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The closed finite-to-one mappings and their applications

YANG Jie! LIN Shou?*

Abstract. In this paper, we discuss the closed finite-to-one mapping theorems on generalized
metric spaces and their applications. It is proved that point-Gs properties, Ro-sn f-countability
and csf-countability are invariants and inverse invariants under closed finite-to-one mappings.
By the relationships between the weak first-countabilities, we obtain the closed finite-to-one
mapping theorems of weak quasi-first-countability, quasi-first-countability, sn f-countability, g f-
countability and sof-countability. Furthermore, these results are applied to the study of sym-

metric products of topological spaces.

81 Introduction

In 1961, P.S. Alexandroff [1] put forward the idea of investigating spaces by mappings at
the international topological symposium in Prague. The survey paper “Mappings and spaces”
written by A.V. Arhangel’skii [2] in 1966 inherited and developed the idea. One of the most
basic questions of Alexandroff-Arhangel’skii’s idea is what topological properties are preserved
by certain mappings [2]?

In general topology, perfect mappings are widely studied and have obtained fruitful results,
for example perfect mappings preserve metrizability [7]. However some important topological
properties are not preserved under perfect mappings, such as perfect mappings do not pre-
serve g-metrizability [15]. It is known that g-metrizability is preserved under continuous closed
and finite-to-one mappings [15]. It shows the importance of finite-to-one mappings. R.F. Git-
tings [12] and Lin Shou [14] provided special summary reports on open finite-to-one mappings
and closed finite-to-one mappings, respectively. These have played an active role in the develop-
ment of spaces and mappings and their applications. In the late years, Ge Ying [11] proved that
closed finite-to-one mappings preserve sn-metrizability; Shen Rongxin [23] proved that closed
finite-to-one mappings preserve quasi-first-countability and weak quasi-first-countability; and
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Mou Lei and H. Ohta [22] studied the closed finite-to-one mappings of spaces with sharp bases.
Good and Macfas [13] recently discussed the symmetric products of generalized metric spaces
and pointed out the role of closed finite-to-one mappings. Based on it, Tang Zhongbao, Lin
Shou and Lin Fucai [27] constructed two general stability theorems about symmetric products
and topological properties by closed finite-to-one mappings. It shows the special role of closed
finite-to-one mappings in discussing the mapping properties of spaces and their applications.

There are still some problems whether closed finite-to-one mappings preserve or preserve
inversely topological properties to be solved [14]. It is a classical problem whether closed
finite-to-one mappings preserve ortho-compact properties [6], and the applications of closed
finite-to-one mappings remains to be discovered. In this paper, we mainly study the following
generalized metric properties which are preserved and preserved inversely under closed finite-
to-one mappings: point-Gg properties, Ro-sn f-countability, weak quasi-first-countability, quasi-
first-countability, sof-countability, sn f-countability, gf-countability, csf-countability and so
on. Also the properties of symmetric products of the above properties are discussed.

First we recall some basic concepts used in this paper. Denote by 7x or 7 the topology on
a topological space X. All spaces are T unless stated otherwise, all mappings are continuous
and onto. Readers may refer to [7,10] for unstated notation and terminology.

Let X be a space. P C X is called a sequential neighborhood of x in X if every sequence
converging to x € X is eventually in P, i.e., if a sequence {z, }nen converges to z in X, there
exists m € N such that {x,, : n > m} C P. A subset P of X is called sequentially open if P is
a sequential neighborhood of each point in P. P is a sequentially closed subset of X if X \ P
is sequentially open.

Definition 1.1 Let & = J,.x
(a) P, is a network of x in X for each z € X, e, x € (|, and if © € G € 7x, there exists
P e Z, such that P C G; (b) if U,V € &,, then W Cc UNYV for some W € &Z,.

(1) The family & is called an sn-network [16] for X if each element of &, is a sequential
neighborhood of z in X for each z € X.

&, be a family of subsets of a space X satisfying that

(2) The family & is called an so-network [16] for X if each element of &, is sequentially
open in X for each z € X.

(3) The family & is called a weak base [2] for X if a subset G C X is open in X whenever
for each x € G there exists P € &, such that P C G.

Moreover &, is called an sn-network (resp. an so-network, a weak base) of x. If every &2,
is countable, X is called snf-countable (resp. sof-countable, gf-countable) [2,17].

Definition 1.2 Let & = {P,(n,m) : x € X,n,m € N} be a family of subsets of X, where
{Py(n,m)}men is a decreasing network of x in X for any € X and n € N.

(1) A space X is called a quasi-first-countable space [25] if, there exists the family &2 such
that, given x € A C X, the set A is a neighborhood of x in X whenever for every n € N, there
is m € N such that Py(n,m) C A.

(2) A space X is called a weakly quasi-first-countable space [25] if, there exists the family &
such that, given A C X, the set A is an open set in X whenever if for every x € A and n € N,
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there is m € N such that P;(n,m) C A.

(3) A space X is called an Ng-snf-countable space [20] if, there exists the family & such
that, given A C X, the set A is a sequentially open subset of X whenever if for every x € A
and n € N, there is m € N such that P,(n,m) C A.

Definition 1.3 A space X is called a csf-countable space [17] if for every x € X, there is
a countable family &2, of subsets of X satisfying as follows: (a) z € (| Py; (b) if z €U € 7x
and a sequence {Z, }nen converges to x in X, then there exists P € &, such that P C U and
the sequence {z,, }nen is eventually in P. The family &7, is called a countable cs-network of z
in X.

The basic relationships between the spaces described above are in the following diagram [19,

20], and these spaces are also known as weakly first-countable spaces:

first-countable space—— quasi-first-countable space

! !

g f-countable space—— weakly quasi-first-countable space

| l

sof-countable space = sn f-countable space—» Ny-sn f-countable space —»cs f-countable space

§2 Lemmas

In this section, we study some relationships between several weak first-countabilities. Some
auxiliary results will be cited or proved.

Lemma 2.1 The following are equivalent for a space X :

(1) X is an No-snf-countable space.

(2) For each x € X, there exists a family P, = {Py(n,m) : n,m € N} of subsets of X
satisfying:

(2.1) {Py(n,m)}men is a decreasing network of x in X for each n € N.
(2.2) For each n, m, € N, U, cy Pe(n,my) is a sequential neighborhood of x.

(3) For each x € X, there exists a family P, = {Py(n,m) : n,m € N} of subsets of X
satisfying:

(8.1) {Py(n,m)}men is a decreasing network of x in X for each n € N.
(3.2) If a sequence {xy}ren in X converges to x, there exist n € N and a subsequence
{2k, }men of {zk}ren such that each i, € Py(n,m).

Proof. (1) = (3). Suppose that & is a family of subsets of X which satisfies Definition
1.2(3). Let &, = {Py(n,m) : n,m € N} for each x € X. Then we only need to show that
(3.2) holds. Assume that a sequence {xj }ren in X converges to . Since & is a network of X,
without loss of generality, we may assume that xj, # x for all k € N. Put H = X \ {z}, : k € N}.
For a point z € H with z # x and n € N, since H is a neighborhood of z, there exists
m € N such that P,(n,m) C H. Since the set H is not a sequentially open subset of X,
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according to Definition 1.2(3), there exists n € N such that P,(n,m) ¢ H for any m € N. Put
Tm = Pe(n,m)N{z, : K € N}. Then T, # @. If Ty, is a finite set for some my € N, then
there exists my > mg such that P,(n,m1) C X \ Ty, thus T,,,, = &, which is a contradiction.
So each T, is an infinite set. Hence there is a subsequence {zy,, }men of {zk}ren such that
each xg, € Py(n,m).

(3) = (2). Suppose that a family &2, = {Py(n,m) : n,m € N} of subsets of X satisfies
condition (3) for each € X. Put P = J,cy Pe(n,my) for each n, m, € N. If P is not
a sequential neighborhood of = in X, there is a sequence {xj}ren of X converging to = such
that xp ¢ P for each k € N. According to (3.2), there exist n € N and a subsequence
. € Py(n,m). Take m’ € N such that m’ > m,,. Then
xy,, € Pe(n,m') C Py(n,m,) C P, which is a contradiction. Thus &, satisfies (2) for each
e X.

(2) = (1). Suppose that a family &, = {P;(n,m) : n,m € N} of subsets of X satisfies
condition (2) for each x € X. Put & = J,.y Z.. If a subset A of X satisfies that for any
xr € A and n € N, there exists m,, € N such that P,(n,m,) C A, then {J, .y Pz(n,m,) C A.
According to (2.2), A is a sequential neighborhood of x. Thus A is a sequential neighborhood of

{ka }meN of {xk}keN such that each zj,

each point in A, i.e., A is a sequentially open subset of X. Therefore, X is an Rg-sn f-countable
space. This completes the proof.

The (1) = (2) in Lemma 2.1 is not obvious. The space in Definition 1.2(3) was called a
sequential network space with a countable fan by Lin Shou [18]; the space in Lemma 2.1(3) was
defined as an Rg-sn weakly first-countable space by Wang Pei, Li Zhongmin and Liu Shigin [29];
and the space in Lemma 2.1(2) was defined as an Ry-sn f-countable space by Lin Shou and Ge
Ying [20]. Here, it is proved that these definitions are consistent. In addition, for each P,(n,m)
in Lemma 2.1, the variable n only need be countable, and the variable m need be countable
and ordinal.

A space X is said to be a sequential space [8] if each sequentially open subset is open in X.
A space X is called a Fréchet space [8] if, for any subset A C X and x € A, there is a sequence
in A converging to x in X.

Lemma 2.2 [18,20] (1) A topological space X is a weakly quasi-first-countable space if and
only if it is an Rg-sn f-countable sequential space.

(2) A topological space X is a quasi-first-countable space if and only if it is an No-snf-
countable Fréchet space.

A space X is called an ay-space [3] if, whenever x € X and each sequence S, in X converges
to x for any n € N, then there exists a sequence S in X converging to x such that {n € N :
SNS, # @} is infinite.

Lemma 2.3 [17] A topological space X is an snf-countable space if and only if it is a
csf-countable ay-space.

Lemma 2.4 [16] A topological space X is a gf-countable space if and only if it is an
sn f-countable sequential space.

For every topological space (X, 7), a new topology o, on the X can be defined as follows:
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O € o, if and only if O is a sequentially open subset in (X, 7) [9]. The space (X, o0,) is called
a sequential coreflection of (X, ), which is denoted by oX. It is well-known that cX is a
sequential space, X and oX have the same convergent sequences [4,9].

Lemma 2.5 A topological space X is an sof-countable space if and only if X is an snf-
countable space and o X is a Fréchet space.

Proof. Let X be a space. For every A C X, let cl,x(A) be the closure of A in 0X.

If X is an sof-countable space. Obviously, X is an snf-countable space. Let A C X and
x € clyx(A). Suppose that P, = {P,}nen is a countable so-network of z in X. Since the
intersection of any two sequentially open sets of X is still a sequentially open set, without
loss of generality, we may assume that P,41 C P, for each n € N. Since each P, is an open
neighborhood of x in ¢ X, there exists x,, € AN P,. Next we will show that the sequence
{Zn }tnen converges to x in 0X. Let U be an arbitrary open neighborhood of # in ¢X. Then
there is m € N such that P,, C U. If not, there is a sequence {2, }nen in X such that z,, € P,\U
for every n € N. Since the family &, is a decreasing network of z in X, the sequence {z, }nen
converges to x in X. However, the set U is a sequential neighborhood of x in X. So the sequence
{2n}nen is eventually in U, which is a contradiction. Thus the set P, C U for some m € N
and z, € P, C P,, C U whenever n > m. It shows that the sequence {z,}nen in A converges
to x in 0 X. Thus, 0 X is a Fréchet space.

Conversely, assume that X is an snf-countable space and oX is a Fréchet space. For
each z € X, let &, = {P,}nen be an snf-network of z in X with each P,y; C P,. Put
U, =X\clox(X\ P,) for each n € N. Then U, is an open set of 0.X, so U, is a sequentially
open subset of X and U,, C P,. If z & U,, ie., x € clyx(X \ P,). Since 0X is a Fréchet
space, there is a sequence {xj}ren in X \ P, converging to z, which is a contradiction with P,
being a sequential neighborhood of  in X. Thus, « € U,. Therefore, the family {U, } nen is an
so-network of x in X. Hence, X is an sof-countable space. This completes the proof.

To compare the relationships between the weakly first-countable spaces described above,
the following question is posed:

Question 2.6 How to find a topological property P such that a space X is an Ng-snf-
countable space if and only if it is a csf-countable space with property P?

Let f : X — Y be a mapping. f is called a finite-to-one (resp. countable-to-one) mapping
if, f~1(y) is a finite (resp. countable) subset of X for every y € Y.

Lemma 2.7 Let f : X — Y be a closed finite-to-one mapping. If a sequence T in X satisfies
that f(T') is a convergent sequence in'Y, then the sequence T has a convergent subsequence in
X.

Proof. Put T' = {z, }nen. Assume that f(T) = {f(zn)}nen is a sequence in Y converging to
a point y. Put K = {y} U{f(z,) :n € N} and L = f~!(K). Clearly, K is a compact subset of
Y and T' C L. Since f is a closed finite-to-one mapping, L is a compact countable subset of X.
Since a compact space with a countable network is metrizable [10], L is a compact metrizable
subspace. Then the sequence T in L has a convergent subsequence. This completes the proof.

A mapping f : X — Y is called a sequentially quotient mapping [5] if, whenever {y,}nen
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is a convergent sequence in Y, there exists a convergent sequence {x;},cn in X such that each
2; € £~ (yn,) and {yn, }ien is a subsequence of {y, }nen. Lemma 2.7 shows that every closed
finite-to-one mapping is a sequentially quotient mapping [27].

Lemma 2.8 Sequential spaces and Fréchet spaces are invariants and inverse invariants

under closed finite-to-one mappings.

Proof. The following three results are known: (1) Sequential spaces are preserved under
quotient mappings [8]; (2) Fréchet spaces are invariants under pseudo-open mappings [8]; (3)
Sequential spaces are inverse invariants under closed finite-to-one mappings [30]. It is also
known that every closed mapping is a pseudo-open mapping, and each pseudo-open mapping
is a quotient mapping [10]. To complete the proof, it suffices to show that Fréchet spaces
are inverse invariants under closed finite-to-one mappings. The result was announced in the
paper [14] by the second author. Here we give it a complete proof. Let f : X — Y be a
closed finite-to-one mapping with Y being a Fréchet space. Let A C X and 2 € A. Put
FYf(z) = {x1,72,...,2,} with 21 = x for some n € N. Since X is a Ty space, there is
an open neighborhood V' of z such that V N {z2,...,2,} = @. Thenz € VNA C VNA.
It follows that f(z) € f(VNA) = f(VNA). Since Y is a Fréchet space, there is a sequence
{an}nen in V' N A such that the sequence { f(an)}nen converges to f(z). By Lemma 2.7, there

is a subsequence {ay, }ien of {an }nen such that {an, }ien converges to a point a € X. Clearly,
f(a) = f(z). Thus a € VN f~1(f(x)) = {x}, and the sequence {a,, }icn in A converges to z.
Hence X is a Fréchet space. This completes the proof.

Corollary 2.9 Let f: X =Y be a closed finite-to-one mapping. Then cX is a Fréchet
space if and only if oY is a Fréchet space.

Proof. Define a mapping g : 0 X — oY by g(z) = f(z) for any 2 € X. By Lemma 2.8,
we only need to prove that g is a closed finite-to-one mapping. Obviously, g is a finite-to-one
mapping. We will show that g is a closed mapping. Suppose that F is a closed set in oV, i.e.,
F is a sequentially closed subset of Y. Since f is continuous, it is easy to verify that f~!(F) is
a sequentially closed in X. Thus, g~'(F) is closed in ¢ X. It shows that g is continuous. On
the other hand, suppose that A is a closed subset of 0 X. Let {y,}nen be a sequence in f(A)
converging to y € Y. Choose a sequence {Z, }nen in A such that y, = f(x,) for each n € N.
By Lemma 2.7, there is a convergent subsequence {z,, }ien of {zp }neny in X. Suppose that the
sequence {x,, }ieny in X converges to x. Since A is sequentially closed in X, the limit x € A.
Therefore, y = f(z) € f(A); so f(A) is sequentially closed in Y, i.e., g(A) is closed in oY
Hence, g : 0 X — oY is a closed mapping. This completes the proof.

Lemma 2.10 «ay-spaces are invariants and inverse invariants under closed finite-to-one
mappings.

Proof. Let f: X — Y be a closed finite-to-one mapping. Firstly, suppose that X is an ay-
space. Let y € Y and a sequence S, in Y converge to y for any n € N. By Lemma 2.7, there is
a convergent sequence T, in X such that f(7T),) is a subsequence of S,, for each n € N. Suppose
that T}, converges to t,, then f(t,) = y. Since f~1(y) is a finite set, there exist # € X and

a subsequence {t,, }ien of {t, }nen such that each t,, = x. Moreover, since X is an ay4-space,
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there is a sequence T in X converging to = such that {i € N: T NT,, # @} is an infinite set.
Then the sequence f(T) in Y converges to y and {n € N: f(T)N S, # @} is an infinite set.
Therefore, Y is an a4-space.

Conversely, suppose that Y is an a4-space. Let x € X and each T, in X be a sequence
converging to x for any n € N. Since f is a closed finite-to-one mapping and X is a T, space,
there is a neighborhood V' of = such that V N f=1(f(z)) = {z}. Without loss of generality,
we may assume that T,, C V for each n € N. Obviously, the sequence f(7},) in Y converges
to f(x). Since Y is an ay-space, there is a sequence S in Y converging to f(z) such that
{n € N: SN f(T,) # @} is an infinite set. Put S = {yi}ren. Without loss of generality, we
may assume that there exists zy € T),, such that y, = f(xy) and ny < ni41 for each k € N. By
Lemma 2.7, there is a subsequence {zy, }ien of {zx }ren such that {z, }ien converges to a point
z € X. Then, z € VN f~1(f(z)) = {z}. Put T = {x}, }ien. Thus the sequence T converges
toz and {n € N: TNT, # &} is an infinite set. Hence X is an ay-space. This completes the
proof.

83 The closed finite-to-one mapping theorems

In this section, we mainly prove that the following topological properties are preserved and
preserved inversely by closed finite-to-one mappings: point-Gs properties, Rg-sn f-countability,
weak quasi-first-countability, quasi-first-countability, cs f-countability, sn f-countability, g f-coun-
tability and sof-countability.

A space is called having a point-Gs property, if each singleton in X is a Gs-set in X.

Theorem 3.1 Point-Gs properties are invariants and inverse invariants under closed
finite-to-one mappings.

Proof. Let f: X — Y be a closed finite-to-one mapping.

(1) Suppose that X has a point-Gs property. For an arbitrary y € Y, put f~(y) =
{x1,22, - ,x,} for some n € N. Since X is a T space, there is a family {U;}i<, of disjoint
open subsets of X such that x; € U; for each i € {1,...,n}. Since {z;} is a Gs-set in X, there

is a family {U; }ren of open neighborhoods of z; such that each U, C U; and () Ui, = {4}
keN
Obviously, (| Uy € () (U Usx) for each i < n. Thus, U () Uik) € N (U Uix). On the
keN keN i<n i<n keN keN i<n
other hand, if z € (| (U Uix), then z € |J U;. Therefore, there is m < n such that z € Up,.
keN i<n i<n

Sox€eUnN(N(UVUw)C N Unk € U () Uir). Therefore, N (U Uix) = U (N Uir)-

keN i<n keN i<n keN keN i<n i<n keN
Obviously, f~(y) € | Ui for any k € N. Since f is a closed mapping, there is an open
i<n
neighborhood Vi of y such that f='(V4x) € U Up. We will show that (| Vi = {y}. If
i<n keN
z € () Vi, then

keN
e v e N ow = U Ow) = ULk =11 w)-

kEN keN i<n i<n keN i<n
Therefore, z = y. Thus, Y has a point-Gs property.
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(2) Suppose that Y has a point-Gs property. For any x € X, since f is a finite-to-one
mapping, and X is a HT} space, there is an open set U in X such that U N f~1(f(z)) = {x}.

Choose a family {O,, }nen of open subsets of Y such that {f(z)} = () Oy. Then,
neN

UN(()f7H0) =UN () On) =UNfH(f(2)) = {a}.
neN neN
Therefore, X has a point-Gs property. This completes the proof.

The proof of (2) in Theorem 3.1 does not require that f is a closed mapping and X is only
a T space.

Theorem 3.2 Ry-snf-countability is an invariant and an inverse invariant under closed
finite-to-one mappings.

Proof. It pointed out that each countable-to-one and sequentially quotient mapping p-
reserves No-sn f-countability in [20, Theorem 2.5]. By Lemma 2.7, Rg-snf-countability is an
invariant under closed finite-to-one mappings.

Conversely, let f: X — Y be a closed finite-to-one mapping and Y be an Ng-sn f-countable
space. Put &, = {Py(n,m) : n,m € N} in Y satisfying the condition of Lemma 2.1(2) for each
y € Y. Since f is a finite-to-one mapping, for each z € X there are disjoint open sets U; and
U in X such that € Uy and f~(f(z)) \ {o} C Us. Put Qz(n,m) = Uy N f1(Pyy)(n,m))
for each n,m € N. We will show that the family 2, = {Q.(n,m) : n,m € N} in X satisfies the
condition of Lemma 2.1(2), then X is an Ryp-sn f-countable space.

Suppose that z € X andn € N. If z € U € 7x, then f~1(f(x)) C (U1NU)JUs. Since fisa
closed mapping, there is a neighborhood O of f(z) in Y such that f~*(0) C (U1NU) |JUs. Since
{P(z)(n,m) }men is a network of f(x) in Y, there exists m € N such that Py)(n,m) C O.
Therefore, Qg(n,m) = Uy N f~1(Ppy(n,m)) € Uy N f71O0) C U. So {Qz(n,m)}men is a
decreasing network of  in X. On the other hand, given each n,m, € N, if Q = |, cjy Qz(n, my)
is not a sequential neighborhood of = in X, there exists a sequence {xy }ren in X converging to
x such that xy, & @ for each k € N. Then the sequence { f(zx)}ren in Y converges to f(z). Since
P = U,en Pf(z)(n,my) is a sequential neighborhood of f(x) in Y, there is ko € N such that
Tk, € Uy and f(zy,) € P. Thus, 2, € Uy N f~1(P) = Q, which is a contradiction. Therefore,
Q is a sequential neighborhood of z. This completes the proof.

By Lemma 2.2, Theorem 3.2 and Lemma 2.8, we have the following two corollaries:

Corollary 3.3 Weak quasi-first-countability is an invariant and an inverse invariant under
closed finite-to-one mappings.

Corollary 3.4 Quasi-first-countability is an invariant and an inverse invariant under
closed finite-to-one mappings.

Shen Rongxin [23, Lemma 2.4 and Corollary 2.5] proved that weak quasi-first-countability
(resp. quasi-first-countability) is preserved by quotient (resp. pseudo-open) and peripherally
countable mappings. Every closed mappings are pseudo-open, and every pseudo-open mappings
are quotient [10]. By these results, it can be shown that weak quasi-first-countability, and quasi-
first-countability are preserved by closed finite-to-one mappings.

Theorem 3.5 csf-countability is an invariant and an inverse invariant under closed finite-
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to-one mappings.

Proof. Let f: X — Y be a closed finite-to-one mapping.

Firstly, suppose that X is a csf-countable space. For an arbitrary y € Y, put f~1(y) =
{z1,22,...,2,} for some n € N. Let {U;;};en be a countable cs-network of z; in X for each
i <mn. Put &y, ={f(Uy):i<nandj € N}. Obviously, y € [|Z,. We will show that
the family &7, satisfies the following condition (x): if y € U € 7y and {yn }nen converges to
y in Y, there is P € &, such that P C U and P contains a subsequence of the sequence
{Yn}nen. In fact, by Lemma 2.7, f is a sequentially quotient mapping; so there is a convergent
sequence {zp}ren in X such that {f(zx)}ren is a subsequence of {yn}nen. Suppose that the
sequence {2 }ren converges to a point z € X, then 2z € f~!(y). Thus, there exists i < n such
that z = ;. Since z; € f~}(U), there is j € N such that U;; C f~1(U) and the sequence
{#k }ren is eventually in U;;. It follows that f(U;;) C U and f(U;;) contains a subsequence of
the sequence {yy }nen. Next we will prove that the point y in Y has a countable cs-network.
Put 7, = {U 2, : &, is a finite subset of Z,}; thus 7, is countable and y € (.7,. If a
sequence {y,} in Y convergestoy € V € 1y, put {F € %, : F C V} = {F;}ien. Then there is
k € N such that the sequence {y,}nen is eventually in UK,C F;. If not, there is a subsequence
{Yni tren of {yn}nen such that each y,, € X \ ;¢ Fi. Since &, satisfies the condition (),
there exist a subsequence {yn, }jen of {yn, } and P € &, such that each y,, € P C V. Then
P € 7,. Therefore, there exists m € N such that P = F,,. Thus, y,, & F, = P, which is a
contradiction. Hence Y is a c¢sf-countable space.

Secondly, we will prove the inverse invariant. Suppose that Y is a csf-countable space. For
any r € X, since Y is a cs f-countable space, there is a countable cs-network &y ;) of f(x) inY.
Since f is a finite-to-one mapping, there are disjoint open sets U; and Us in X such that x € U;
and f7H(f(x)) \ {z} C Us. Put 2, = {U1N f~(P): P € Py} Then 2, is a countable
es-network of z in X. In fact, suppose that a sequence {z, },en in X convergesto xz € V € 7x.
Since f~1(f(z)) C (U1 NV)|JUz and f is a closed mapping, there is a neighborhood O of f(z)
in Y such that f=1(0) C (UyNV)|JUs. Since the sequence { f(x,)}nen converges to f(x) € O,
there exists P € P} (,) such that P C O and the sequence {f(x,)}nen is eventually in P. So
the sequence {x, }nen is eventually in Uy N f~1(P) and Uy N f~1(P) Cc U1 Nf~1(O) C V. Thus,
X is a csf-countable space. This completes the proof.

Corollary 3.6 snf-countability is an invariant and an inverse invariant under closed
finite-to-one mappings.

Proof. By Lemma 2.3, Theorem 3.5 and Lemma 2.10, sn f-countability is an invariant and
an inverse invariant under closed finite-to-one mappings. This completes the proof.

Corollary 3.7 gf-countability is an invariant and an inverse invariant under closed finite-
to-one mappings.

Proof. By Lemma 2.4, Corollary 3.6 and Lemma 2.8, g f-countability is an invariant and an
inverse invariant under closed finite-to-one mappings. This completes the proof.

Corollary 3.8 sof-countability is an invariant and an inverse invariant under closed

finite-to-one mappings.
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Proof. By Lemma 2.5, Corollary 3.6 and Lemma 2.9, sof-countability is an invariant and
an inverse invariant under closed finite-to-one mappings. This completes the proof.

A mapping f: X — Y is called a perfect mapping [7] if f is a closed mapping and each fiber
f~1(y) is compact in X. Obviously, every closed finite-to-one mapping is perfect.

Example 3.9 None of the following properties is an invariant under perfect mappings:
a point-Gs property, csf-countability, Ro-sn f-countability, weak quasi-first-countability, quasi-
first-countability, snf-countability, gf-countability and sof-countability.

J.E. Vaughan constructed the perfect image X s of a first-countable regular space X such
that the space Xjs is not of a point-Gs property [28, Example 7.5]. Since a space is first-
countable if and only if it is a strongly Fréchet and ¢s f-countable space [20, Theorem 3.6], and
every strongly Fréchet space is preserved by a perfect mapping [26, Proposition 3.4], the space
X is not esf-countable. Hence, a point-Gs property, csf-countability, Rg-sn f-countability,
weak quasi-first-countability, quasi-first-countability, sn f-countability, g f-countability or sof-
countability is not an invariant under perfect mappings.

The following question [23, Question 2.10] is answered negatively by Example 3.9: Is a
quasi-first-countable space preserved under a perfect mapping?

Example 3.10 None of the following properties is an inverse invariant under perfect map-
pings: a point-Gs property, csf-countability, Rg-snf-countability, weak quasi-first-countability,
quasi-first-countability, snf-countability, gf-countability and sof -countability.

It was proved that the one-point compactification A(w;) of the discrete space w; is not
csf-countable [24, Lemma 4.1]. Tt is easy to see the space A(wy) is not of a point-Gs property.
Let Y = {0} and define a function ¢ : A(w1) — Y by ¢(z) = 0 for each z € A(w1). Let the
function ¢ be a quotient mapping. Then ¢ is a perfect mapping, and Y is first-countable. There-
fore, a point-Gs property, csf-countability, Rg-sn f-countability, weak quasi-first-countability,
quasi-first-countability, sn f-countability, gf-countability or sof-countability is not an inverse

invariant under perfect mappings.

84 Some applications

In this section, we discuss some applications of closed finite-to-one mapping theorems ob-
tained in Section 3. Recently, Good and Macfas [13] studied the symmetric products of gen-
eralized metric spaces. They obtained some generalized metric properties P such that for a
topological space X and each n € N, the space X or the product space X" has the property
P if and only if %, (X) does. The symmetric product properties are closely related to finite
productive properties and closed finite-to-one mapping properties [13,27].

Definition 4.1 [21] Let (X, 7) be a topological space. 2% denotes the family of all non-
empty and compact sets in X. For each n € N, put %, (X) = {4 € 2% : |A] < n}. The set 2%
is endowed with the Vietoris topology, a base of which consists of all subsets of the following
forms:

(U1, Uz, -+, Upy ={A€2¥: AC | JUs and ANU; # @, for each i € {1,--- , k}},
i<k
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where k € N and each U; is open in X. The set %, (X) endowed with the subspace topology of
2% is called the n-fold symmetric product of X for each n € N.

There are two types of n-fold symmetric product properties. The one is that the n-fold
symmetric product %, (X) has property P if and only if the space X has property P. It is
known that the spaces, such as csf-countable, sn f-countable and sof-countable spaces, have
this n-fold symmetric product property [27]. The other one is that the n-fold symmetric product
Fn(X) has property P if and only if the product space X™ has property P. It is known that
g f-countability has this n-fold symmetric product property [27]. In this section, we will show
that the following properties have n-fold symmetric product properties: a point-Gs property,
Ng-sn f-countability, weak quasi-first-countability and quasi-first-countability.

The following lemma indicates that the relations between closed finite-to-one mappings and
n-fold symmetric products.

Lemma 4.2 [13] For a space X and n € N. f, : X" — Z,(X) is a closed finite-to-one
mapping, where fn, : X™ — %, (X) is defined by fn(r1,22,...,Tn) = {T1,22,...,Tn}.

Lemma 4.3 Ng-snf-countability is finite productive.

Proof. Assume that &k € N and {X; : ¢ € {1,2,--- ,k}} is a family of Ng-sn f-countable
spaces. Put X = [[,., X;. For each = (21,22,---,21) € X and ¢ < k, since X; is an
Ro-sn f-countable spacg, let Z,, = {Py,(n,m) : n,m € N} be a family of subsets in X;, which
satisfies Lemma 2.1(3). Put Py(n,m) = [[,;, Ps,(n;,m) for each n = (ni,na,--- ,ny) € N¥
and m € N. We will show that the family P, = {P.(n,m) : n € N*,m € N} in X satisfies
Lemma 2.1(3) for each z € X. Firstly, N¥ is countable. For any n = (nq,n2,---,ni) € N¥,
clearly {P;(n,m)}men is a decreasing family. Let U be a neighborhood of z in X. Then there
is an open set U; in X; for each i < k such that x € [[,., Ui C U. Since {Py,(n;,m)}men
is a network of z; in X; for each ¢ < k, there exists m; €7N such that Py, (n;,m;) C U;. Let
m = max{m,; : i < k}. Then P,(n,m) C [[,«4 P, (ni,m;) C [[,,Us C U. It shows that
{Pz(n,m)}men is a decreasing network of = in X. On the other haun_d7 assume that a sequence
{z(j)}jen in X converges to x € X where z(j) = (z1(j),z2(j), -+ ,2x(j)) for each j € N.
Then the sequence {z;(j)}jen in X, converges to z; for each i < k. By Lemma 2.1(3.2), there
exist n; € N and a subsequence {z;(jm ) }men of {x;(j)}en such that each z;(jn) € Py, (ni, m).
Without loss of generality, we may assume that the sequence {j,}men and i are irrelevant.
Let n = (ni,n2,---,n;) € N¥. Then the subsequence {z(jm)}men of {z(j)}jen satisfies
2(jm) € Pi(n,m) for each m € N. By Lemma 2.1, X is an Ng-snf-countable space. This
completes the proof.

Theorem 4.4 Forn € N, a topological space X has a point-Gs property (resp. No-snf-
countability) if and only if F,(X) does.

Proof. Obviously, the point-Gs property is finite productive and hereditary. So X has a
point-Gs property if and only if X™ does. By Lemma 4.2 and Theorem 3.1, X has a point-G;
property if and only if the n-fold symmetric product does.

By Lemmas 4.2 and 4.3 and Theorem 3.2, the proof of Ng-sn f-countability is similar. This

completes the proof.



160 Appl. Math. J. Chinese Univ. Vol. 34, No. 2

Theorem 4.5 For a topological space X and n € N, X™ has weak quasi-first-countability
(resp. quasi-first-countability) if and only if %, (X) does.

Proof. By Lemma 4.2 and Corollary 3.3 (resp. Corollary 3.4), X™ has weak quasi-first-
countability (resp. quasi-first-countability) if and only if %, (X) does. This completes the
proof.
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