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The geometrical properties of parity and time reversal

operators in two dimensional spaces

HUANG Min-yi ! YANG Yu 2 WU Jun-de ! CHO Min-Hyung 3*

Abstract. The parity operator P and time reversal operator 7T are two important operators in
the quantum theory, in particular, in the P7T-symmetric quantum theory. By using the concrete
forms of P and T, we discuss their geometrical properties in two dimensional spaces. It is showed
that if 7 is given, then all P links with the quadric surfaces; if P is given, then all 7 links with
the quadric curves. Moreover, we give out the generalized unbroken P7T-symmetric condition of

an operator. The unbroken P7-symmetry of a Hermitian operator is also showed in this way.

81 Introduction

Quantum theory is one of the most important theories in physics. It is a fundamental ax-
iom in quantum mechanics that the Hamiltonians should be Hermitian, which implies that the
values of energy are real numbers. However, non-Hermitian Hamiltonians are also studied in
physics. One of the attempts is Bender’s P7-symmetric theory [1]. In this theory, Bender and
his colleagues attributed the reality of the energies to the P7T-symmetric property, where P is
a parity operator and 7 is a time reversal operator. Since then, many physicists discussed the
properties of PT-symmetric quantum systems [2]. It also has theoretical applications in quan-
tum optics, quantum statistics and quantum field theory [4,5,9,10]. Recently, Bender, Brody
and Muller constructed a Hamiltonian operator H with the property that if its eigenfunctions
obey a suitable boundary condition, then the associated eigenvalues correspond to the nontriv-
ial zeros of the Riemann zeta function, where H is not Hermitian in the conventional sense,
while ¢H has a broken PT-symmetry. This result may shed light on the new application of P7T-
symmetric theory in discussing the Riemann hypothesis [3]. It was discovered by Mostafazadeh
that the PT-symmetric case can be generalized to a more general pseudo-Hermitian quantum
theory, and the generalized PT- symmetry was also discussed [6,8]. Smith studied the time
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reversal operator T satisfying that 72 = —I and the corresponding P7-symmetric quantum
theory [10].

In this paper, by using the concrete forms of P and T in two dimensional spaces, we discuss
their geometry properties. It is showed that if T is given, then all P links with the quadric
surfaces; if P is given, then all 7 links with the quadric curves. Moreover, we give out the
generalized unbroken P7-symmetric condition of an operator H. The unbroken P7-symmetry

of a Hermitian operator is also showed in this way.

82 Preliminaries

In this paper, we only consider finite dimensional complex Hilbert space C™, whose elements
will be denoted by bold fonts. Let L(C™) be the complex vector space of all linear operators
on C", I be the identity operator on C™, Z be the complex conjugation of complex number z.

An operator T on C? is said to be anti-linear if 7 (suj +tus) = 37 (u1)+£7 (ug). It is obvious
that the composition of two anti-linear operators is a linear operator and the composition of
an anti-linear operator and a linear operator is still anti-linear. Similar to linear operators,
anti-linear operators can also correspond to a matrix with slightly different laws of operation
[11].

A time reversal operator 7 is an anti-linear operator which satisfies 72 =T or 72 = —I. A
parity operator P is a linear operator which satisfies P? = I [6,8,10,12].

The Pauli operators will be used frequently in our discussions. Given the basis {e;}?_; of

C2, they are usually defined as follows [7]:

o1(z1e1 + x2e2) = 1201 + T1€2, (1)
02(x1e1 + xgeg) = —ix2€] + ix1€9, (2)
0'3(%161 + xgeg) = x1€e1 — T2€s. (3)

To put it another way, the representation matrices of 01,09 and o3 are:
(0 1) (0 —i) <1 0 )
1 o/’\i 0)’\0 -1/
Pauli operators have the following useful properties [7]:
0i0j = —0;0; = 1€;jK0%, 1 F# J, (4)
of =1, (5)
where 4, j, k € {1, 2,3}, € is the Levi-Civita symbol:
€123 = €231 = €312 = 1,
€ijk = § €132 = €213 = €321 = —1,

0, otherwise.

The well known commutation and anti-commutation relations are:
005 — 00 = QZ'GZ‘]‘]CO']C,

0i0; + 00 = 25ijl,
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where 4, 7,k € {1,2,3} and d;; is the Kronecker symbol.

Denote I by og, then {og,01,02,03} is a basis of L((CQ). Moreover, an operator ¢ =
tog + zo1 + yoa + zog € L(C?) is Hermitian if and only if the coefficients {t,z,y, 2} are real
numbers.

Given the basis {e;}?; of C? and any vector x = Y x;e;, one can define an important
anti-linear operator, namely the conjugation operator Ty, by 7To(x) = >  Tie;.

Similar to Tp, one can define another important anti-linear operator 7y by

To(x1€1 + T0€2) = —T3€1 + T1€9. (6)
Furthermore, define 7y = 1901, 79 = 1902, T3 = Too3, that is, 7; is defined to be the composition
of 79 and ;. The anti-linear operators {7, 71,72, 73} forms a basis of the anti-linear operator

space of C2. This basis has the following properties [11]:

702 =1,
ToO; = —0;T0 = Ti,
TiTo = —T0T; = 04,

TiTj = 0,05 = i€ijkok (i # j),
TiTj — TjTi = 24€j10%k,
where i,j € {1,2,3}.
All the equations above can be verified by the using the definitions of Pauli operators and

70. However, for further use, we show that 7go; = —o;79 = 7; in detail. Consider 75 = T902.
By (2) and (6), we have

Too2(T1€1 + T2€2) = iT1€1 + iT2€2,

0’27‘0(.13161 + .13282) = —iT1e] — iTg€eq.
Thus, 1900 = —0979 = T2. Along similar lines, one can verify that 7go; = —o;79 = 75 is also
valid for o1 and o3.
Moreover, it follows from 790, = —0y79 = 7 that 0;7; = 0j700; = —7000;. Combining with

(4) and (5), one can further obtain the following relations:
0T = Ti0; = —i€ijkTh, & 7 J, (7)
Ti0i = —0i{Ti = 70, (8)
where i, 7,k € {1,2,3}.
With the help of {c;} and {7;}, ones can determine the concrete forms of P and T

Lemma 2.1. Let P be a parity operator and T be a time reversal operator on C2. Then
3 3
(i). Fither P = £I or P = Zaiai, where a; satisfying Za? = 1. The latter case is

i=1 i=1
referred to as the nontrivial P. A nontrivial P has the following matriz representation:

p— ( CL3. CL1—ZCL2>. (9
aj + a9 —as

~—
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3 3
(ii). T = EZ ¢;Ti, where ¢; are real numbers, if T2 = I, then Z cd—cd=1;ifT?=-1I,
i=0 i=1
3

then Zcf — 3 = —1, € is a unimodular complex number [11].
i=1
3

Proof. (i). Suppose P = Zaiai. According to the properties of Pauli operators, we have

=0
3 3

I="P2= (Z a) + 2a0(z a;o;). Note that {og,01,02,03} is a basis of L(C?), we conclude

=0 =1
3

that Za? =1 and aga; = agaz = agaz = 0. If ag # 0, then a1 = a2 = az = 0, which implies

=0
3

that P = £1. If ap = 0, then the only constraint is Za? = 1 and the matrix takes the form
i=1
in (9).

(ii). The proof can be found in [11]. O

Example 1. In (9), if we take az = 0, a1, ag are real numbers satisfying that a? + a3 = 1, and
cosa  sina

denote a; by sin«, az by cosca, then P has the matrix representation . =
sina — cos o

cosa —sina 1 0
) . Thus P is composed of a reflection and a rotation.
sina  cosa 0 —1

10
Example 2. In (9), if a1 = a2 =0, ag = 1, then P = ( 0 _1 ) If ap = a3 =0, a; = 1, then

01
P= ( Lo ) . These two parity operators were widely used in [2].

83 The existence of P commuting with 7

In physics, it is demanded that P and 7 are commutative, that is, PT = TP. In finite
dimensional spaces case, by using the canonical forms of matrices, one can show that if 72 = I,

then such P always exists. In two dimensional case, we can prove it by utilizing Pauli operators.

Theorem 3.1. For each time reversal operator T, if T2 = I, then there exists a nontrivial
parity operator P such that PT = TP. If T?> = —I, then there is no P commuting with T
except P = £1.

Proof. We will use the following well known equation frequently,
(c-A)(c-B)=(A-B)I +io- (A x B), (10)
where the bold letters A and B denote vectors in C? and o = (01, 02,03). The symbols - and

x represent the dot and cross product of vectors, respectively.
(i). When 72 =1.
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3 3
Let T =¢ E c¢;m; and P = E a;o;, as was given in Lemma 2.1.
=0 =1

According to (7) and (8), TP =PT is equivalent to
3 3 3 3
(—000'0 + ZCjO’j)(Z a_iai)ro = (Z CLz'O'i)(Coa'o — ZCjO'j)To.
Jj=1 =1 =1 j=1

Denote fl = Re(ai), bl = Im(ai), f = (fl,fg,fg), b = (bl,bg,bg) and ¢ = (61,62,63).
Utilizing (10) to expand the equation above, we have

(f-c)og—o-[bxc+cof] =0. (11)

It follows that 7P = PT is equivalent to
cof+bxec=0, (12)
f-c=0. (13)

Similarly, by utilizing (10) and Lemma 2.1, the contraints P2 = I and 72 = I can be reduced
to the equations as follows,

f-b=0, (14)
I1£]* = [[bl|* =1, (15)
lel|* = e = 1. (16)

Thus, the problem of finding a parity operator P commuting with 7 reduces to finding the
vectors f and b satisfying (12) — (15).

If ¢¢ = 0, then we can choose b = 0 and a unit vector f orthogonal to c. Thus all the
conditions (12) — (15) are satisfied.

If ¢g # 0. Let b be a vector such that b is orthogonal to ¢ and ||b|| = |¢g|. Moreover, take
f= %(c x b). Direct calculations show that such vectors f and b satisfy (12) — (15), which
completes the proof of the existence of P.

(ii). When 72 = —1.
The equation (16) is replaced by the following:

lefl* = cf = —1. (17)
Thus ¢g # 0. On the other hand, it follows from (12) that
1
f=—(cxh). (18)
co

Substituting (17) and (18) into (15), we have ||f|> — |[b]> = 1 < —=%|/b||?>, which is a
-0
contradiction. Thus, when 72 = —1I, there is no P commuting with 7~ except P = +1I.

O

Remark 3.1. When the space is C*, although T? = —I, one can find nontrivial P commuting
with T [10].
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84 The geometrical properties of P and T

Theorem 4.1. Let T be a time reversal operator satisfying T2 = I. The set of parity operators
P commuting with T correspond uniquely to a hyperboloid in R3.

Proof. As was mentioned above, the determination of P is equivalent to finding out f and
b satisfying (12) — (15). Now consider m = f+ b. We shall prove that all the m form a
hyperboloid.

To this end, construct a new coordinate system by taking the direction of c as that of the
X' axis. The Y’ — Z' plane is perpendicular to ¢ and contains the origin point of R3. Assume
that m = (2, 4/, 2’) in the new X'Y’Z’ coordinate system.

(). If cg = 0, then it follows from (12) — (14) that b is proportional to ¢ and that f is
orthogonal to both ¢ and b. Thus, in the new X'Y’Z’ coordinate system,

b = (2,0,0),
£=(0,v,2").
On the other hand, equation (15), namely ||f||?> — ||b||? = 1, implies that
y? 427 2% =1 (19)

It is apparent that one pair of f and b correspond to one point m = (z,y’, 2’), and vice
versa. In addition, (19) represents a hyperboloid in R3.

(ii). If co # 0, then it follows from (16) that ¢ = (1/1 + ¢2,0,0) in the X'Y'Z’ coordinate
system. In addition, suppose b = (g, Y0, 20) in the X'Y’Z’ coordinate system. By (18), we
have f = L(c x b) = @(0, —20,Y0). Substituting b and f into (15), we have

co

1
SR+ R) =1 (20)

0

’ ’ ’ ’ / 2
Note that xzg = 2/,y0 = *fﬁg , 20 = 133 , where \ = % Thus, one pair of f and b
correspond to one point m = (a/,y’, 2’), and vice versa. Moreover, it follows from (20) that
12 12 12

— =1. 21
R+ e (1)

That is, all the m form a hyperboloid.
([l

Theorem 4.2. Let P be a nontrivial parity operator and let us consider the time reversal
3

operators of the form T = Zcm’i commuting with P. All the points ¢ = (c1,c¢a,c3) form an
i=0

ellipse. The length of the semi-major azis is ||fl| and the length of the semi-minor axis is 1.
Proof. By (13) and (14), we know that both b and c are orthogonal to f.
Construct a new X'Y’Z’ coordinate system by taking the direction of f as that of the Z’

axis and the direction of b as that of the X’ axis ( If b = 0, take any vector orthogonal to f as
the direction vector of the X’ axis ). Then we have b = (x,0,0), f = (0,0, 2) and ¢ = (¢, ¢, %)
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in the X'Y’Z’ coordinate system. Now the conditions (12) — (16) will reduce to

xcy =0, (22)
xch +coz =0, (23)
2y =0, (24)
22 —x? =1, (25)
3
D () = () = 1. (26)
i=1
Note that (25) ensures that z # 0. Thus, (22) and (24) imply that ¢5 = 0, ¢ = (¢}, c5,0). In
addition, it follows from (23) that co = —Zc5. Substituting c3 = 0, ¢co = —Zc5 and (25) into
(26), we have
/N2 (6/2)2
(Cl) + 2)2 =L (27)
This is an equation of ellipse. Moreover, since |z| = ||f|| > 1, the length of the semi-major

axis is ||f]| and the length of the semi-minor axis is 1.
(|

In the following theorem, we only consider the 7 with real coefficients.

Theorem 4.3. Let T1, T3 be two time reversal operators, Ty # +7Ts. If there exist two nontrivial
parity operators P1 and Py such that P; commutes with T1 and T2 simultaneously, then Py =
+Ps.

3 3
Proof. Let Ty = chl)ﬂ, Tz = Zcz(?)n. Denote ¢V = (c{", ef, V) and ¢@ = (P, &2, ).
=0 =0
(i). If ¢V # 0 and ¢ = 0.
Suppose that P commute with 7; simultaneously. By (12), we have ¢® x b = 0. Tt
follows that b = mc(®. On the other hand, (12) implies that f = —L5(c x b). Thus,
€o

f= 2 (c) x c?). Substituting f and b into (15), then we have
€o

m?(| e x e 2 [e?]?) = 1.
o

The equation has at most two real roots, which are opposite to each other. Thus, there exist
at most two parity operators P and —P commuting with 7; simultaneously.

(ii). If c(()l) = 082) =0 and ¢V = tc(?, where t is a real number.

It follows from (16) that 71 = £75, which contradicts with the assumption of the theorem.

(iii). If c(()l) #0, c(()z) #0 and ¢ = tc?.

By (12), we have f = c%l)(c(l) xb) = cé%)(c@) xb) = (¢ xb). It follows that ") = tc{?.

0 Cg)
Thus, we have cgl) = tcl@), (i =0,1,2,3). On the other hand, (16) implies that t> = 1. Hence
T1 = £75, which is a contradiction.
(iv). If c(()l) = c((f) =0 and ¢V # tc®.
By (12), we have ¢ x b = ¢(® x b = 0. However, since ¢V # tc(?),| we have b = 0. Thus

(15) implies that ||f]| = 1. Moreover, (13) implies that f is orthogonal to both ¢(!) and ¢). So
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f can only have two directions, which are opposite to each other. Thus, there exist at most two
parity operators P and —P commuting with 7; simultaneously.
(v). If c(()l) #0, 082) # 0 and ¢V # tc(?),
Let P; and P, be two parity operators, which are determined by (9, b)) and (£2),b(®)
respectively. Moreover, suppose that both P; and P, commute with 7; simultaneously.
By (12), we have f!) = -5 (e x b)) and £V = -5 (e x bM). Tt follows that
el el
1 1
@c(l) _ ?c@) = ;bW
where ¢; is a nonzero real number.
Similarly, we have £% = L= (c() x b®) and f% = L-(c® x b?). Tt follows that
c§ c§
1 1
@C(l) _ ?C@) = tob?,
So t1b™M = £,b® | which implies that b = kb®. Now [[f1|2 — [bM)|12 = k2(||f? |2 —
[b®]]2) = 1, hence k = +1. Thus it is apparent that P; = +7Ps.
Note that (i) — (v) contain all the situations, which completes the proof. O

If we denote com(T) = {P|PT = TP, P? = I}, then the following corollary can be obtained.

3 3

Corollary 4.4. If T; = chl)n, T = ch@)n are two time reversal operators, 7;2 =1,
i=0 i=0

j=1,2. Then com(T1) = com(T2) if and only if for each i, cgl) = 6652), where € is a unimodular

coefficient.

85 PT-symmetric operators and unbroken P7T-symmetric condition

A linear operator H is said to be PT-symmetric if HPT = PT H. As is known, in standard
quantum mechanics, the Hamiltonians are assumed to be Hermitian such that all the eigenvalues
are real and the evolution is unitary. In the P7-symmetric quantum theory, Bender replaced
the Hermiticity of the Hamiltonians with P7T-symmetry. However, the P7T-symmetry of a
linear operator does not imply that its eigenvalues must be real. Thus, Bender introduced the
unbroken P7-symmetric condition. The Hamiltonian H is said to be unbroken P7-symmetric
if there exists a collection of eigenvectors ¥; of H such that they span the whole space and
PTU; = ¥,;. It was shown that for a PT-symmetric Hamiltonian H, its eigenvalues are all real
if and only if H is unbroken P7T-symmetric [2]. In two dimensional space case, this condition has

01
a much simpler description and an important illustrative example. That is, if P = ( 10 ),

re s
s re

T="Ty, H= , then H is unbroken P7T-symmetric iff s2 > 2 sin? @ [2].

In the following part, we shall give the unbroken P7-symmetry condition for general PT-

symmetric operators. To this end, we need the following proposition.
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3
For a Hamiltonian H = Z h;o; which is written in terms of Pauli operators, we denote

=0

fH = (Re(h1)7 Re(hg), Re(hg)) and bH = (Im(h1)7 Im(h2)7 Im(hg))
Proposition 5.1. If H is a PT -symmetric operator, then it has four real parameters. More-
3

over, if H = Z h;o;, then we have
i=0
Im(ho) =0, (28)

S - b =0. (29)
Proof. Tt is apparent that P7 is also a time reversal operator. Thus we can assume that
3

PT = Z c;7j. Now the condition PTH = HPT is equivalent to
=0

3 3 3 3
O eimoo)) O hioi) = (O hioi) (Y ¢jmo0;).
j=0 i=0 i=0 §=0

According to (10), this equation can be reduced to

Co(h_o — ho) + zg:ci(ho — h_o)O'l + icl(hl + h_z) +i0 - [C X (H — h)] — XB:CO(hi + h_z)O'z =0,
i=1 i=1 i=1
where h = (hy, ho, h3) and h = (hy, ha, h3).
The equation above is equivalent to
Im(ho) =0, (30)
C- fH = 0, (31)
Cc X bH — CofH =0. (32)

(i). When ¢q # 0. It follows (32) that fg = %(c X bgr). Thus, the four parameters Im(hq),
Im(hg), Im(hs) and Re(hg) determine H.

Note that (28) is the same as (30). On the other hand, fy = %(c X by) implies that
fy - by = 0. Thus, (29) is also valid.

(ii). When ¢y = 0. (32) implies that by = tc. Thus, we only need one real parameter ¢
to determine by. (31) implies that fz should be orthogonal to ¢. Hence two parameters are
needed. With Re(hg), we have four parameters altogether.

In this case, (29) follows from the fact by = tc and the equation (31).

O
Theorem 5.2. If H is a PT -symmetric operator and Zu ZIQ is the representation ma-
21 N22
triz of H, then H is unbroken if and only if (Re(h11 + ha2))? — 4Re(h11has — highay) > 0.

hi1 hi2

Proof. Let
ha1 haa

) be the matrix of H, A be an eigenvalue of H, then

A2 — (h11 + hao) X + hi1has — highay = 0. (33)
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On the other hand, rewrite H = hoog + h1o1 + hoog + hsos. It follows from (28) and (29)
that

Im(hn + hzg) = 2Im(h0) =0,
Im(h11h22 — hlghgl) = —fH -bH = 0

The two equations above imply that

—Im(h11 + ho2) X + Im(hirhes — higha1) = 0. (34)
Substitute (34) into (33). Now the equation (33) reduces to
A? — Re(hi1 + haz)A + Re(hi1has — hi2hat) =0, (35)
According to (35), A is a real number, that is, H is unbroken P7T-symmetric, if and only if
(Re(h11 + ha2))? — 4Re(hi1has — hiohat) > 0. (36)
|

Remark 5.1. Note that when the equality is valid in (36), H may be non-diagonalisable in
general. In this case, the space C? is actually spanned an eigenvector vy satisfying (H —
XoD)Y1 = 0 and a generalized eigenvector g satisfying (H—XoI)?*1ba = 0, where g = %Re(hu—i—

hag) is the eigenvalue.

Remark 5.2. Note that Bender’s unbroken PT -symmetric condition in [2] is a special case of
i0
(36). To see this, let H = ( e i'e ) , we have

S re
Re(h11) = Re(hg2) = rcosb,
Re(hi1hag — hizha) = r* — s2.
Then (36) holds iff s> > r?sin® 6.

Remark 5.3. If H is a Hermitian operator, then it is also unbroken PT -symmetric. Usu-
ally, this can be shown by using canonical forms. However, in C2, it also follows from direct

calculation.

3
In fact, since H = Z hio; is Hermitian, each h; is a real number. Now we only need to find
i=0
' 3
real coefficients ¢, 1, c2 and c3 such that Z ¢? —c2 = 1 and equations (30) — (32) hold. Take
i=1
' 3 3
_ _ 2 _ _ :
co = 0 and ¢y, ¢, c3 are such real numbers that c-fi = 0 and Z c; =1. Let PT = Zcin. Itis
i=1 i=0
apparent that (P7)? = I and H is PT-symmetric. Moreover, if we rewrite the Hermitian matrix

b
as H = % , then [Re(h11 + hgg)]Q — 4R€(h11h22 — hlghgl) =4a? — 4(&2 — |b|2) = 4|b|2 >0
a

holds, so H is also unbroken.
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