The geometrical properties of parity and time reversal operators in two dimensional spaces

HUANG Min-yi $^1\,$ YANG Yu $^2\,$ WU Jun-de $^1\,$ CHO Min-Hyung 3*

Abstract. The parity operator \mathcal{P} and time reversal operator \mathcal{T} are two important operators in the quantum theory, in particular, in the \mathcal{PT} -symmetric quantum theory. By using the concrete forms of \mathcal{P} and \mathcal{T} , we discuss their geometrical properties in two dimensional spaces. It is showed that if \mathcal{T} is given, then all \mathcal{P} links with the quadric surfaces; if \mathcal{P} is given, then all \mathcal{T} links with the quadric curves. Moreover, we give out the generalized unbroken \mathcal{PT} -symmetric condition of an operator. The unbroken \mathcal{PT} -symmetry of a Hermitian operator is also showed in this way.

§1 Introduction

Quantum theory is one of the most important theories in physics. It is a fundamental axiom in quantum mechanics that the Hamiltonians should be Hermitian, which implies that the values of energy are real numbers. However, non-Hermitian Hamiltonians are also studied in physics. One of the attempts is Bender's \mathcal{PT} -symmetric theory [1]. In this theory, Bender and his colleagues attributed the reality of the energies to the \mathcal{PT} -symmetric property, where \mathcal{P} is a parity operator and \mathcal{T} is a time reversal operator. Since then, many physicists discussed the properties of \mathcal{PT} -symmetric quantum systems [2]. It also has theoretical applications in quantum optics, quantum statistics and quantum field theory [4,5,9,10]. Recently, Bender, Brody and Muller constructed a Hamiltonian operator H with the property that if its eigenfunctions obey a suitable boundary condition, then the associated eigenvalues correspond to the nontrivial zeros of the Riemann zeta function, where H is not Hermitian in the conventional sense, while iH has a broken \mathcal{PT} -symmetry. This result may shed light on the new application of \mathcal{PT} -symmetric theory in discussing the Riemann hypothesis [3]. It was discovered by Mostafazadeh that the \mathcal{PT} -symmetric case can be generalized to a more general pseudo-Hermitian quantum theory, and the generalized \mathcal{PT} - symmetry was also discussed [6,8]. Smith studied the time

Received: 2017-08-13. Revised:2018-06-29.

MR Subject Classification: 47B37.

Keywords: \mathcal{PT} -symmetry, geometrical property, unbroken condition.

Digital Object Identifier(DOI):https://doi.org/ 10.1007/s11766-017-3568-6.

Supported by Research Fund, Kumoh National Institute of Technology.

 * Corresponding author.

reversal operator \mathcal{T} satisfying that $\mathcal{T}^2 = -I$ and the corresponding $\mathcal{P}\mathcal{T}$ -symmetric quantum theory [10].

In this paper, by using the concrete forms of \mathcal{P} and \mathcal{T} in two dimensional spaces, we discuss their geometry properties. It is showed that if \mathcal{T} is given, then all \mathcal{P} links with the quadric surfaces; if \mathcal{P} is given, then all \mathcal{T} links with the quadric curves. Moreover, we give out the generalized unbroken \mathcal{PT} -symmetric condition of an operator H. The unbroken \mathcal{PT} -symmetry of a Hermitian operator is also showed in this way.

§2 Preliminaries

In this paper, we only consider finite dimensional complex Hilbert space \mathbb{C}^n , whose elements will be denoted by bold fonts. Let $L(\mathbb{C}^n)$ be the complex vector space of all linear operators on \mathbb{C}^n , I be the identity operator on \mathbb{C}^n , \overline{z} be the complex conjugation of complex number z.

An operator \mathcal{T} on \mathbb{C}^2 is said to be anti-linear if $\mathcal{T}(s\mathbf{u}_1+t\mathbf{u}_2)=\overline{s}\mathcal{T}(\mathbf{u}_1)+\overline{t}\mathcal{T}(\mathbf{u}_2)$. It is obvious that the composition of two anti-linear operators is a linear operator and the composition of an anti-linear operator and a linear operator is still anti-linear. Similar to linear operators, anti-linear operators can also correspond to a matrix with slightly different laws of operation [11].

A time reversal operator \mathcal{T} is an anti-linear operator which satisfies $\mathcal{T}^2 = I$ or $\mathcal{T}^2 = -I$. A parity operator \mathcal{P} is a linear operator which satisfies $\mathcal{P}^2 = I$ [6,8,10,12].

The Pauli operators will be used frequently in our discussions. Given the basis $\{\mathbf{e}_i\}_{i=1}^2$ of \mathbb{C}^2 , they are usually defined as follows [7]:

$$\sigma_1(x_1\mathbf{e}_1 + x_2\mathbf{e}_2) = x_2\mathbf{e}_1 + x_1\mathbf{e}_2,\tag{1}$$

$$\sigma_2(x_1\mathbf{e}_1 + x_2\mathbf{e}_2) = -ix_2\mathbf{e}_1 + ix_1\mathbf{e}_2,\tag{2}$$

$$\sigma_3(x_1\mathbf{e}_1 + x_2\mathbf{e}_2) = x_1\mathbf{e}_1 - x_2\mathbf{e}_2. \tag{3}$$

To put it another way, the representation matrices of σ_1, σ_2 and σ_3 are:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Pauli operators have the following useful properties [7]:

$$\sigma_i \sigma_j = -\sigma_j \sigma_i = i\epsilon_{ijk} \sigma_k, \quad i \neq j, \tag{4}$$

$$\sigma_i^2 = I,\tag{5}$$

where $i, j, k \in \{1, 2, 3\}$, ϵ_{ijk} is the Levi-Civita symbol:

$$\epsilon_{ijk} = \begin{cases} \epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1, \\ \epsilon_{132} = \epsilon_{213} = \epsilon_{321} = -1, \\ 0, otherwise. \end{cases}$$

The well known commutation and anti-commutation relations are:

$$\sigma_i \sigma_j - \sigma_j \sigma_i = 2i\epsilon_{ijk} \sigma_k,$$

$$\sigma_i \sigma_j + \sigma_j \sigma_i = 2\delta_{ij} I,$$

where $i, j, k \in \{1, 2, 3\}$ and δ_{ij} is the Kronecker symbol.

Denote I by σ_0 , then $\{\sigma_0, \sigma_1, \sigma_2, \sigma_3\}$ is a basis of $L(\mathbb{C}^2)$. Moreover, an operator $\sigma = t\sigma_0 + x\sigma_1 + y\sigma_2 + z\sigma_3 \in L(\mathbb{C}^2)$ is Hermitian if and only if the coefficients $\{t, x, y, z\}$ are real numbers.

Given the basis $\{\mathbf{e}_i\}_{i=1}^2$ of \mathbb{C}^2 and any vector $x = \sum x_i \mathbf{e}_i$, one can define an important anti-linear operator, namely the conjugation operator \mathcal{T}_0 , by $\mathcal{T}_0(x) = \sum \overline{x_i} \mathbf{e}_i$.

Similar to \mathcal{T}_0 , one can define another important anti-linear operator τ_0 by

$$\tau_0(x_1\mathbf{e}_1 + x_2\mathbf{e}_2) = -\overline{x_2}\mathbf{e}_1 + \overline{x_1}\mathbf{e}_2. \tag{6}$$

Furthermore, define $\tau_1 = \tau_0 \sigma_1, \tau_2 = \tau_0 \sigma_2, \tau_3 = \tau_0 \sigma_3$, that is, τ_i is defined to be the composition of τ_0 and σ_i . The anti-linear operators $\{\tau_0, \tau_1, \tau_2, \tau_3\}$ forms a basis of the anti-linear operator space of \mathbb{C}^2 . This basis has the following properties [11]:

$$\begin{split} &\tau_0^2 = -I, \\ &\tau_0 \sigma_i = -\sigma_i \tau_0 = \tau_i, \\ &\tau_i \tau_0 = -\tau_0 \tau_i = \sigma_i, \\ &\tau_i \tau_j = \sigma_i \sigma_j = i \epsilon_{ijk} \sigma_k \quad (i \neq j), \\ &\tau_i \tau_j - \tau_j \tau_i = 2i \epsilon_{ijk} \sigma_k, \end{split}$$

where $i, j \in \{1, 2, 3\}$.

All the equations above can be verified by the using the definitions of Pauli operators and τ_0 . However, for further use, we show that $\tau_0\sigma_i = -\sigma_i\tau_0 = \tau_i$ in detail. Consider $\tau_2 = \tau_0\sigma_2$. By (2) and (6), we have

$$\tau_0 \sigma_2(x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2) = i \overline{x_1} \mathbf{e}_1 + i \overline{x_2} \mathbf{e}_2,$$

$$\sigma_2 \tau_0(x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2) = -i \overline{x_1} \mathbf{e}_1 - i \overline{x_2} \mathbf{e}_2.$$

Thus, $\tau_0 \sigma_2 = -\sigma_2 \tau_0 = \tau_2$. Along similar lines, one can verify that $\tau_0 \sigma_i = -\sigma_i \tau_0 = \tau_i$ is also valid for σ_1 and σ_3 .

Moreover, it follows from $\tau_0 \sigma_i = -\sigma_i \tau_0 = \tau_i$ that $\sigma_j \tau_i = \sigma_j \tau_0 \sigma_i = -\tau_0 \sigma_j \sigma_i$. Combining with (4) and (5), one can further obtain the following relations:

$$\sigma_i \tau_i = \tau_i \sigma_j = -i\epsilon_{ijk} \tau_k, \quad i \neq j, \tag{7}$$

$$\tau_i \sigma_i = -\sigma_i \tau_i = \tau_0, \tag{8}$$

where $i, j, k \in \{1, 2, 3\}$.

With the help of $\{\sigma_i\}$ and $\{\tau_i\}$, ones can determine the concrete forms of \mathcal{P} and \mathcal{T} :

Lemma 2.1. Let \mathcal{P} be a parity operator and \mathcal{T} be a time reversal operator on \mathbb{C}^2 . Then

(i). Either $\mathcal{P} = \pm I$ or $\mathcal{P} = \sum_{i=1}^{3} a_i \sigma_i$, where a_i satisfying $\sum_{i=1}^{3} a_i^2 = 1$. The latter case is referred to as the nontrivial \mathcal{P} . A nontrivial \mathcal{P} has the following matrix representation:

$$P = \begin{pmatrix} a_3 & a_1 - ia_2 \\ a_1 + ia_2 & -a_3 \end{pmatrix}. \tag{9}$$

(ii).
$$\mathcal{T} = \epsilon \sum_{i=0}^{3} c_i \tau_i$$
, where c_i are real numbers, if $\mathcal{T}^2 = I$, then $\sum_{i=1}^{3} c_i^2 - c_0^2 = 1$; if $\mathcal{T}^2 = -I$, then $\sum_{i=1}^{3} c_i^2 - c_0^2 = -1$, ϵ is a unimodular complex number [11].

Proof. (i). Suppose $\mathcal{P} = \sum_{i=0}^{3} a_i \sigma_i$. According to the properties of Pauli operators, we have $I = \mathcal{P}^2 = (\sum_{i=0}^{3} a_i^2)I + 2a_0(\sum_{i=1}^{3} a_i \sigma_i)$. Note that $\{\sigma_0, \sigma_1, \sigma_2, \sigma_3\}$ is a basis of $L(\mathbb{C}^2)$, we conclude that $\sum_{i=0}^{3} a_i^2 = 1$ and $a_0 a_1 = a_0 a_2 = a_0 a_3 = 0$. If $a_0 \neq 0$, then $a_1 = a_2 = a_3 = 0$, which implies that $\mathcal{P} = \pm I$. If $a_0 = 0$, then the only constraint is $\sum_{i=1}^{3} a_i^2 = 1$ and the matrix takes the form in (9).

Example 1. In (9), if we take $a_2 = 0$, a_1 , a_3 are real numbers satisfying that $a_1^2 + a_3^2 = 1$, and denote a_1 by $\sin \alpha$, a_3 by $\cos \alpha$, then \mathcal{P} has the matrix representation $\begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Thus \mathcal{P} is composed of a reflection and a rotation.

Example 2. In (9), if
$$a_1 = a_2 = 0$$
, $a_3 = 1$, then $P = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. If $a_2 = a_3 = 0$, $a_1 = 1$, then $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. These two parity operators were widely used in [2].

§3 The existence of \mathcal{P} commuting with \mathcal{T}

In physics, it is demanded that \mathcal{P} and \mathcal{T} are commutative, that is, $\mathcal{PT} = \mathcal{TP}$. In finite dimensional spaces case, by using the canonical forms of matrices, one can show that if $\mathcal{T}^2 = I$, then such \mathcal{P} always exists. In two dimensional case, we can prove it by utilizing Pauli operators.

Theorem 3.1. For each time reversal operator \mathcal{T} , if $\mathcal{T}^2 = I$, then there exists a nontrivial parity operator \mathcal{P} such that $\mathcal{P}\mathcal{T} = \mathcal{T}\mathcal{P}$. If $\mathcal{T}^2 = -I$, then there is no \mathcal{P} commuting with \mathcal{T} except $\mathcal{P} = \pm I$.

Proof. We will use the following well known equation frequently,

$$(\sigma \cdot \mathbf{A})(\sigma \cdot \mathbf{B}) = (\mathbf{A} \cdot \mathbf{B})I + i\sigma \cdot (\mathbf{A} \times \mathbf{B}), \tag{10}$$

where the bold letters **A** and **B** denote vectors in \mathbb{C}^3 and $\sigma = (\sigma_1, \sigma_2, \sigma_3)$. The symbols \cdot and \times represent the dot and cross product of vectors, respectively.

(i). When $\mathcal{T}^2 = I$.

Let $\mathcal{T} = \epsilon \sum_{i=0}^{3} c_i \tau_i$ and $\mathcal{P} = \sum_{i=1}^{3} a_i \sigma_i$, as was given in Lemma 2.1.

According to (7) and (8), $\mathcal{TP} = \mathcal{PT}$ is equivalent to

$$(-c_0\sigma_0 + \sum_{j=1}^{3} c_j\sigma_j)(\sum_{i=1}^{3} \overline{a_i}\sigma_i)\tau_0 = (\sum_{i=1}^{3} a_i\sigma_i)(c_0\sigma_0 - \sum_{j=1}^{3} c_j\sigma_j)\tau_0.$$

Denote $f_i = Re(a_i)$, $b_i = Im(a_i)$, $\mathbf{f} = (f_1, f_2, f_3)$, $\mathbf{b} = (b_1, b_2, b_3)$ and $\mathbf{c} = (c_1, c_2, c_3)$. Utilizing (10) to expand the equation above, we have

$$(\mathbf{f} \cdot \mathbf{c})\sigma_0 - \sigma \cdot [\mathbf{b} \times \mathbf{c} + c_0 \mathbf{f}] = 0. \tag{11}$$

It follows that TP = PT is equivalent to

$$c_0 \mathbf{f} + \mathbf{b} \times \mathbf{c} = 0, \tag{12}$$

$$\mathbf{f} \cdot \mathbf{c} = 0. \tag{13}$$

Similarly, by utilizing (10) and Lemma 2.1, the contraints $\mathcal{P}^2 = I$ and $\mathcal{T}^2 = I$ can be reduced to the equations as follows,

$$\mathbf{f} \cdot \mathbf{b} = 0,\tag{14}$$

$$\|\mathbf{f}\|^2 - \|\mathbf{b}\|^2 = 1,\tag{15}$$

$$\|\mathbf{c}\|^2 - c_0^2 = 1. \tag{16}$$

Thus, the problem of finding a parity operator \mathcal{P} commuting with \mathcal{T} reduces to finding the vectors \mathbf{f} and \mathbf{b} satisfying (12) - (15).

If $c_0 = 0$, then we can choose $\mathbf{b} = 0$ and a unit vector \mathbf{f} orthogonal to \mathbf{c} . Thus all the conditions (12) - (15) are satisfied.

If $c_0 \neq 0$. Let **b** be a vector such that **b** is orthogonal to **c** and $\|\mathbf{b}\| = |c_0|$. Moreover, take $\mathbf{f} = \frac{1}{c_0}(\mathbf{c} \times \mathbf{b})$. Direct calculations show that such vectors **f** and **b** satisfy (12) – (15), which completes the proof of the existence of \mathcal{P} .

(ii). When $\mathcal{T}^2 = -I$.

The equation (16) is replaced by the following:

$$\|\mathbf{c}\|^2 - c_0^2 = -1. \tag{17}$$

Thus $c_0 \neq 0$. On the other hand, it follows from (12) that

$$\mathbf{f} = \frac{1}{c_0} (\mathbf{c} \times \mathbf{b}). \tag{18}$$

Substituting (17) and (18) into (15), we have $\|\mathbf{f}\|^2 - \|\mathbf{b}\|^2 = 1 < -\frac{1}{c_0^2} \|\mathbf{b}\|^2$, which is a contradiction. Thus, when $\mathcal{T}^2 = -I$, there is no \mathcal{P} commuting with \mathcal{T} except $\mathcal{P} = \pm I$.

Remark 3.1. When the space is \mathbb{C}^4 , although $\mathcal{T}^2 = -I$, one can find nontrivial \mathcal{P} commuting with \mathcal{T} [10].

§4 The geometrical properties of \mathcal{P} and \mathcal{T}

Theorem 4.1. Let \mathcal{T} be a time reversal operator satisfying $\mathcal{T}^2 = I$. The set of parity operators \mathcal{P} commuting with \mathcal{T} correspond uniquely to a hyperboloid in \mathbb{R}^3 .

Proof. As was mentioned above, the determination of \mathcal{P} is equivalent to finding out \mathbf{f} and \mathbf{b} satisfying (12) – (15). Now consider $\mathbf{m} = \mathbf{f} + \mathbf{b}$. We shall prove that all the \mathbf{m} form a hyperboloid.

To this end, construct a new coordinate system by taking the direction of \mathbf{c} as that of the X' axis. The Y' - Z' plane is perpendicular to \mathbf{c} and contains the origin point of \mathbb{R}^3 . Assume that $\mathbf{m} = (x', y', z')$ in the new X'Y'Z' coordinate system.

(i). If $c_0 = 0$, then it follows from (12) - (14) that **b** is proportional to **c** and that **f** is orthogonal to both **c** and **b**. Thus, in the new X'Y'Z' coordinate system,

$$\mathbf{b} = (x', 0, 0),$$

 $\mathbf{f} = (0, y', z').$

On the other hand, equation (15), namely $\|\mathbf{f}\|^2 - \|\mathbf{b}\|^2 = 1$, implies that

$$y'^2 + z'^2 - x'^2 = 1. (19)$$

It is apparent that one pair of **f** and **b** correspond to one point $\mathbf{m} = (x', y', z')$, and vice versa. In addition, (19) represents a hyperboloid in \mathbb{R}^3 .

(ii). If $c_0 \neq 0$, then it follows from (16) that $\mathbf{c} = (\sqrt{1 + c_0^2}, 0, 0)$ in the X'Y'Z' coordinate system. In addition, suppose $\mathbf{b} = (x_0, y_0, z_0)$ in the X'Y'Z' coordinate system. By (18), we have $\mathbf{f} = \frac{1}{c_0}(\mathbf{c} \times \mathbf{b}) = \frac{\sqrt{1 + c_0^2}}{c_0}(0, -z_0, y_0)$. Substituting \mathbf{b} and \mathbf{f} into (15), we have

$$\frac{1}{c_0^2}(y_0^2 + z_0^2) - x_0^2 = 1. (20)$$

Note that $x_0 = x', y_0 = \frac{\lambda z' + y'}{1 + \lambda^2}, z_0 = \frac{z' - \lambda y'}{1 + \lambda^2}$, where $\lambda = \frac{\sqrt{1 + c_0^2}}{c_0}$. Thus, one pair of **f** and **b** correspond to one point $\mathbf{m} = (x', y', z')$, and vice versa. Moreover, it follows from (20) that

$$\frac{1}{1+2c_0^2}(y'^2+z'^2)-x'^2=1. (21)$$

That is, all the **m** form a hyperboloid.

Theorem 4.2. Let \mathcal{P} be a nontrivial parity operator and let us consider the time reversal operators of the form $\mathcal{T} = \sum_{i=0}^{3} c_i \tau_i$ commuting with \mathcal{P} . All the points $\mathbf{c} = (c_1, c_2, c_3)$ form an ellipse. The length of the semi-major axis is $\|\mathbf{f}\|$ and the length of the semi-minor axis is 1.

Proof. By (13) and (14), we know that both \mathbf{b} and \mathbf{c} are orthogonal to \mathbf{f} .

Construct a new X'Y'Z' coordinate system by taking the direction of \mathbf{f} as that of the Z' axis and the direction of \mathbf{b} as that of the X' axis (If $\mathbf{b} = 0$, take any vector orthogonal to \mathbf{f} as the direction vector of the X' axis). Then we have $\mathbf{b} = (x, 0, 0)$, $\mathbf{f} = (0, 0, z)$ and $\mathbf{c} = (c'_1, c'_2, c'_3)$

in the X'Y'Z' coordinate system. Now the conditions (12) - (16) will reduce to

$$xc_3' = 0, (22)$$

$$xc_2' + c_0 z = 0, (23)$$

$$zc_3' = 0, (24)$$

$$z^2 - x^2 = 1, (25)$$

$$\sum_{i=1}^{3} (c_i')^2 - (c_0)^2 = 1,. \tag{26}$$

Note that (25) ensures that $z \neq 0$. Thus, (22) and (24) imply that $c_3' = 0$, $\mathbf{c} = (c_1', c_2', 0)$. In addition, it follows from (23) that $c_0 = -\frac{x}{z}c_2'$. Substituting $c_3' = 0$, $c_0 = -\frac{x}{z}c_2'$ and (25) into (26), we have

$$(c_1')^2 + \frac{(c_2')^2}{(z)^2} = 1. (27)$$

This is an equation of ellipse. Moreover, since $|z| = ||\mathbf{f}|| > 1$, the length of the semi-major axis is $\|\mathbf{f}\|$ and the length of the semi-minor axis is 1.

In the following theorem, we only consider the $\mathcal T$ with real coefficients.

Theorem 4.3. Let \mathcal{T}_1 , \mathcal{T}_2 be two time reversal operators, $\mathcal{T}_1 \neq \pm \mathcal{T}_2$. If there exist two nontrivial parity operators \mathcal{P}_1 and \mathcal{P}_2 such that \mathcal{P}_i commutes with \mathcal{T}_1 and \mathcal{T}_2 simultaneously, then \mathcal{P}_1

Proof. Let
$$\mathcal{T}_1 = \sum_{i=0}^3 c_i^{(1)} \tau_i$$
, $\mathcal{T}_2 = \sum_{i=0}^3 c_i^{(2)} \tau_i$. Denote $\mathbf{c}^{(1)} = (c_1^{(1)}, c_2^{(1)}, c_3^{(1)})$ and $\mathbf{c}^{(2)} = (c_1^{(2)}, c_2^{(2)}, c_3^{(2)})$.
(i). If $c_0^{(1)} \neq 0$ and $c_0^{(2)} = 0$.

Suppose that \mathcal{P} commute with \mathcal{T}_i simultaneously. By (12), we have $\mathbf{c}^{(2)} \times \mathbf{b} = 0$. It follows that $\mathbf{b} = m\mathbf{c}^{(2)}$. On the other hand, (12) implies that $\mathbf{f} = \frac{1}{c_c^{(1)}}(\mathbf{c}^{(1)} \times \mathbf{b})$. Thus, $\mathbf{f} = \frac{m}{c_{\mathbf{c}}^{(1)}}(\mathbf{c}^{(1)} \times \mathbf{c}^{(2)})$. Substituting \mathbf{f} and \mathbf{b} into (15), then we have

$$m^{2}(\|\frac{1}{c_{0}^{(1)}}\mathbf{c}^{(1)} \times \mathbf{c}^{(2)}\|^{2} - \|\mathbf{c}^{(2)}\|^{2}) = 1.$$

The equation has at most two real roots, which are opposite to each other. Thus, there exist at most two parity operators \mathcal{P} and $-\mathcal{P}$ commuting with \mathcal{T}_i simultaneously.

(ii). If $c_0^{(1)} = c_0^{(2)} = 0$ and $\mathbf{c}^{(1)} = t\mathbf{c}^{(2)}$, where t is a real number.

It follows from (16) that $\mathcal{T}_1 = \pm \mathcal{T}_2$, which contradicts with the assumption of the theorem.

(iii). If $c_0^{(1)} \neq 0$, $c_0^{(2)} \neq 0$ and $\mathbf{c}^{(1)} = t\mathbf{c}^{(2)}$. By (12), we have $\mathbf{f} = \frac{1}{c_0^{(1)}}(\mathbf{c}^{(1)} \times \mathbf{b}) = \frac{1}{c_0^{(2)}}(\mathbf{c}^{(2)} \times \mathbf{b}) = \frac{t}{c_0^{(1)}}(\mathbf{c}^{(2)} \times \mathbf{b})$. It follows that $c_0^{(1)} = tc_0^{(2)}$.

Thus, we have $c_i^{(1)} = tc_i^{(2)}$, (i = 0, 1, 2, 3). On the other hand, (16) implies that $t^2 = 1$. Hence $\mathcal{T}_1 = \pm \mathcal{T}_2$, which is a contradiction.

(iv). If $c_0^{(1)} = c_0^{(2)} = 0$ and $\mathbf{c}^{(1)} \neq t\mathbf{c}^{(2)}$.

By (12), we have $\mathbf{c}^{(1)} \times \mathbf{b} = \mathbf{c}^{(2)} \times \mathbf{b} = 0$. However, since $\mathbf{c}^{(1)} \neq t\mathbf{c}^{(2)}$, we have $\mathbf{b} = 0$. Thus (15) implies that $\|\mathbf{f}\| = 1$. Moreover, (13) implies that \mathbf{f} is orthogonal to both $\mathbf{c}^{(1)}$ and $\mathbf{c}^{(2)}$. So **f** can only have two directions, which are opposite to each other. Thus, there exist at most two parity operators \mathcal{P} and $-\mathcal{P}$ commuting with \mathcal{T}_i simultaneously.

(v). If
$$c_0^{(1)} \neq 0$$
, $c_0^{(2)} \neq 0$ and $\mathbf{c}^{(1)} \neq t\mathbf{c}^{(2)}$.

Let \mathcal{P}_1 and \mathcal{P}_2 be two parity operators, which are determined by $(\mathbf{f}^{(1)}, \mathbf{b}^{(1)})$ and $(\mathbf{f}^{(2)}, \mathbf{b}^{(2)})$ respectively. Moreover, suppose that both \mathcal{P}_1 and \mathcal{P}_2 commute with \mathcal{T}_i simultaneously.

By (12), we have
$$\mathbf{f}^{(1)} = \frac{1}{c_0^{(1)}} (\mathbf{c}^{(1)} \times \mathbf{b}^{(1)})$$
 and $\mathbf{f}^{(1)} = \frac{1}{c_0^{(2)}} (\mathbf{c}^{(2)} \times \mathbf{b}^{(1)})$. It follows that
$$\frac{1}{c_0^{(1)}} \mathbf{c}^{(1)} - \frac{1}{c_0^{(2)}} \mathbf{c}^{(2)} = t_1 \mathbf{b}^{(1)},$$

where t_1 is a nonzero real number.

Similarly, we have $\mathbf{f}^{(2)} = \frac{1}{c_0^{(1)}} (\mathbf{c}^{(1)} \times \mathbf{b}^{(2)})$ and $\mathbf{f}^{(2)} = \frac{1}{c_0^{(2)}} (\mathbf{c}^{(2)} \times \mathbf{b}^{(2)})$. It follows that

$$\frac{1}{c_0^{(1)}} \mathbf{c}^{(1)} - \frac{1}{c_0^{(2)}} \mathbf{c}^{(2)} = t_2 \mathbf{b}^{(2)},$$

So $t_1\mathbf{b}^{(1)} = t_2\mathbf{b}^{(2)}$, which implies that $\mathbf{b}^{(1)} = k\mathbf{b}^{(2)}$. Now $\|\mathbf{f}^{(1)}\|^2 - \|\mathbf{b}^{(1)}\|^2 = k^2(\|\mathbf{f}^{(2)}\|^2 - \|\mathbf{b}^{(2)}\|^2) = 1$, hence $k = \pm 1$. Thus it is apparent that $\mathcal{P}_1 = \pm \mathcal{P}_2$.

Note that (i) - (v) contain all the situations, which completes the proof.

If we denote $com(\mathcal{T}) = \{\mathcal{P} | \mathcal{PT} = \mathcal{TP}, \mathcal{P}^2 = I\}$, then the following corollary can be obtained.

Corollary 4.4. If $\mathcal{T}_1 = \sum_{i=0}^{3} c_i^{(1)} \tau_i$, $\mathcal{T}_2 = \sum_{i=0}^{3} c_i^{(2)} \tau_i$ are two time reversal operators, $\mathcal{T}_j^2 = I$, j = 1, 2. Then $com(\mathcal{T}_1) = com(\mathcal{T}_2)$ if and only if for each i, $c_i^{(1)} = \epsilon c_i^{(2)}$, where ϵ is a unimodular coefficient.

§5 \mathcal{PT} -symmetric operators and unbroken \mathcal{PT} -symmetric condition

A linear operator H is said to be \mathcal{PT} -symmetric if $H\mathcal{PT} = \mathcal{PT}H$. As is known, in standard quantum mechanics, the Hamiltonians are assumed to be Hermitian such that all the eigenvalues are real and the evolution is unitary. In the \mathcal{PT} -symmetric quantum theory, Bender replaced the Hermiticity of the Hamiltonians with \mathcal{PT} -symmetry. However, the \mathcal{PT} -symmetry of a linear operator does not imply that its eigenvalues must be real. Thus, Bender introduced the unbroken \mathcal{PT} -symmetric condition. The Hamiltonian H is said to be unbroken \mathcal{PT} -symmetric if there exists a collection of eigenvectors Ψ_i of H such that they span the whole space and $\mathcal{PT}\Psi_i = \Psi_i$. It was shown that for a \mathcal{PT} -symmetric Hamiltonian H, its eigenvalues are all real if and only if H is unbroken \mathcal{PT} -symmetric [2]. In two dimensional space case, this condition has a much simpler description and an important illustrative example. That is, if $\mathcal{P} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$,

a much simpler description and an important illustrative example. That is, if
$$\mathcal{P} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
,

$$\mathcal{T} = \mathcal{T}_0, H = \begin{pmatrix} re^{i\theta} & s \\ s & re^{-i\theta} \end{pmatrix}$$
, then H is unbroken $\mathcal{P}\mathcal{T}$ -symmetric iff $s^2 \geq r^2 \sin^2 \theta$ [2].

In the following part, we shall give the unbroken \mathcal{PT} -symmetry condition for general \mathcal{PT} -symmetric operators. To this end, we need the following proposition.

For a Hamiltonian $H = \sum_{i=0}^{3} h_i \sigma_i$ which is written in terms of Pauli operators, we denote $\mathbf{f}_H = (Re(h_1), Re(h_2), Re(h_3))$ and $\mathbf{b}_H = (Im(h_1), Im(h_2), Im(h_3))$.

Proposition 5.1. If H is a \mathcal{PT} -symmetric operator, then it has four real parameters. Moreover, if $H = \sum_{i=0}^{3} h_i \sigma_i$, then we have

$$Im(h_0) = 0, (28)$$

$$\mathbf{f}_H \cdot \mathbf{b}_H = 0. \tag{29}$$

Proof. It is apparent that \mathcal{PT} is also a time reversal operator. Thus we can assume that $\mathcal{PT} = \sum_{j=0}^{3} c_j \tau_j$. Now the condition $\mathcal{PTH} = H\mathcal{PT}$ is equivalent to

$$(\sum_{j=0}^{3} c_j \tau_0 \sigma_j)(\sum_{i=0}^{3} h_i \sigma_i) = (\sum_{i=0}^{3} h_i \sigma_i)(\sum_{j=0}^{3} c_j \tau_0 \sigma_j).$$

According to (10), this equation can be reduced to

$$c_0(\overline{h_0} - h_0) + \sum_{i=1}^3 c_i(h_0 - \overline{h_0})\sigma_i + \sum_{i=1}^3 c_i(h_i + \overline{h_i}) + i\sigma \cdot [\mathbf{c} \times (\overline{\mathbf{h}} - \mathbf{h})] - \sum_{i=1}^3 c_0(h_i + \overline{h_i})\sigma_i = 0,$$
 where $\mathbf{h} = (h_1, h_2, h_3)$ and $\overline{\mathbf{h}} = (\overline{h_1}, \overline{h_2}, \overline{h_3}).$

The equation above is equivalent to

$$Im(h_0) = 0, (30)$$

$$\mathbf{c} \cdot \mathbf{f}_H = 0, \tag{31}$$

$$\mathbf{c} \times \mathbf{b}_H - c_0 \mathbf{f}_H = 0. \tag{32}$$

(i). When $c_0 \neq 0$. It follows (32) that $\mathbf{f}_H = \frac{1}{c_0}(\mathbf{c} \times \mathbf{b}_H)$. Thus, the four parameters $Im(h_1)$, $Im(h_2)$, $Im(h_3)$ and $Re(h_0)$ determine H.

Note that (28) is the same as (30). On the other hand, $\mathbf{f}_H = \frac{1}{c_0}(\mathbf{c} \times \mathbf{b}_H)$ implies that $\mathbf{f}_H \cdot \mathbf{b}_H = 0$. Thus, (29) is also valid.

(ii). When $c_0 = 0$. (32) implies that $\mathbf{b}_H = t\mathbf{c}$. Thus, we only need one real parameter t to determine \mathbf{b}_H . (31) implies that \mathbf{f}_H should be orthogonal to \mathbf{c} . Hence two parameters are needed. With $Re(h_0)$, we have four parameters altogether.

In this case, (29) follows from the fact $\mathbf{b}_H = t\mathbf{c}$ and the equation (31).

Theorem 5.2. If H is a PT-symmetric operator and $\begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}$ is the representation matrix of H, then H is unbroken if and only if $(Re(h_{11} + h_{22}))^2 - 4Re(h_{11}h_{22} - h_{12}h_{21}) \ge 0$.

Proof. Let
$$\begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}$$
 be the matrix of H , λ be an eigenvalue of H , then
$$\lambda^2 - (h_{11} + h_{22})\lambda + h_{11}h_{22} - h_{12}h_{21} = 0. \tag{33}$$

On the other hand, rewrite $H = h_0\sigma_0 + h_1\sigma_1 + h_2\sigma_2 + h_3\sigma_3$. It follows from (28) and (29) that

$$Im(h_{11} + h_{22}) = 2Im(h_0) = 0,$$

 $Im(h_{11}h_{22} - h_{12}h_{21}) = -\mathbf{f}_H \cdot \mathbf{b}_H = 0.$

The two equations above imply that

$$-Im(h_{11} + h_{22})\lambda + Im(h_{11}h_{22} - h_{12}h_{21}) = 0.$$
(34)

Substitute (34) into (33). Now the equation (33) reduces to

$$\lambda^2 - Re(h_{11} + h_{22})\lambda + Re(h_{11}h_{22} - h_{12}h_{21}) = 0, \tag{35}$$

According to (35), λ is a real number, that is, H is unbroken \mathcal{PT} -symmetric, if and only if

$$(Re(h_{11} + h_{22}))^2 - 4Re(h_{11}h_{22} - h_{12}h_{21}) \ge 0.$$
(36)

Remark 5.1. Note that when the equality is valid in (36), H may be non-diagonalisable in general. In this case, the space \mathbb{C}^2 is actually spanned an eigenvector ψ_1 satisfying $(H - \lambda_0 I)\psi_1 = 0$ and a generalized eigenvector ψ_2 satisfying $(H - \lambda_0 I)^2\psi_2 = 0$, where $\lambda_0 = \frac{1}{2}Re(h_{11} + h_{22})$ is the eigenvalue.

Remark 5.2. Note that Bender's unbroken \mathcal{PT} -symmetric condition in [2] is a special case of (36). To see this, let $H = \begin{pmatrix} re^{i\theta} & s \\ s & re^{-i\theta} \end{pmatrix}$, we have

$$Re(h_{11}) = Re(h_{22}) = r \cos \theta,$$

 $Re(h_{11}h_{22} - h_{12}h_{21}) = r^2 - s^2.$

Then (36) holds iff $s^2 \ge r^2 \sin^2 \theta$.

Remark 5.3. If H is a Hermitian operator, then it is also unbroken \mathcal{PT} -symmetric. Usually, this can be shown by using canonical forms. However, in \mathbb{C}^2 , it also follows from direct calculation

In fact, since $H = \sum_{i=0}^{3} h_i \sigma_i$ is Hermitian, each h_i is a real number. Now we only need to find

real coefficients c_0 , c_1 , c_2 and c_3 such that $\sum_{i=1}^3 c_i^2 - c_0^2 = 1$ and equations (30) – (32) hold. Take

 $c_0 = 0$ and c_1 , c_2 , c_3 are such real numbers that $\mathbf{c} \cdot \mathbf{f}_H = 0$ and $\sum_{i=1}^3 c_i^2 = 1$. Let $\mathcal{PT} = \sum_{i=0}^3 c_i \tau_i$. It is apparent that $(\mathcal{PT})^2 = I$ and H is \mathcal{PT} -symmetric. Moreover, if we rewrite the Hermitian matrix as $H = \begin{pmatrix} a & b \\ \overline{b} & a \end{pmatrix}$, then $[Re(h_{11} + h_{22})]^2 - 4Re(h_{11}h_{22} - h_{12}h_{21}) = 4a^2 - 4(a^2 - |b|^2) = 4|b|^2 \geqslant 0$ holds, so H is also unbroken.

References

- C M Bender, S Boettcher. Real spectra in non-Hermitian hamiltonians having PT-symmetry, Phys Rev Lett, 1998, 80(24): 5243.
- [2] C M Bender. Making sense of non-Hermitian hamiltonians, Rep Prog Phys, 2007, 70(6): 947-1018.
- [3] C M Bender, D C Brody, M P Muller. Hamiltonian for the Zeros of the Riemann Zeta Function, Phys Rev Lett, 2017,118(13): 130201.
- [4] L Chang, X S Jiang, S Y Hua, C Yang, J M Wen, L Jiang, G Y Li, G Z Wang, M Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators, Nature Photon, 2014,8(7): 524-529.
- [5] S Deffner, A Saxena. Jarzynski equality in PT-symmetric quantum mechanics, Phys Rev lett, 2015,114(15): 150601.
- [6] J W Deng, U Guenther, Q H Wang. General PT-symmetric matrices, arXiv preprint arXiv:1212.1861, 2012.
- [7] W Greiner. Quantum mechanics: an introduction, Springer Science and Business Media, 2011.
- [8] A Mostafazadeh. Pseudo-Hermitian representation of quantum mechanics, Int J Geom Meth Mod Phys, 2010,7(07): 1191-1306.
- [9] C E Rüter, K G Makris, R E Ganainy, D N Christodoulides, M Segev, D Kip. *Observation of parity-time symmetry in optics*, Nature Phys, 2010,6(3): 192.
- [10] K J Smith. Non-Hermitian quantum mechanics, PhD thesis, Case Western Reserve University, 2010.
- [11] A Uhlmann. Anti-(conjugate) linearity, Sci China Phys Mech Astron, 2016,59(3): 630301.
- [12] E Wigner. Group theory: and its application to the quantum mechanics of atomic spectra, Elsevier, 2012.

Email: a0086285@u.nus.edu

Email: mignon@kumoh.ac.kr

School of Mathematical Science, Zhejiang University, Hangzhou 310027, People's Republic of China. Email: 11335001@zju.edu.cn, wjd@zju.edu.cn

² Department of Mathematics, National University of Singapore, Singapore 119076, Republic of Singapore.

³ Department of Applied Mathematics, Kumoh National Institute of Technology, Kyungbuk, 39177, Korea.