to show (26), from (32) we know that

− (c1 − c2)Ê
[
−
∫ τ̌m∧t

0

H(X(s), s)ds
]
≤ K1 + c0t.

Thus, letting m → ∞, we get

− (c1 − c2)Ê
[
−
∫ t

0

H(X(s), s)ds
]
≤ K1 + c0t. (36)

Dividing both sides in (36) by t and letting t → ∞ we get the assertion (26).

Step 3. Asymptotic stability. Now we consider the case when c0 = 0. It then follows from

(35) that

Ê|X(t)|q ≤ K̃e−εt,

which verifies the required assertion (28). Moreover, from (36), we get

(c1 − c2)E
[ ∫ t

0

H(X(s), s)ds
]
≤ K1.

Thus we easily shows (29), which implies (30) by the notion of sublinear lower expectation E .
Hence we complete the proof. �

§6 Conclusion

In real systems, we are often faced with two kinds of uncertainties: probability and Knightian

ones. By using Peng’s sublinear expectation framework, we can characterize the systems with

ambiguity. This paper gives a description of the uncertain delay system through G-Brownian

motion. We first prove the existence and uniqueness of the solution to G-SDDEs under sublinear

expectation with the local Lipschitz and linear growth conditions. Then the second kind of

stability and dependence of the solution to G-SDDEs are studied. Finally, we try to give the

characterization of stability and boundedness of the solutions to the highly nonlinear G-SDDEs.

In this paper, our main contributions are presented as follows: (i) we prove the existence and

uniqueness of the solution to G-SDDEs by mathematical technique; (ii) the second kind of

stability of the solution to G-SDDEs is also investigated under the linear growth condition; (iii)

the stability and boundedness of the solution to the highly nonlinear G-SDDEs are discussed.

Our study provides a new perspective which has a close link with the highly nonlinear stochastic

delay differential equations under sublinear expectations. In addition, our results on G-SDDEs

reduce to the ones of G-SDEs as the time lag is zero. Finally, we note that the guaranteed

cost control for nonlinear stochastic systems under the classical probability is studied by Ma et

al. [22] and Shen et al. [28]. We can extend the analysis of stability, the state-estimation and

the stochastic control problem for uncertain nonlinear systems under a classical probability to

those under the sublinear expectation framework.
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