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The closed finite-to-one mappings and their applications

YANG Jie1 LIN Shou2*

Abstract. In this paper, we discuss the closed finite-to-one mapping theorems on generalized

metric spaces and their applications. It is proved that point-Gδ properties, ℵ0-snf -countability

and csf -countability are invariants and inverse invariants under closed finite-to-one mappings.

By the relationships between the weak first-countabilities, we obtain the closed finite-to-one

mapping theorems of weak quasi-first-countability, quasi-first-countability, snf -countability, gf -

countability and sof -countability. Furthermore, these results are applied to the study of sym-

metric products of topological spaces.

§1 Introduction

In 1961, P.S. Alexandroff [1] put forward the idea of investigating spaces by mappings at

the international topological symposium in Prague. The survey paper “Mappings and spaces”

written by A.V. Arhangel’skǐı [2] in 1966 inherited and developed the idea. One of the most

basic questions of Alexandroff-Arhangel’skǐı’s idea is what topological properties are preserved

by certain mappings [2]?

In general topology, perfect mappings are widely studied and have obtained fruitful results,

for example perfect mappings preserve metrizability [7]. However some important topological

properties are not preserved under perfect mappings, such as perfect mappings do not pre-

serve g-metrizability [15]. It is known that g-metrizability is preserved under continuous closed

and finite-to-one mappings [15]. It shows the importance of finite-to-one mappings. R.F. Git-

tings [12] and Lin Shou [14] provided special summary reports on open finite-to-one mappings

and closed finite-to-one mappings, respectively. These have played an active role in the develop-

ment of spaces and mappings and their applications. In the late years, Ge Ying [11] proved that

closed finite-to-one mappings preserve sn-metrizability; Shen Rongxin [23] proved that closed

finite-to-one mappings preserve quasi-first-countability and weak quasi-first-countability; and
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Mou Lei and H. Ohta [22] studied the closed finite-to-one mappings of spaces with sharp bases.

Good and Maćıas [13] recently discussed the symmetric products of generalized metric spaces

and pointed out the role of closed finite-to-one mappings. Based on it, Tang Zhongbao, Lin

Shou and Lin Fucai [27] constructed two general stability theorems about symmetric products

and topological properties by closed finite-to-one mappings. It shows the special role of closed

finite-to-one mappings in discussing the mapping properties of spaces and their applications.

There are still some problems whether closed finite-to-one mappings preserve or preserve

inversely topological properties to be solved [14]. It is a classical problem whether closed

finite-to-one mappings preserve ortho-compact properties [6], and the applications of closed

finite-to-one mappings remains to be discovered. In this paper, we mainly study the following

generalized metric properties which are preserved and preserved inversely under closed finite-

to-one mappings: point-Gδ properties, ℵ0-snf -countability, weak quasi-first-countability, quasi-

first-countability, sof -countability, snf -countability, gf -countability, csf -countability and so

on. Also the properties of symmetric products of the above properties are discussed.

First we recall some basic concepts used in this paper. Denote by τX or τ the topology on

a topological space X . All spaces are T2 unless stated otherwise, all mappings are continuous

and onto. Readers may refer to [7, 10] for unstated notation and terminology.

Let X be a space. P ⊂ X is called a sequential neighborhood of x in X if every sequence

converging to x ∈ X is eventually in P , i.e., if a sequence {xn}n∈N converges to x in X , there

exists m ∈ N such that {xn : n ≥ m} ⊂ P . A subset P of X is called sequentially open if P is

a sequential neighborhood of each point in P . P is a sequentially closed subset of X if X \ P
is sequentially open.

Definition 1.1 Let P =
⋃

x∈X Px be a family of subsets of a space X satisfying that

(a) Px is a network of x in X for each x ∈ X , i.e., x ∈ ⋂
Px and if x ∈ G ∈ τX , there exists

P ∈ Px such that P ⊂ G; (b) if U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.

(1) The family P is called an sn-network [16] for X if each element of Px is a sequential

neighborhood of x in X for each x ∈ X .

(2) The family P is called an so-network [16] for X if each element of Px is sequentially

open in X for each x ∈ X .

(3) The family P is called a weak base [2] for X if a subset G ⊂ X is open in X whenever

for each x ∈ G there exists P ∈ Px such that P ⊂ G.

Moreover Px is called an sn-network (resp. an so-network, a weak base) of x. If every Px

is countable, X is called snf -countable (resp. sof -countable, gf -countable) [2, 17].

Definition 1.2 Let P = {Px(n,m) : x ∈ X,n,m ∈ N} be a family of subsets of X , where

{Px(n,m)}m∈N is a decreasing network of x in X for any x ∈ X and n ∈ N.

(1) A space X is called a quasi-first-countable space [25] if, there exists the family P such

that, given x ∈ A ⊂ X , the set A is a neighborhood of x in X whenever for every n ∈ N, there

is m ∈ N such that Px(n,m) ⊂ A.

(2) A space X is called a weakly quasi-first-countable space [25] if, there exists the family P

such that, given A ⊂ X , the set A is an open set in X whenever if for every x ∈ A and n ∈ N,
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there is m ∈ N such that Px(n,m) ⊂ A.

(3) A space X is called an ℵ0-snf -countable space [20] if, there exists the family P such

that, given A ⊂ X , the set A is a sequentially open subset of X whenever if for every x ∈ A

and n ∈ N, there is m ∈ N such that Px(n,m) ⊂ A.

Definition 1.3 A space X is called a csf -countable space [17] if for every x ∈ X , there is

a countable family Px of subsets of X satisfying as follows: (a) x ∈ ⋂
Px; (b) if x ∈ U ∈ τX

and a sequence {xn}n∈N converges to x in X , then there exists P ∈ Px such that P ⊂ U and

the sequence {xn}n∈N is eventually in P . The family Px is called a countable cs-network of x

in X .

The basic relationships between the spaces described above are in the following diagram [19,

20], and these spaces are also known as weakly first-countable spaces:

first-countable space �

�
�

�
�

�
���

quasi-first-countable space

�
gf -countable space �

�

weakly quasi-first-countable space

�
sof -countable space �snf -countable space � ℵ0-snf -countable space � csf -countable space

§2 Lemmas

In this section, we study some relationships between several weak first-countabilities. Some

auxiliary results will be cited or proved.

Lemma 2.1 The following are equivalent for a space X:

(1) X is an ℵ0-snf -countable space.

(2) For each x ∈ X, there exists a family Px = {Px(n,m) : n,m ∈ N} of subsets of X

satisfying:

(2.1) {Px(n,m)}m∈N is a decreasing network of x in X for each n ∈ N.

(2.2) For each n, mn ∈ N,
⋃

n∈N
Px(n,mn) is a sequential neighborhood of x.

(3) For each x ∈ X, there exists a family Px = {Px(n,m) : n,m ∈ N} of subsets of X

satisfying:

(3.1) {Px(n,m)}m∈N is a decreasing network of x in X for each n ∈ N.

(3.2) If a sequence {xk}k∈N in X converges to x, there exist n ∈ N and a subsequence

{xkm}m∈N of {xk}k∈N such that each xkm ∈ Px(n,m).

Proof. (1) ⇒ (3). Suppose that P is a family of subsets of X which satisfies Definition

1.2(3). Let Px = {Px(n,m) : n,m ∈ N} for each x ∈ X . Then we only need to show that

(3.2) holds. Assume that a sequence {xk}k∈N in X converges to x. Since P is a network of X ,

without loss of generality, we may assume that xk �= x for all k ∈ N. Put H = X \{xk : k ∈ N}.
For a point z ∈ H with z �= x and n ∈ N, since H is a neighborhood of z, there exists

m ∈ N such that Pz(n,m) ⊂ H . Since the set H is not a sequentially open subset of X ,
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according to Definition 1.2(3), there exists n ∈ N such that Px(n,m) �⊂ H for any m ∈ N. Put

Tm = Px(n,m) ∩ {xk : k ∈ N}. Then Tm �= ∅. If Tm0 is a finite set for some m0 ∈ N, then

there exists m1 > m0 such that Px(n,m1) ⊂ X \ Tm0 , thus Tm1 = ∅, which is a contradiction.

So each Tm is an infinite set. Hence there is a subsequence {xkm}m∈N of {xk}k∈N such that

each xkm ∈ Px(n,m).

(3) ⇒ (2). Suppose that a family Px = {Px(n,m) : n,m ∈ N} of subsets of X satisfies

condition (3) for each x ∈ X . Put P =
⋃

n∈N
Px(n,mn) for each n, mn ∈ N. If P is not

a sequential neighborhood of x in X , there is a sequence {xk}k∈N of X converging to x such

that xk �∈ P for each k ∈ N. According to (3.2), there exist n ∈ N and a subsequence

{xkm}m∈N of {xk}k∈N such that each xkm ∈ Px(n,m). Take m′ ∈ N such that m′ > mn. Then

xkm′ ∈ Px(n,m
′) ⊂ Px(n,mn) ⊂ P , which is a contradiction. Thus Px satisfies (2) for each

x ∈ X .

(2) ⇒ (1). Suppose that a family Px = {Px(n,m) : n,m ∈ N} of subsets of X satisfies

condition (2) for each x ∈ X . Put P =
⋃

x∈X Px. If a subset A of X satisfies that for any

x ∈ A and n ∈ N, there exists mn ∈ N such that Px(n,mn) ⊂ A, then
⋃

n∈N
Px(n,mn) ⊂ A.

According to (2.2), A is a sequential neighborhood of x. Thus A is a sequential neighborhood of

each point in A, i.e., A is a sequentially open subset of X . Therefore, X is an ℵ0-snf -countable

space. This completes the proof.

The (1) ⇒ (2) in Lemma 2.1 is not obvious. The space in Definition 1.2(3) was called a

sequential network space with a countable fan by Lin Shou [18]; the space in Lemma 2.1(3) was

defined as an ℵ0-sn weakly first-countable space by Wang Pei, Li Zhongmin and Liu Shiqin [29];

and the space in Lemma 2.1(2) was defined as an ℵ0-snf -countable space by Lin Shou and Ge

Ying [20]. Here, it is proved that these definitions are consistent. In addition, for each Px(n,m)

in Lemma 2.1, the variable n only need be countable, and the variable m need be countable

and ordinal.

A space X is said to be a sequential space [8] if each sequentially open subset is open in X .

A space X is called a Fréchet space [8] if, for any subset A ⊂ X and x ∈ A, there is a sequence

in A converging to x in X .

Lemma 2.2 [18,20] (1) A topological space X is a weakly quasi-first-countable space if and

only if it is an ℵ0-snf -countable sequential space.

(2) A topological space X is a quasi-first-countable space if and only if it is an ℵ0-snf -

countable Fréchet space.

A space X is called an α4-space [3] if, whenever x ∈ X and each sequence Sn in X converges

to x for any n ∈ N, then there exists a sequence S in X converging to x such that {n ∈ N :

S ∩ Sn �= ∅} is infinite.

Lemma 2.3 [17] A topological space X is an snf -countable space if and only if it is a

csf -countable α4-space.

Lemma 2.4 [16] A topological space X is a gf -countable space if and only if it is an

snf -countable sequential space.

For every topological space (X, τ), a new topology στ on the X can be defined as follows:
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O ∈ στ if and only if O is a sequentially open subset in (X, τ) [9]. The space (X, στ ) is called

a sequential coreflection of (X, τ), which is denoted by σX . It is well-known that σX is a

sequential space, X and σX have the same convergent sequences [4, 9].

Lemma 2.5 A topological space X is an sof -countable space if and only if X is an snf -

countable space and σX is a Fréchet space.

Proof. Let X be a space. For every A ⊂ X , let clσX(A) be the closure of A in σX .

If X is an sof -countable space. Obviously, X is an snf -countable space. Let A ⊂ X and

x ∈ clσX(A). Suppose that Px = {Pn}n∈N is a countable so-network of x in X . Since the

intersection of any two sequentially open sets of X is still a sequentially open set, without

loss of generality, we may assume that Pn+1 ⊂ Pn for each n ∈ N. Since each Pn is an open

neighborhood of x in σX , there exists xn ∈ A ∩ Pn. Next we will show that the sequence

{xn}n∈N converges to x in σX . Let U be an arbitrary open neighborhood of x in σX . Then

there is m ∈ N such that Pm ⊂ U . If not, there is a sequence {zn}n∈N in X such that zn ∈ Pn\U
for every n ∈ N. Since the family Px is a decreasing network of x in X , the sequence {zn}n∈N

converges to x in X . However, the set U is a sequential neighborhood of x in X . So the sequence

{zn}n∈N is eventually in U , which is a contradiction. Thus the set Pm ⊂ U for some m ∈ N

and xn ∈ Pn ⊂ Pm ⊂ U whenever n > m. It shows that the sequence {xn}n∈N in A converges

to x in σX . Thus, σX is a Fréchet space.

Conversely, assume that X is an snf -countable space and σX is a Fréchet space. For

each x ∈ X , let Px = {Pn}n∈N be an snf -network of x in X with each Pn+1 ⊂ Pn. Put

Un = X \ clσX(X \ Pn) for each n ∈ N. Then Un is an open set of σX , so Un is a sequentially

open subset of X and Un ⊂ Pn. If x �∈ Un, i.e., x ∈ clσX(X \ Pn). Since σX is a Fréchet

space, there is a sequence {xk}k∈N in X \Pn converging to x, which is a contradiction with Pn

being a sequential neighborhood of x in X . Thus, x ∈ Un. Therefore, the family {Un}n∈N is an

so-network of x in X . Hence, X is an sof -countable space. This completes the proof.

To compare the relationships between the weakly first-countable spaces described above,

the following question is posed:

Question 2.6 How to find a topological property P such that a space X is an ℵ0-snf -

countable space if and only if it is a csf -countable space with property P?

Let f : X → Y be a mapping. f is called a finite-to-one (resp. countable-to-one) mapping

if, f−1(y) is a finite (resp. countable) subset of X for every y ∈ Y .

Lemma 2.7 Let f : X → Y be a closed finite-to-one mapping. If a sequence T in X satisfies

that f(T ) is a convergent sequence in Y , then the sequence T has a convergent subsequence in

X.

Proof. Put T = {xn}n∈N. Assume that f(T ) = {f(xn)}n∈N is a sequence in Y converging to

a point y. Put K = {y} ∪ {f(xn) : n ∈ N} and L = f−1(K). Clearly, K is a compact subset of

Y and T ⊂ L. Since f is a closed finite-to-one mapping, L is a compact countable subset of X .

Since a compact space with a countable network is metrizable [10], L is a compact metrizable

subspace. Then the sequence T in L has a convergent subsequence. This completes the proof.

A mapping f : X → Y is called a sequentially quotient mapping [5] if, whenever {yn}n∈N
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is a convergent sequence in Y , there exists a convergent sequence {xi}i∈N in X such that each

xi ∈ f−1(yni) and {yni}i∈N is a subsequence of {yn}n∈N. Lemma 2.7 shows that every closed

finite-to-one mapping is a sequentially quotient mapping [27].

Lemma 2.8 Sequential spaces and Fréchet spaces are invariants and inverse invariants

under closed finite-to-one mappings.

Proof. The following three results are known: (1) Sequential spaces are preserved under

quotient mappings [8]; (2) Fréchet spaces are invariants under pseudo-open mappings [8]; (3)

Sequential spaces are inverse invariants under closed finite-to-one mappings [30]. It is also

known that every closed mapping is a pseudo-open mapping, and each pseudo-open mapping

is a quotient mapping [10]. To complete the proof, it suffices to show that Fréchet spaces

are inverse invariants under closed finite-to-one mappings. The result was announced in the

paper [14] by the second author. Here we give it a complete proof. Let f : X → Y be a

closed finite-to-one mapping with Y being a Fréchet space. Let A ⊂ X and x ∈ A. Put

f−1(f(x)) = {x1, x2, . . . , xn} with x1 = x for some n ∈ N. Since X is a T2 space, there is

an open neighborhood V of x such that V ∩ {x2, . . . , xn} = ∅. Then x ∈ V ∩ A ⊂ V ∩ A.

It follows that f(x) ∈ f(V ∩ A) = f(V ∩ A). Since Y is a Fréchet space, there is a sequence

{an}n∈N in V ∩A such that the sequence {f(an)}n∈N converges to f(x). By Lemma 2.7, there

is a subsequence {ani}i∈N of {an}n∈N such that {ani}i∈N converges to a point a ∈ X . Clearly,

f(a) = f(x). Thus a ∈ V ∩ f−1(f(x)) = {x}, and the sequence {ani}i∈N in A converges to x.

Hence X is a Fréchet space. This completes the proof.

Corollary 2.9 Let f : X → Y be a closed finite-to-one mapping. Then σX is a Fréchet

space if and only if σY is a Fréchet space.

Proof. Define a mapping g : σX → σY by g(x) = f(x) for any x ∈ X . By Lemma 2.8,

we only need to prove that g is a closed finite-to-one mapping. Obviously, g is a finite-to-one

mapping. We will show that g is a closed mapping. Suppose that F is a closed set in σY , i.e.,

F is a sequentially closed subset of Y . Since f is continuous, it is easy to verify that f−1(F ) is

a sequentially closed in X . Thus, g−1(F ) is closed in σX . It shows that g is continuous. On

the other hand, suppose that A is a closed subset of σX . Let {yn}n∈N be a sequence in f(A)

converging to y ∈ Y . Choose a sequence {xn}n∈N in A such that yn = f(xn) for each n ∈ N.

By Lemma 2.7, there is a convergent subsequence {xni}i∈N of {xn}n∈N in X . Suppose that the

sequence {xni}i∈N in X converges to x. Since A is sequentially closed in X , the limit x ∈ A.

Therefore, y = f(x) ∈ f(A); so f(A) is sequentially closed in Y , i.e., g(A) is closed in σY .

Hence, g : σX → σY is a closed mapping. This completes the proof.

Lemma 2.10 α4-spaces are invariants and inverse invariants under closed finite-to-one

mappings.

Proof. Let f : X → Y be a closed finite-to-one mapping. Firstly, suppose that X is an α4-

space. Let y ∈ Y and a sequence Sn in Y converge to y for any n ∈ N. By Lemma 2.7, there is

a convergent sequence Tn in X such that f(Tn) is a subsequence of Sn for each n ∈ N. Suppose

that Tn converges to tn, then f(tn) = y. Since f−1(y) is a finite set, there exist x ∈ X and

a subsequence {tni}i∈N of {tn}n∈N such that each tni = x. Moreover, since X is an α4-space,
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there is a sequence T in X converging to x such that {i ∈ N : T ∩ Tni �= ∅} is an infinite set.

Then the sequence f(T ) in Y converges to y and {n ∈ N : f(T ) ∩ Sn �= ∅} is an infinite set.

Therefore, Y is an α4-space.

Conversely, suppose that Y is an α4-space. Let x ∈ X and each Tn in X be a sequence

converging to x for any n ∈ N. Since f is a closed finite-to-one mapping and X is a T2 space,

there is a neighborhood V of x such that V ∩ f−1(f(x)) = {x}. Without loss of generality,

we may assume that Tn ⊂ V for each n ∈ N. Obviously, the sequence f(Tn) in Y converges

to f(x). Since Y is an α4-space, there is a sequence S in Y converging to f(x) such that

{n ∈ N : S ∩ f(Tn) �= ∅} is an infinite set. Put S = {yk}k∈N. Without loss of generality, we

may assume that there exists xk ∈ Tnk
such that yk = f(xk) and nk < nk+1 for each k ∈ N. By

Lemma 2.7, there is a subsequence {xki}i∈N of {xk}k∈N such that {xki}i∈N converges to a point

z ∈ X . Then, z ∈ V ∩ f−1(f(x)) = {x}. Put T = {xki}i∈N. Thus the sequence T converges

to x and {n ∈ N : T ∩ Tn �= ∅} is an infinite set. Hence X is an α4-space. This completes the

proof.

§3 The closed finite-to-one mapping theorems

In this section, we mainly prove that the following topological properties are preserved and

preserved inversely by closed finite-to-one mappings: point-Gδ properties, ℵ0-snf -countability,

weak quasi-first-countability, quasi-first-countability, csf -countability, snf -countability, gf -coun-

tability and sof -countability.

A space is called having a point-Gδ property, if each singleton in X is a Gδ-set in X .

Theorem 3.1 Point-Gδ properties are invariants and inverse invariants under closed

finite-to-one mappings.

Proof. Let f : X → Y be a closed finite-to-one mapping.

(1) Suppose that X has a point-Gδ property. For an arbitrary y ∈ Y , put f−1(y) =

{x1, x2, · · · , xn} for some n ∈ N. Since X is a T2 space, there is a family {Ui}i≤n of disjoint

open subsets of X such that xi ∈ Ui for each i ∈ {1, ..., n}. Since {xi} is a Gδ-set in X , there

is a family {Uik}k∈N of open neighborhoods of xi such that each Uik ⊂ Ui and
⋂

k∈N

Uik = {xi}.
Obviously,

⋂

k∈N

Uik ⊂ ⋂

k∈N

(
⋃

i≤n

Uik) for each i ≤ n. Thus,
⋃

i≤n

(
⋂

k∈N

Uik) ⊂
⋂

k∈N

(
⋃

i≤n

Uik). On the

other hand, if x ∈ ⋂

k∈N

(
⋃

i≤n

Uik), then x ∈ ⋃

i≤n

Ui. Therefore, there is m ≤ n such that x ∈ Um.

So x ∈ Um ∩ (
⋂

k∈N

(
⋃

i≤n

Uik)) ⊂
⋂

k∈N

Umk ⊂ ⋃

i≤n

(
⋂

k∈N

Uik). Therefore,
⋂

k∈N

(
⋃

i≤n

Uik) =
⋃

i≤n

(
⋂

k∈N

Uik).

Obviously, f−1(y) ⊂ ⋃

i≤n

Uik for any k ∈ N. Since f is a closed mapping, there is an open

neighborhood Vk of y such that f−1(Vk) ⊂ ⋃

i≤n

Uik. We will show that
⋂

k∈N

Vk = {y}. If

z ∈ ⋂

k∈N

Vk, then

f−1(z) ⊂
⋂

k∈N

f−1(Vk) ⊂
⋂

k∈N

(
⋃

i≤n

Uik) =
⋃

i≤n

(
⋂

k∈N

Uik) =
⋃

i≤n

{xi} = f−1(y).

Therefore, z = y. Thus, Y has a point-Gδ property.
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(2) Suppose that Y has a point-Gδ property. For any x ∈ X , since f is a finite-to-one

mapping, and X is a HT1 space, there is an open set U in X such that U ∩ f−1(f(x)) = {x}.
Choose a family {On}n∈N of open subsets of Y such that {f(x)} =

⋂

n∈N

On. Then,

U ∩ (
⋂

n∈N

f−1(On)) = U ∩ f−1(
⋂

n∈N

On) = U ∩ f−1(f(x)) = {x}.

Therefore, X has a point-Gδ property. This completes the proof.

The proof of (2) in Theorem 3.1 does not require that f is a closed mapping and X is only

a T1 space.

Theorem 3.2 ℵ0-snf -countability is an invariant and an inverse invariant under closed

finite-to-one mappings.

Proof. It pointed out that each countable-to-one and sequentially quotient mapping p-

reserves ℵ0-snf -countability in [20, Theorem 2.5]. By Lemma 2.7, ℵ0-snf -countability is an

invariant under closed finite-to-one mappings.

Conversely, let f : X → Y be a closed finite-to-one mapping and Y be an ℵ0-snf -countable

space. Put Py = {Py(n,m) : n,m ∈ N} in Y satisfying the condition of Lemma 2.1(2) for each

y ∈ Y . Since f is a finite-to-one mapping, for each x ∈ X there are disjoint open sets U1 and

U2 in X such that x ∈ U1 and f−1(f(x)) \ {x} ⊂ U2. Put Qx(n,m) = U1 ∩ f−1(Pf(x)(n,m))

for each n,m ∈ N. We will show that the family Qx = {Qx(n,m) : n,m ∈ N} in X satisfies the

condition of Lemma 2.1(2), then X is an ℵ0-snf -countable space.

Suppose that x ∈ X and n ∈ N. If x ∈ U ∈ τX , then f−1(f(x)) ⊂ (U1∩U)
⋃
U2. Since f is a

closed mapping, there is a neighborhoodO of f(x) in Y such that f−1(O) ⊂ (U1∩U)
⋃
U2. Since

{Pf(x)(n,m)}m∈N is a network of f(x) in Y , there exists m ∈ N such that Pf(x)(n,m) ⊂ O.

Therefore, Qx(n,m) = U1 ∩ f−1(Pf(x)(n,m)) ⊂ U1 ∩ f−1(O) ⊂ U. So {Qx(n,m)}m∈N is a

decreasing network of x in X. On the other hand, given each n,mn ∈ N, if Q =
⋃

n∈N
Qx(n,mn)

is not a sequential neighborhood of x in X , there exists a sequence {xk}k∈N in X converging to

x such that xk �∈ Q for each k ∈ N. Then the sequence {f(xk)}k∈N in Y converges to f(x). Since

P =
⋃

n∈N
Pf(x)(n,mn) is a sequential neighborhood of f(x) in Y , there is k0 ∈ N such that

xk0 ∈ U1 and f(xk0) ∈ P . Thus, xk0 ∈ U1 ∩ f−1(P ) = Q, which is a contradiction. Therefore,

Q is a sequential neighborhood of x. This completes the proof.

By Lemma 2.2, Theorem 3.2 and Lemma 2.8, we have the following two corollaries:

Corollary 3.3 Weak quasi-first-countability is an invariant and an inverse invariant under

closed finite-to-one mappings.

Corollary 3.4 Quasi-first-countability is an invariant and an inverse invariant under

closed finite-to-one mappings.

Shen Rongxin [23, Lemma 2.4 and Corollary 2.5] proved that weak quasi-first-countability

(resp. quasi-first-countability) is preserved by quotient (resp. pseudo-open) and peripherally

countable mappings. Every closed mappings are pseudo-open, and every pseudo-open mappings

are quotient [10]. By these results, it can be shown that weak quasi-first-countability, and quasi-

first-countability are preserved by closed finite-to-one mappings.

Theorem 3.5 csf -countability is an invariant and an inverse invariant under closed finite-
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to-one mappings.

Proof. Let f : X → Y be a closed finite-to-one mapping.

Firstly, suppose that X is a csf -countable space. For an arbitrary y ∈ Y , put f−1(y) =

{x1, x2, . . . , xn} for some n ∈ N. Let {Uij}j∈N be a countable cs-network of xi in X for each

i ≤ n. Put Py = {f(Uij) : i ≤ n and j ∈ N}. Obviously, y ∈ ⋂
Py. We will show that

the family Py satisfies the following condition (∗): if y ∈ U ∈ τY and {yn}n∈N converges to

y in Y , there is P ∈ Py such that P ⊂ U and P contains a subsequence of the sequence

{yn}n∈N. In fact, by Lemma 2.7, f is a sequentially quotient mapping; so there is a convergent

sequence {zk}k∈N in X such that {f(zk)}k∈N is a subsequence of {yn}n∈N. Suppose that the

sequence {zk}k∈N converges to a point z ∈ X , then z ∈ f−1(y). Thus, there exists i ≤ n such

that z = xi. Since xi ∈ f−1(U), there is j ∈ N such that Uij ⊂ f−1(U) and the sequence

{zk}k∈N is eventually in Uij . It follows that f(Uij) ⊂ U and f(Uij) contains a subsequence of

the sequence {yn}n∈N. Next we will prove that the point y in Y has a countable cs-network.

Put Fy = {⋃P ′
y : P ′

y is a finite subset of Py}; thus Fy is countable and y ∈ ⋂
Fy. If a

sequence {yn} in Y converges to y ∈ V ∈ τY , put {F ∈ Fy : F ⊂ V } = {Fi}i∈N. Then there is

k ∈ N such that the sequence {yn}n∈N is eventually in
⋃

i�k Fi. If not, there is a subsequence

{ynk
}k∈N of {yn}n∈N such that each ynk

∈ X \⋃i�k Fi. Since Py satisfies the condition (∗),
there exist a subsequence {ynkj

}j∈N of {ynk
} and P ∈ Py such that each ynkj

∈ P ⊂ V . Then

P ∈ Fy. Therefore, there exists m ∈ N such that P = Fm. Thus, ynkm
�∈ Fm = P , which is a

contradiction. Hence Y is a csf -countable space.

Secondly, we will prove the inverse invariant. Suppose that Y is a csf -countable space. For

any x ∈ X , since Y is a csf -countable space, there is a countable cs-network Pf(x) of f(x) in Y .

Since f is a finite-to-one mapping, there are disjoint open sets U1 and U2 in X such that x ∈ U1

and f−1(f(x)) \ {x} ⊂ U2. Put Qx = {U1 ∩ f−1(P ) : P ∈ Pf(x)}. Then Qx is a countable

cs-network of x in X . In fact, suppose that a sequence {xn}n∈N in X converges to x ∈ V ∈ τX .

Since f−1(f(x)) ⊂ (U1 ∩V )
⋃
U2 and f is a closed mapping, there is a neighborhood O of f(x)

in Y such that f−1(O) ⊂ (U1∩V )
⋃
U2. Since the sequence {f(xn)}n∈N converges to f(x) ∈ O,

there exists P ∈ Pf(x) such that P ⊂ O and the sequence {f(xn)}n∈N is eventually in P . So

the sequence {xn}n∈N is eventually in U1∩f−1(P ) and U1∩f−1(P ) ⊂ U1∩f−1(O) ⊂ V . Thus,

X is a csf -countable space. This completes the proof.

Corollary 3.6 snf -countability is an invariant and an inverse invariant under closed

finite-to-one mappings.

Proof. By Lemma 2.3, Theorem 3.5 and Lemma 2.10, snf -countability is an invariant and

an inverse invariant under closed finite-to-one mappings. This completes the proof.

Corollary 3.7 gf -countability is an invariant and an inverse invariant under closed finite-

to-one mappings.

Proof. By Lemma 2.4, Corollary 3.6 and Lemma 2.8, gf -countability is an invariant and an

inverse invariant under closed finite-to-one mappings. This completes the proof.

Corollary 3.8 sof -countability is an invariant and an inverse invariant under closed

finite-to-one mappings.
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Proof. By Lemma 2.5, Corollary 3.6 and Lemma 2.9, sof -countability is an invariant and

an inverse invariant under closed finite-to-one mappings. This completes the proof.

A mapping f : X → Y is called a perfect mapping [7] if f is a closed mapping and each fiber

f−1(y) is compact in X . Obviously, every closed finite-to-one mapping is perfect.

Example 3.9 None of the following properties is an invariant under perfect mappings:

a point-Gδ property, csf -countability, ℵ0-snf -countability, weak quasi-first-countability, quasi-

first-countability, snf -countability, gf -countability and sof -countability.

J.E. Vaughan constructed the perfect image XM of a first-countable regular space X such

that the space XM is not of a point-Gδ property [28, Example 7.5]. Since a space is first-

countable if and only if it is a strongly Fréchet and csf -countable space [20, Theorem 3.6], and

every strongly Fréchet space is preserved by a perfect mapping [26, Proposition 3.4], the space

XM is not csf -countable. Hence, a point-Gδ property, csf -countability, ℵ0-snf -countability,

weak quasi-first-countability, quasi-first-countability, snf -countability, gf -countability or sof -

countability is not an invariant under perfect mappings.

The following question [23, Question 2.10] is answered negatively by Example 3.9: Is a

quasi-first-countable space preserved under a perfect mapping?

Example 3.10 None of the following properties is an inverse invariant under perfect map-

pings: a point-Gδ property, csf -countability, ℵ0-snf -countability, weak quasi-first-countability,

quasi-first-countability, snf -countability, gf -countability and sof -countability.

It was proved that the one-point compactification A(ω1) of the discrete space ω1 is not

csf -countable [24, Lemma 4.1]. It is easy to see the space A(ω1) is not of a point-Gδ property.

Let Y = {0} and define a function q : A(ω1) → Y by q(x) = 0 for each x ∈ A(ω1). Let the

function q be a quotient mapping. Then q is a perfect mapping, and Y is first-countable. There-

fore, a point-Gδ property, csf -countability, ℵ0-snf -countability, weak quasi-first-countability,

quasi-first-countability, snf -countability, gf -countability or sof -countability is not an inverse

invariant under perfect mappings.

§4 Some applications

In this section, we discuss some applications of closed finite-to-one mapping theorems ob-

tained in Section 3. Recently, Good and Maćıas [13] studied the symmetric products of gen-

eralized metric spaces. They obtained some generalized metric properties P such that for a

topological space X and each n ∈ N, the space X or the product space Xn has the property

P if and only if Fn(X) does. The symmetric product properties are closely related to finite

productive properties and closed finite-to-one mapping properties [13, 27].

Definition 4.1 [21] Let (X, τ) be a topological space. 2X denotes the family of all non-

empty and compact sets in X . For each n ∈ N, put Fn(X) = {A ∈ 2X : |A| ≤ n}. The set 2X

is endowed with the Vietoris topology, a base of which consists of all subsets of the following

forms:

〈U1, U2, · · · , Uk〉 = {A ∈ 2X : A ⊂
⋃

i≤k

Ui and A ∩ Ui �= ∅, for each i ∈ {1, · · · , k}},
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where k ∈ N and each Ui is open in X . The set Fn(X) endowed with the subspace topology of

2X is called the n-fold symmetric product of X for each n ∈ N.

There are two types of n-fold symmetric product properties. The one is that the n-fold

symmetric product Fn(X) has property P if and only if the space X has property P . It is

known that the spaces, such as csf -countable, snf -countable and sof -countable spaces, have

this n-fold symmetric product property [27]. The other one is that the n-fold symmetric product

Fn(X) has property P if and only if the product space Xn has property P . It is known that

gf -countability has this n-fold symmetric product property [27]. In this section, we will show

that the following properties have n-fold symmetric product properties: a point-Gδ property,

ℵ0-snf -countability, weak quasi-first-countability and quasi-first-countability.

The following lemma indicates that the relations between closed finite-to-one mappings and

n-fold symmetric products.

Lemma 4.2 [13] For a space X and n ∈ N. fn : Xn → Fn(X) is a closed finite-to-one

mapping, where fn : Xn → Fn(X) is defined by fn(x1, x2, . . . , xn) = {x1, x2, . . . , xn}.
Lemma 4.3 ℵ0-snf -countability is finite productive.

Proof. Assume that k ∈ N and {Xi : i ∈ {1, 2, · · · , k}} is a family of ℵ0-snf -countable

spaces. Put X =
∏

i≤k Xi. For each x = (x1, x2, · · · , xk) ∈ X and i ≤ k, since Xi is an

ℵ0-snf -countable space, let Pxi = {Pxi(n,m) : n,m ∈ N} be a family of subsets in Xi, which

satisfies Lemma 2.1(3). Put Px(n,m) =
∏

i≤k Pxi(ni,m) for each n = (n1, n2, · · · , nk) ∈ N
k

and m ∈ N. We will show that the family Px = {Px(n,m) : n ∈ N
k,m ∈ N} in X satisfies

Lemma 2.1(3) for each x ∈ X . Firstly, Nk is countable. For any n = (n1, n2, · · · , nk) ∈ N
k,

clearly {Px(n,m)}m∈N is a decreasing family. Let U be a neighborhood of x in X . Then there

is an open set Ui in Xi for each i ≤ k such that x ∈ ∏
i≤k Ui ⊂ U . Since {Pxi(ni,m)}m∈N

is a network of xi in Xi for each i ≤ k, there exists mi ∈ N such that Pxi(ni,mi) ⊂ Ui. Let

m = max{mi : i ≤ k}. Then Px(n,m) ⊂ ∏
i≤k Pxi(ni,mi) ⊂ ∏

i≤k Ui ⊂ U . It shows that

{Px(n,m)}m∈N is a decreasing network of x in X . On the other hand, assume that a sequence

{x(j)}j∈N in X converges to x ∈ X where x(j) = (x1(j), x2(j), · · · , xk(j)) for each j ∈ N.

Then the sequence {xi(j)}j∈N in Xi converges to xi for each i ≤ k. By Lemma 2.1(3.2), there

exist ni ∈ N and a subsequence {xi(jm)}m∈N of {xi(j)}j∈N such that each xi(jm) ∈ Pxi(ni,m).

Without loss of generality, we may assume that the sequence {jm}m∈N and i are irrelevant.

Let n = (n1, n2, · · · , nk) ∈ N
k. Then the subsequence {x(jm)}m∈N of {x(j)}j∈N satisfies

x(jm) ∈ Px(n,m) for each m ∈ N. By Lemma 2.1, X is an ℵ0-snf -countable space. This

completes the proof.

Theorem 4.4 For n ∈ N, a topological space X has a point-Gδ property (resp. ℵ0-snf -

countability) if and only if Fn(X) does.

Proof. Obviously, the point-Gδ property is finite productive and hereditary. So X has a

point-Gδ property if and only if Xn does. By Lemma 4.2 and Theorem 3.1, Xn has a point-Gδ

property if and only if the n-fold symmetric product does.

By Lemmas 4.2 and 4.3 and Theorem 3.2, the proof of ℵ0-snf -countability is similar. This

completes the proof.
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Theorem 4.5 For a topological space X and n ∈ N, Xn has weak quasi-first-countability

(resp. quasi-first-countability) if and only if Fn(X) does.

Proof. By Lemma 4.2 and Corollary 3.3 (resp. Corollary 3.4), Xn has weak quasi-first-

countability (resp. quasi-first-countability) if and only if Fn(X) does. This completes the

proof.
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