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The exponentiated generalized power Lindley

distribution: Properties and applications
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Abstract. In this paper, we introduce a new extension of the power Lindley distribution, called

the exponentiated generalized power Lindley distribution. Several mathematical properties of

the new model such as the shapes of the density and hazard rate functions, the quantile func-

tion, moments, mean deviations, Bonferroni and Lorenz curves and order statistics are derived.

Moreover, we discuss the parameter estimation of the new distribution using the maximum

likelihood and diagonally weighted least squares methods. A simulation study is performed to

evaluate the estimators. We use two real data sets to illustrate the applicability of the new

model. Empirical findings show that the proposed model provides better fits than some other

well-known extensions of Lindley distributions.

§1 Introduction

The Lindley distribution was first introduced by Lindley [18] whose probability density

function (pdf) is

fL(t;λ) =
λ2

λ+ 1
(1 + t)e−λt, t > 0, λ > 0. (1)

The corresponding cumulative distribution function (cdf) is given by

FL(t;λ) = 1− λ+ 1 + λt

λ+ 1
e−λt, t > 0, λ > 0.

Ghitany et al. [12] studied the statistical properties of the Lindley distribution. Now, suppose

that T has a Lindley distribution with pdf given in (1). Recently, Ghitany et al. [13] introduced a

generalization of the Lindley distribution, called the power Lindley distribution, by considering

the power transformation Y = T 1/β. The pdf of Y is then given by

fPL(y;λ, β) =
βλ2

λ+ 1
(1 + yβ)yβ−1e−λyβ

, y > 0, λ, β > 0.
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Moreover, the cdf of Y is

FPL(y;λ, β) = 1− λ+ 1 + λyβ

λ+ 1
e−λyβ

, y > 0. (2)

The power Lindley distribution was generalized by many authors, see for example Alizadeh

et al. [1] and Alizadeh et al. [2]. Now, let G(x) and g(x) be the cdf and pdf of a continuous

random variable X , respectively. Cordeiro et al. [10] introduced a new interesting generalized

family of distributions for random variable X , called the exponentiated generalized (EG) class

of distributions, whose cdf is given by

F (x; a, b) =
[
1− Ḡ(x)a

]b
, (3)

where a > 0 and b > 0 and Ḡ(x) = 1 − G(x). The corresponding pdf of (3) is f(x; a, b) =
∂
∂xF (x; a, b), which is

f(x; a, b) = a bg(x)Ḡ(x)a−1
[
1− Ḡ(x)a

]b−1
.

This kind of generalization has become popular and received considerable attention in recent

years and many authors have studied EG-compounded lifetime distributions. One advantage

of this kind of generalization is that the additional parameters a and b can control the skewness

and kurtosis of the distribution and vary the tail weight, allowing for much flexibility of the new

distribution in modelling data. Examples of such generalized lifetime distributions include the

EG Birnbaum-Saunders distribution (Cordeiro and Lemonte [9]), the EG Dagum distribution

(Silva et al. [24]), the EG Weibull distribution (Cordeiro et al. [10] and Oguntunde et al. [21])

and the EG modified Weibull distribution (Aryal and Elbatal [4]). In addition, the EG Gumbel

distribution (a useful model for engineering data) was considered by Cordeiro et al. [10] and its

properties and applications were discussed in detail by Andrade et al. [3].

In this paper, we introduce a new generalization of the power Lindley distribution by taking

G(x) in (3) to be the cdf of the power Lindley distribution. Therefore, the cdf of the new

distribution is obtained to be

F (x) =

{
1−
[
(1 +

λ

1 + λ
xβ)e−λxβ

]a}b

, (4)

where x > 0 and λ, β, a, b > 0.

This new distribution, called the exponentiated generalized power Lindley (EG-PL) distri-

bution, contains the power Lindley distribution as a special case having two additional shape

parameters, a and b. The additional parameters affect the tail behavior of the distribution

and control its skewness and kurtosis so the new generalized distribution becomes more suit-

able for modelling skewed, leptokurtic, platykurtic data sets that cannot be properly fitted by

some existing distributions. Hence, we hope that the new distribution provides a more flexible

framework that can be applied in reliability and engineering researches more properly.

Another motivation for the new distribution can be explained as follows: Suppose that

a system contains b components such that each component is made up of a subcomponents.

Suppose further the system fails when all of its b components have failed and each component

fails as soon as at least one of the a subcomponents fails. Let Xij , i = 1, · · · , a and j = 1, · · · , b
denote the lifetime of the i-th subcomponent within the j-th component. Now, suppose that

X11, · · · , Xab are independent random variables distributed as the power Lindley distribution



S.M.T.K. MirMostafaee et al. Exponentiated generalized power Lindley distribution 129

with cdf (2). If Xj , j = 1, · · · , b denotes the lifetime of the j-th component and X denotes the

lifetime of the whole system, then the probability that failure time of the system, X , becomes

less than time x is

Pr(X ≤ x) = Pr(X1 ≤ x, · · · , Xb ≤ x) = [Pr(X1 ≤ x)]b

= {1− Pr(X1 > x)}b = {1− Pr(X11 > x, · · · , X1a > x)}b
= {1− [Pr(X11 > x)]a}b = {1− [1− FPL(x;λ, β)]

a}b ,
the cdf of the EG-PL distribution.

The rest of the paper is organized as follows. The density and hazard rate functions of

the EG-PL distribution are discussed in Section 2. The expansions for the cdf and the pdf

are derived in Section 3. In Section 4, we obtain the quantile function. The moments and

associated measures are studied in Section 5. The order statistics and their moments from the

EG-PL distribution are investigated in Section 6. In Section 7, we find the maximum likelihood

(ML) estimators as well as the asymptotic confidence intervals for the unknown parameters.

We also present the applications of this new proposed distribution in Section 8. Finally, Section

9 concludes the paper with some concluding remarks.

§2 Density and hazard rate functions

The pdf of the EG-PL distribution is given by

f(x) =
a b β λ2

1 + λ
xβ−1(1 + xβ) e−λxβ

[
(
1 +

λ

1 + λ
xβ
)
e−λxβ

]a−1

×
{
1−
[
(1 +

λ

1 + λ
xβ)e−λxβ

]a}b−1

, (5)

where x > 0 and λ, β, a, b > 0. If X is a random variable with pdf (5), then we will use the

notation X ∼ EG− PL(λ, β, a, b).

Special cases of the EG-PL distribution can be categorized as follows

• For a = 1, we obtain the exponentiated power Lindley (EPL) distribution, Warahena-

Liyanage and Pararai [26] and Ashour and Eltehiwy [5].

• For β = 1, we obtain the exponentiated generalized Lindley distribution.

• For a = β = 1, we obtain the generalized Lindley distribution, Nadarajah et al. [19].

• For a = b = 1, we obtain the power Lindley distribution, Ghitany et al. [13].

• For a = b = β = 1, we obtain the Lindley distribution.

Figure 1 displays the plots of the pdfs for selected parameter combinations.
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Figure 1: EG-PL densities for selected parameter values.

In addition, the hazard rate function (hrf) of the EG-PL distribution is

h(x;λ, β, a, b) =
a b β λ2

1 + λ
xβ−1(1 + xβ) e−λxβ

[(
1 +

λ

1 + λ
xβ
)
e−λxβ

]a−1

×
{
1−
[
(1 + λ

1+λ xβ)e−λxβ
]a}b−1

1−
{
1−
[
(1 + λ

1+λ xβ)e−λxβ

]a}b . (6)

Figure 2 plots of the hazard rate functions for selected parameter combinations. As one can

see from Figure 2, the hrf can be monotonically increasing, monotonically decreasing, bathtub-

shaped and upside down bathtub shaped and this flexibility makes the EG-PL distribution

useful and suitable for many real life data sets that are more likely to be faced. In addition,

we plotted a figure related to the regions of the hrf when λ = 0.5 and β = 0.5, see Figure 3.

Similar figures can be obtained for other different parameter vectors.

Figure 2: EG-PL hazard functions for selected parameter values.
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Figure 3: The EG-PL hrf shape as a function of a and b when λ = 0.5 and β = 0.5.

§3 Mixture representations for the pdf and cdf

In this section, we show that the EG-PL distribution can be written as a mixture of the EPL

distributions. As mentioned before, the EPL distribution, introduced by Warahena-Liyanage

and Pararai [26] and Ashour and Eltehiwy [5], is a special case of the EG-PL distribution. The

pdf of the EPL distribution with positive parameters λ, β and b is given by

fEPL(x;λ, β, b) =
b β λ2

λ+ 1
(1 + xβ)xβ−1e−λxβ

[
1− (1 +

λ

1 + λ
xβ)e−λxβ

]b−1

, x > 0. (7)

We write X ∼ EPL(λ, β, b) if the pdf of X can be written as (7). Moreover, the cdf of the

EPL distribution is

FEPL(x;λ, β, b) =

[
1− (1 +

λ

1 + λ
xβ)e−λxβ

]b
, x > 0.

Let us consider the following generalized binomial expansion

(1 − z)η =
∞∑

j=0

(
η

j

)
(−1)jzj,

where η > 0. If |z| ≤ 1, then the above expansion converges, see for example Gradshteyn and

Ryzhik [14], Section 1.11.

Using the generalized binomial expansion and noting that the cdf of any distribution, like

the power Lindley distribution G(x) = 1−(1+ λ
1+λ xβ)e−λxβ

is between 0 and 1, we can expand

the cdf of the EG-PL distribution as follows

F (x) =

∞∑

k=0

ck

[
1− (1 +

λ

1 + λ
xβ)e−λxβ

]k
,

where

ck = ck(a, b) =
∞∑

i=0

(
b

i

)(
i a

k

)
(−1)i+k. (8)
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Or equivalently, we have

F (x) =

∞∑

k=0

ck FEPL(x;λ, β, k), (9)

where FEPL(x;λ, β, k) denotes the cdf of the EPL distribution with parameters λ, β and k.

Upon differentiating (9), the pdf of the EG-PL distribution can be written as

f(x) =

∞∑

k=0

ck+1 fEPL(x;λ, β, k + 1), (10)

where fEPL(x;λ, β, k + 1) denotes the pdf of the EPL distribution with parameters λ, β and

k + 1.

§4 Quantile function

Let X ∼ EG− PL(λ, β, a, b), then the quantile function, say Q(p), defined by F (Q(p)) = p

is the root of the equation

(1 + λ+ λQ(p)β) e−λQ(p)β = (1 + λ)(1 − p
1
b )

1
a , (11)

for 0 < p < 1. Inserting Z(p) = −1− λ− λQ(p)β into (11), we can rewrite Equation (11) as

Z(p) eZ(p) = −(1 + λ)(1 − p
1
b )

1
a e−1−λ, (12)

for 0 < p < 1. The solution of Z(p) is

Z(p) = W−1

[
−(1 + λ) (1 − p

1
b )

1
a e−1−λ

]
, (13)

for 0 < p < 1, where W−1[.] is the negative branch of the Lambert function (see Corless et

al. [11]). Therefore, from (11), (12) and (13), the quantile function is obtained to be

Q(p) =

{
−1− 1

λ
− 1

λ
W−1

[
−(1 + λ)(1 − p

1
b )

1
a e−1−λ

]} 1
β

, (14)

for 0 < p < 1. The particular case of Equation (14) for (a = b = β = 1) has been derived

recently by Jodrá [16].

§5 Moments and associated measures

We define and compute

A(a1, a2, a3;λ, β) =

∫ ∞

0

xa1 (1 + xβ) e−a2 xβ

[
1− (1 +

λ

1 + λ
xβ)e−λxβ

]a3

dx,

where a1 > −1 and ai > 0 for i = 2, 3. Using the generalized binomial expansion, one can

obtain

A(a1, a2, a3;λ, β) =

∞∑

l1=0

l1∑

l2=0

l2+1∑

l3=0

(
a3
l1

)(
l1
l2

)(
l2 + 1

l3

)
(−1)l1 λl2 Γ(a1+1

β + l3)

β (λ+ 1)l1 (a2 + l1 λ)
a1+1

β +l3
.

The above expansion is convergent as the first summation is related to the generalized binomial

expansion by noting that Ḡ(x) = (1 + λ
1+λ xβ)e−λxβ

is between 0 and 1, and the next two

summations are ordinary finite binomial expansions.

Therefore, the n-th moment of X ∼ EG− PL(λ, β, a, b) can be written as

E [Xn] =
β λ2

1 + λ

∞∑

k=0

(k + 1) ck+1A(n+ β − 1, λ, k;λ, β), (15)

where ck is given in (8).
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For integer values of s, let μ′
s = E(Xs) and μ = μ′

1 = E(X), then the s-th central moment

of the EG-PL distribution can be found by the following well-known equation

μs = E(X − μ)s =

s∑

r=0

(
s

r

)
μ′
s(−μ)s−r. (16)

Using (16), the variance, skewness and kurtosis measures can be obtained, respectively, as

V ar(X) = E(X2)− [E(X)]2,

Skewness(X) =
E(X3)− 3E(X)E(X2) + 2[E(X)]3

[V ar(X)]
3
2

,

Kurtosis(X) =
E(X4)− 4E(X)E(X3) + 6E(X2)[E(X)]2 − 3[E(X)]4

[V ar(X)]2
.

Figure 4 shows the behaviors of the mean, variance, skewness and kurtosis of the EG-PL

distribution with respect to a and b when λ = 1 and β = 2.

Figure 4: Mean, variance, skewness and kurtosis plots for λ = 1 and β = 2.

To find the incomplete moments, we define and compute

B(a1, a2, a3; y, λ, β) =

∫ y

0

xa1 (1 + xβ) e−a2 xβ

[
1− (1 +

λ

1 + λ
xβ)e−λxβ

]a3

dx,

where a1 > −1 and ai > 0 for i = 2, 3.

Using the generalized binomial expansion, we have

B(a1, a2, a3; y, λ, β) =

∞∑

l1=0

l1∑

l2=0

l2+1∑

l3=0

(
a3
l1

)(
l1
l2

)(
l2 + 1

l3

) (−1)l1 λl2 γ
(

a1+1
β + l3, (a2 + l1 λ) y

β
)

β (λ + 1)l1 (a2 + l1 λ)
a1+1

β +l3
,

where γ(λ, z) =
∫ z
0 tλ−1 e−t dt denotes the incomplete gamma function. So the n-th incomplete

moment of the EG-PL distribution is given by

mn(y) =

∫ y

0

xnf(x) dx =
β λ2

1 + λ

∞∑

k=0

(k + 1) ck+1 B(n+ β − 1, λ, k; y, λ, β). (17)
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5.1 Mean deviations

The amount of scatter in a population may be measured to some extent by deviations from

the mean and median. These are known as the mean deviation about the mean and the mean

deviation about the median, defined by

δ1 (X) =

∫ ∞

0

|x− μ| f(x) dx,
and

δ2 (X) =

∫ ∞

0

|x−M | f(x) dx.
respectively, where μ = E(X) and M = Median(X) = Q(0.5) denotes the median and Q(p) is

the quantile function. The measures δ1 (X) and δ2 (X) can be calculated using the relations

δ1 (X) = 2μF (μ)− 2

∫ μ

0

x f(x) dx,

δ2 (X) = μ− 2

∫ M

0

x f(x) dx.

Finally, from (17), we can obtain

δ1 (X) = 2μF (μ)− 2 β λ2

1 + λ

∞∑

k=0

(k + 1) ck+1 B(β, λ, k;μ, λ, β),

and

δ2 (X) = μ− 2 β λ2

1 + λ

∞∑

k=0

(k + 1) ck+1 B(β, λ, k;M,λ, β).

5.2 Bonferroni and Lorenz curves

The Bonferroni and Lorenz curves have applications in economics as well as other fields like

reliability, medicine and insurance. Let Y ∼ EG− PL(λ, β, a, b) and F (y) be the cdf of Y , then

the Bonferroni curve of the EG-PL distribution is given by

B(F (y)) =
1

μF (y)

∫ y

0

tf(t)dt,

where μ = E(Y ).

Therefore, from (17), we have

B(F (y)) =
β λ2

(1 + λ)μF (y)

∞∑

k=0

(k + 1) ck+1 B(β, λ, k; y, λ, β).

The Lorenz curve of the EG-PL distribution can be obtained using the relation

L(F (y)) = F (y)B(F (y)) =
β λ2

(1 + λ)μ

∞∑

k=0

(k + 1) ck+1 B(β, λ, k; y, λ, β).

§6 Order statistics

Order statistics are widely applied in many areas of statistical theory and practice, especially

when we encounter censoring problems. Suppose X1, . . . , Xn are a random sample from an EG-

PL distribution. Let Xl:n denote the l-th order statistic. The pdf of Xl:n can be expressed
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as

fl:n(x) =
n!

(l − 1)!(n− l)!
f(x)F l−1(x) {1− F (x)}n−l

=
n!

(l − 1)!(n− l)!

n−l∑

s=0

(−1)s
(
n− l

s

)
f(x)F (x)l+s−1

=
n! a b β λ2 xβ−1(1 + xβ)e−λxβ

(l − 1)!(n− l)!(1 + λ)

[
(1 +

λ

1 + λ
xβ)e−λxβ

]a−1

×
n−l∑

s=0

(−1)s
(
n− l

s

){
1−
[
(1 +

λ

1 + λ
xβ)e−λxβ

]a}b(s+l)−1

=

n−l∑

s=0

c∗s f(x;λ, β, a, b(s+ l)), (18)

where f(x;λ, β, a, b(s+ l)) stands for the pdf of the EG-PL distribution with parameters λ, β, a

and b(s+ l) and

c∗s = c∗s(l, n) =
n! (−1)s

(l − 1)! s! (n− l − s)! (s+ l)
.

Therefore, the pdf of Xl:n can be written as a finite linear combination of EG-PL densities

and we can obtain some mathematical properties of Xl:n from those of the EG-PL distribution

using this result. For example, we may express fl:n(x) as an infinite linear combination of the

EPL densities. From (8), (10) and (18), we can write

fl:n(x) =

∞∑

k=0

c∗∗k+1fEPL(x;λ, β, k + 1), (19)

where fEPL(x;λ, β, k + 1) denotes the pdf of the EPL distribution with parameters λ, β and

k + 1 and

c∗∗k = c∗∗k (l, n, a, b) =

n−l∑

s=0

∞∑

i=0

(
b(l+ s)

i

)(
i a

k

)
(−1)i+k c∗s.

In addition, from (15) and (19), the m-th moment of Xl:n is obtained to be

E [Xm
l:n] =

β λ2

1 + λ

∞∑

k=0

(k + 1) c∗∗k+1A(m+ β − 1, λ, k;λ, β).

§7 Estimation

Several methods for parameter point estimation have been proposed in the literature but the

ML method is still the most commonly employed one. The ML estimators possess asymptotic

properties that can be applied to the construction of confidence intervals and regions and also

to performing test of hypotheses. Simple approximations, that are based on large sample theory

for ML estimators, work rather satisfactorily in finite samples.

The log-likelihood for the parameters of the EG-PL distribution given the random sample
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x1, . . . , xn reduces to

�n = n log(
a bβ λ2

1 + λ
) + (β − 1)

n∑

i=1

log(xi) +

n∑

i=1

log(1 + xβ
i )− λ

n∑

i=1

xβ
i

+ (a− 1)

n∑

i=1

log(ti) + (b− 1)

n∑

i=1

log(1− tai ),

where ti = (1+ λ
1+λ xβ

i ) e
−λ xβ

i . Let θ = (λ, β, a, b), then the ML estimate of θ may be obtained

by solving the following non-linear equations

∂�n
∂λ

=
2n

λ
− n

1 + λ
−

n∑

i=1

xβ
i + (a− 1)

n∑

i=1

t
(λ)
i

ti
+ a(1− b)

n∑

i=1

t
(λ)
i ta−1

i

1− tai
= 0,

∂�n
∂β

=
n

β
+

n∑

i=1

log(xi) +

n∑

i=1

xβ
i log(xi)

1 + xβ
i

− λ

n∑

i=1

xβ
i log(xi)

+ (a− 1)

n∑

i=1

t
(β)
i

ti
+ a(1− b)

n∑

i=1

t
(β)
i ta−1

i

1− tai
= 0,

∂�n
∂a

=
n

a
+

n∑

i=1

log(ti) + (1− b)

n∑

i=1

tai log(ti)

1− tai
= 0,

∂�n
∂b

=
n

b
+

n∑

i=1

log(1− tai ) = 0,

where

t
(λ)
i =

∂ti
∂λ

= −xβ
i e

−λxβ
i

[ −1

(1 + λ)2
+ 1 +

λ

1 + λ
xβ
i

]
,

t
(β)
i =

∂ti
∂β

=
−λ2xβ

i (1 + xβ
i )e

−λxβ
i log(xi)

1 + λ
.

Numerical iterative techniques should be used to solve the above equations. One can use the

nleqslv function, contained in the nleqslv package (Hasselman [15]) in R (R Core Team [23]) to

solve the above equations.

For interval estimation, we utilize the symmetric observed information matrix which is given

by

IF (θ) = −

⎛

⎜
⎜
⎜
⎝

Iλλ Iλβ Iλa Iλb

Iβλ Iββ Iβa Iβb

Iaλ Iaβ Iaa Iab

Ibλ Ibβ Iba Ibb

⎞

⎟
⎟
⎟
⎠

.

The elements of the above matrix are obtained by the authors but they are not presented in

this paper.

Let θ̂ = (λ̂, β̂, â, b̂) denote the ML estimator of θ = (λ, β, a, b). It is well-known that under

the regularity conditions that are fulfilled for the parameters (see for example Lehmann and

Casella [17], pp. 461-463), the asymptotic joint distribution of (λ̂, β̂, â, b̂), as n → ∞ is a

4-variate normal distribution with mean (λ, β, a, b) and variance-covariance I−1
F (θ). Unknown

parameters which may appear in the elements of the matrix I−1
F (θ) can be replaced by their

corresponding ML estimators. Therefore, the asymptotic equi-tailed 100(1 − p)% confidence
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intervals for the parameters λ, β, a and b, respectively, are given by

λ̂± zp/2

√
̂

V ar(λ̂), β̂ ± zp/2

√
̂

V ar(β̂), â± zp/2

√
̂V ar(â), and b̂± zp/2

√
̂

V ar(̂b),

where zp/2 is the upper p/2 quantile of the standard normal distribution.

Next, we use the weighted least squares (WLS) method to estimate the parameters of the

EG-PL model. Suppose that X(1), · · · , X(n) are the order statistics of a sample of size n coming

from the EG-PL distribution with the cdf given in (4). Then, O(i) = F (X(i)) is identically

distributed as the i-th order statistic extracted from a sample of size n from the standard

uniform distribution and therefore the expected value of O(i) is E(i) = E(O(i)) =
i

n+1 . Here,

we wish to minimize the distances between the O(i)’s and E(i)’s. Let ε = (ε(1), · · · , ε(n))T
where ε(i) = O(i) − E(i) and θ = (λ, β, a, b). Then the WLS estimator of θ will be obtained

by minimizing the quantity S(θ|Ω) = εTΩε where Ω is an n × n matrix that is related to the

procedure of the estimation. One can choose Ω to be the inverse of the variance-covariance

matrix of ε, however, here we consider the following diagonal weight matrix

Ω = diag

{
1

V ar(ε(1))
, · · · , 1

V ar(ε(n))

}
,

and obtain the diagonally weighted least squares (DWLS) estimator of θ denoted as θ̃ =

(λ̃, β̃, ã, b̃). It is clear that V ar(ε(i)) = i(n−i+1)
(n+1)2(n+2) =

E(i)(1−E(i))

n+2 , i = 1, · · · , n, therefore,

we have

S(θ|Ω) =
n∑

i=1

n+ 2

E(i)(1− E(i))
ε2(i). (20)

Therefore, the DWLS estimators of the EG-PL parameters will be obtained by minimizing (20)

with respect to (λ, β, a, b).

In the sequel, we wish to compare the performances of ML and DWLS estimators of the

parameters using a Monte Carlo simulation. To this end, first, we express the procedure of data

simulation from the EG-PL distribution.

Here, we propose three different algorithms for generating random data from the EG-PL dis-

tribution.

The first algorithm is based on this fact that the Lindley distribution is a mixture of expo-

nential and gamma distributions, see Ghitany et al. [12].

The second algorithm is based on generating random data from the Weibull-generalized gamma

(GG) mixture form of the power Lindley distribution, see Ghitany et al. [13].

The third algorithm is based on generating random data using the quantile function of the

EG-PL distribution, given in (14).

Algorithm 1. (Mixture Form of the Lindley Distribution).

1. Generate Ui ∼ Uniform(0, 1), i = 1, · · · , n;

2. Generate Vi ∼ Exponential(λ), i = 1, · · · , n;
3. Generate Wi ∼ Gamma(2, λ), i = 1, · · · , n;

4. If (1− Ui
1
b )

1
a ≥ 1

1+λ set Xi = V
1
β

i , otherwise, set Xi = W
1
β

i , i = 1, · · · , n.
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Algorithm 2. (Mixture Form of the Power Lindley Distribution).

1. Generate Ui ∼ Uniform(0, 1), i = 1, · · · , n;

2. Generate Yi ∼ Weibull(β, λ), i = 1, · · · , n;

3. Generate Zi ∼ GG(2, β, λ), i = 1, · · · , n;

4. If (1− Ui
1
b )

1
a ≥ 1

1+λ set Xi = Yi, otherwise, set Xi = Zi, i = 1, · · · , n.

Algorithm 3. (Quantile function).

1. Generate Ui ∼ Uniform(0, 1), i = 1, · · · , n;

2. Set

Xi =

{
−1− 1

λ
− 1

λ
W
[
−(λ+ 1)(1− Ui

1
b )

1
a e−1−λ

]} 1
β

, i = 1, · · · , n.

In our simulation, we estimate the biases and the root mean squared errors (RMSEs) of the

estimators obtained based on the ML and DWLS methods using the following relations

biash(n) =
1

M

M∑

i=1

(ĥi − h),

and

RMSEh(n) =

√√
√
√ 1

M

M∑

i=1

(ĥi − h)2,

for h = λ, β, a and b and ĥi is the corresponding estimate (ML or DWLS estimate) obtained

in the i-th iteration and M is the number of the iterations of the simulation. We take the

sample sizes n = 50 and 100, λ = 0.5, 2, β = 0.5, 2, a = 0.5, 2, b = 0.5, 2 and M = 10000 in

our simulation. We used Algorithm 1 to generate data. The results are presented in Tables 1

and 2. We note that we used the optim function, in R (R Core Team [23]) and we excluded

the bad generated samples, for which the solutions were not convergent (or we encountered an

error) and/or at least one of the solutions did not get positive, from the simulation. As we can

see from these tables, the results are rather stable and the estimates are close to the real values

(see the estimated biases) for the most considered cases. In addition, the estimated RMSEs

decrease as n increases (a few exceptions exist). We cannot attain any general conclusion that

which method of estimation performs better, since in some cases the estimated RMSEs of the

ML estimators are less than the corresponding estimated RMSEs of the DWLS estimators and

in the other cases, the reverse is true.

§8 Real data application

In this section, we illustrate the fitting performance of the EG-PL distribution using two

real data sets. For the purpose of comparison, we fitted the following models to show the fitting
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Table 1: The estimated RMSEs (and estimated biases in the parentheses) of the ML estimators.

n = 50

a b λ β â ̂b ̂λ ̂β
0.5 0.5 0.5 0.5 0.9165(0.5824) 1.2713(0.7628) 0.6840(0.2113) 0.1635(0.0142)

2 2.4458(1.9526) 1.3757(0.8549) 0.4067(-0.0627) 0.6017(-0.1120)
2 0.5 0.4026(-0.0574) 1.2290(0.6900) 2.7057(2.5054) 0.3519(0.1311)

2 0.3219(-0.1396) 1.0454(0.6191) 3.6430(3.1459) 1.4327(0.5451)
2 0.5 0.5 2.3699(1.4843) 1.6070(0.1804) 0.7005(0.2853) 0.1555(-0.0197)

2 3.9759(2.9532) 1.9116(0.4210) 0.4099(-0.0126) 0.5693(-0.2467)
2 0.5 0.5035(-0.1709) 1.4229(-0.5684) 5.7822(4.8651) 0.3708(0.2039)

2 0.4271(-0.1881) 1.4659(-0.5041) 5.5584(4.5832) 1.4002(0.7548)
2 0.5 0.5 0.5 3.3082(2.7212) 1.2161(0.8963) 0.2638(-0.1328) 0.1554(-0.0918)

2 3.9330(3.4712) 1.5652(0.9914) 0.2548(-0.1850) 0.6803(-0.3760)
2 0.5 3.8817(2.7577) 1.3568(0.8767) 1.2491(-0.8684) 0.2400(-0.0014)

2 4.8144(3.9835) 1.4284(0.9528) 1.4198(-1.0774) 0.9639(-0.0570)
2 0.5 0.5 1.2974(0.9302) 1.3425(-0.5898) 0.2744(-0.1765) 0.1415(-0.0189)

2 6.1680(5.0724) 1.4405(-0.3255) 0.3450(-0.2417) 0.5937(-0.2579)
2 0.5 1.9517(0.4237) 1.2904(-0.6366) 1.2888(-0.1639) 0.2325(0.0222)

2 3.8792(2.1480) 1.3012(-0.5746) 2.0012(-0.2870) 0.8848(0.0131)

n = 100

a b λ β â ̂b ̂λ ̂β
0.5 0.5 0.5 0.5 0.6984(0.5157) 0.8228(0.5976) 0.3988(0.1350) 0.1259(0.0088)

2 2.2732(2.0378) 0.8827(0.6825) 0.2750(-0.1164) 0.4365(-0.1576)
2 0.5 0.2478(-0.1042) 0.8163(0.5685) 2.6498(2.5582) 0.2004(0.0745)

2 0.2510(-0.1708) 0.7751(0.5468) 3.5308(3.2911) 0.7697(0.3039)
2 0.5 0.5 2.1308(1.3486) 1.1379(0.0088) 0.7162(0.3108) 0.1243(-0.0283)

2 4.2373(3.1837) 1.2842(0.1886) 0.3986(-0.0354) 0.4844(-0.2807)
2 0.5 0.4532(-0.2162) 1.0907(-0.7466) 6.0575(5.2429) 0.2566(0.1595)

2 0.3899(-0.2272) 1.0826(-0.7194) 5.6719(4.8325) 0.9865(0.6047)
2 0.5 0.5 0.5 3.3765(2.8702) 1.0738(0.8939) 0.2199(-0.1364) 0.1459(-0.1202)

2 3.8684(3.5125) 1.1455(0.8891) 0.2219(-0.1864) 0.5946(-0.4770)
2 0.5 3.7872(2.7268) 1.0359(0.8137) 1.1995(-0.8884) 0.1339(-0.0544)

2 5.3304(4.5278) 1.1271(0.8814) 1.3917(-1.1916) 0.5577(-0.2734)
2 0.5 0.5 1.3448(0.9571) 1.0008(-0.7451) 0.2462(-0.1902) 0.1048(-0.0323)

2 6.6949(5.6048) 1.0449(-0.5586) 0.3269(-0.2692) 0.4853(-0.2997)
2 0.5 1.9048(0.4223) 1.0070(-0.7714) 1.2094(-0.1563) 0.1472(-0.0127)

2 3.4734(1.8249) 1.0026(-0.7083) 2.0118(-0.1833) 0.5410(-0.1369)
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Table 2: The estimated RMSEs (and estimated biases in the parentheses) of the DWLS estimators.

n = 50

a b λ β ã ˜b ˜λ ˜β
0.5 0.5 0.5 0.5 1.5508(1.1871) 1.3368(0.7639) 0.4925(0.0647) 0.1546(-0.0098)

2 1.2283(0.9701) 1.4142(0.8108) 0.6144(0.1245) 0.6385(-0.0179)
2 0.5 0.5545(0.1668) 1.4583(0.8242) 1.9554(1.3829) 0.3310(0.0905)

2 1.4617(0.7345) 1.2854(0.7723) 2.7509(0.7635) 1.0899(0.2333)
2 0.5 0.5 1.3486(0.4047) 1.7081(0.0584) 1.2857(0.5722) 0.2112(0.0328)

2 1.3462(0.4911) 1.9837(0.2174) 1.0377(0.4695) 0.7192(0.0244)
2 0.5 1.0177(0.4995) 1.6451(-0.2880) 1.0789(0.1122) 0.3366(0.1272)

2 1.5766(0.9861) 1.7766(-0.1384) 1.1645(-0.2817) 1.1441(0.3409)
2 0.5 0.5 0.5 2.7922(2.4763) 1.4728(0.9317) 0.2645(-0.1427) 0.1691(-0.0929)

2 1.2922(0.7175) 1.6103(0.9438) 0.3530(-0.0073) 0.6715(-0.3045)
2 0.5 1.8798(0.3513) 1.4759(0.8901) 1.2327(-0.2933) 0.2930(0.0207)

2 1.8731(-0.1371) 1.5865(0.9555) 1.5480(0.1844) 1.2023(0.0953)
2 0.5 0.5 1.2213(-1.0602) 1.4575(-0.7242) 0.7888(0.2064) 0.1891(0.0521)

2 1.5793(1.0025) 1.4705(-0.4747) 0.2923(-0.1461) 0.6231(-0.1353)
2 0.5 1.6422(0.6151) 1.4656(-0.4779) 1.0541(-0.5127) 0.2311(-0.0089)

2 1.7862(0.7235) 1.5695(-0.4350) 1.0961(-0.4992) 0.9756(-0.0216)

n = 100

a b λ β ã ˜b ˜λ ˜β
0.5 0.5 0.5 0.5 1.6825(1.3376) 0.8775(0.6326) 0.4220(0.0184) 0.1150(-0.0207)

2 1.1659(0.9605) 0.9849(0.6638) 0.4265(0.0617) 0.4749(-0.0524)
2 0.5 0.9156(0.6578) 1.0719(0.7232) 1.0480(0.0808) 0.1764(0.0212)

2 1.1645(0.7254) 1.0108(0.6991) 1.9127(0.4071) 0.6616(0.0795)
2 0.5 0.5 1.1599(0.3782) 1.4185(0.0085) 1.1146(0.5438) 0.1627(0.0109)

2 1.1085(0.3756) 1.5878(0.0317) 1.2288(0.5405) 0.6696(0.0589)
2 0.5 0.7909(0.4332) 1.1883(-0.4782) 0.9183(0.0933) 0.2272(0.0919)

2 1.2723(0.9240) 1.2488(-0.3797) 0.8461(-0.4066) 0.7656(0.2392)
2 0.5 0.5 0.5 2.6732(2.4344) 1.1712(0.8706) 0.2218(-0.1417) 0.1475(-0.1170)

2 1.0960(0.6855) 1.1870(0.8525) 0.2587(-0.0124) 0.5613(-0.3973)
2 0.5 1.5690(0.3074) 1.1767(0.8303) 1.0729(-0.3305) 0.1608(-0.0342)

2 1.3958(-0.2881) 1.2080(0.8402) 1.2041(0.1169) 0.6917(-0.0962)
2 0.5 0.5 1.1563(-1.0778) 1.1559(-0.8427) 0.5980(0.1623) 0.1300(0.0307)

2 1.6585(1.1611) 1.0928(-0.6483) 0.2569(-0.1743) 0.4895(-0.1694)
2 0.5 1.4510(0.5394) 1.0958(-0.6620) 0.9666(-0.5524) 0.1552(-0.0314)

2 1.6042(0.6319) 1.1295(-0.6293) 1.0122(-0.5179) 0.6263(-0.1413)
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performance of the EG-PL distribution by means of two real data sets: (i) the Weibull-power

Lindley (W-PL), Bourguignon et al. [6], with the following pdf

f(x) =
a b β λ2 (λ+ 1)b

(λ + 1+ λx)b+1
(1 + xβ)xβ−1eb λx

β

[
1− (1 + λ

1 + λ
xβ
)
e−λxβ

]b−1

× exp

⎧
⎨

⎩
−a

(
1− (1 + λ

1+λ xβ
)
e−λxβ

(
1 + λxβ

λ+1

)
e−λxβ

)b
⎫
⎬

⎭
, x > 0, a, b, β, λ > 0,

(ii) the exponentiated generalized Lindley (EG-L) distribution, (iii) the power Lindley (PL)

distribution, (iv) the generalized Lindley (GL) distribution, Nadarajah et al. [19] and (v) the

Lindley distribution. We used formal goodness-of-fit tests to compare the fits of the mentioned

distributions. To this end, we considered the minimum value of the minus log-likelihood function

(−�), the Kolmogorov-Smirnov (K-S) statistic and its corresponding p-value and the Cramér-

von Mises (W ∗) and Anderson-Darling (A∗) test statistics (see Chen and Balakrishnan [7]).

Generally speaking, the smaller values of −�, K-S, A∗ and W ∗, the better fit to a data set. All

the computations were carried out using the software R (see [23] and Pinheiro et al. [22]).

Note that initial values of model parameters are quite important to obtain the correct ML

estimates of the parameters. To avoid local minima problem, first, we obtain the parameter

estimate of the Lindley distribution. Then, the estimated parameter of the Lindley distribution

is used as the initial value of the parameter λ of the PL and GL distributions. The estimated

parameters of the PL distribution, λ and β, are then used as the initial values of the EG-PL

distribution. This approach is useful to obtain correct parameter estimates of extended models.

8.1 First Application

The first data set represents the maintenance data with 46 observations reported on active

repair times (hours) for an airborne communication transceiver given by Von Alven [25], (see

also Chhikara and Folks, [8]). Table 3 gives the parameter ML estimates and their corresponding

errors, the W ∗ and A∗ statistics, the values of −�, the K-S statistics and their corresponding

p-values. From Table 3, we see that the EG-PL distribution provides the overall best fit and

therefore it could be chosen as the most suitable model among the considered models for

modelling the first data set. In addition, the profile log-likelihood functions of the EG-PL

distribution are plotted in Figure 5. These plots reveal that the likelihood equations of the

EG-PL distribution have solutions that are maximizers.

The estimated asymptotic covariance matrix of the ML estimators of the EG-PL parameters

for the first data set, which is Î
−1

F (θ), is given by

⎛

⎜
⎜
⎜
⎝

127.1104071 23.743125 −28.21501521 −0.531001858

23.7431247 475.513271 1.24656304 −1.490675208

−28.2150152 1.246563 6.35507816 0.098233944

−0.5310019 −1.490675 0.09823394 0.007096786

⎞

⎟
⎟
⎟
⎠

.

The %95 asymptotic confidence intervals for a, b, λ and β are given by [3.838± 6.581],

[21.496± 9.152], [1.175± 3.111] and [0.267± 0.568], respectively.
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Table 3: The parameter ML estimates (standard errors in the parentheses) and the goodness-
of-fit test statistics for the first data set.
Models a b λ β A∗ W ∗ −� K-S p-value
EG-PL 3.838 21.496 1.175 0.267 0.316 0.050 99.910 0.0905 0.845

(11.274) (21.806) (2.521) (0.084)

W-PL 0.032 10.358 1.255 0.051 0.959 0.138 105.049 0.125 0.433
(0.026) 6.075 (4.42E-04) (1.007E-05)

EG-L 0.176 0.805 1.596 1 1.116 0.162 105.525 0.156 0.181
(0.037) (0.154) (0.002)

PL 1 1 0.675 0.758 0.963 0.1403 105.013 0.126 0.423
(0.101) (0.074)

GL 1 0.664 0.367 1 1.388 0.205 107.848 0.166 0.140
(0.135) (0.064)

Lindley 1 1 0.466 1 1.302 0.192 109.984 0.233 0.011
(0.049)

Figure 5: The profile log-likelihood functions of the EG-PL distribution for the first data set.
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Table 4: The LR test results for the first data set.

Hypotheses LR p-value
EG-PL versus EG-L H0 : β = 1 11.239 0.0008
EG-PL versus PL H0 : a = b = 1 10.206 0.0006
EG-PL versus GL H0 : a = β = 1 15.876 0.0003
EG-PL versus Lindley H0 : a = b = β = 1 20.148 0.0001

Figure 6: The fitted pdfs and cdfs of the considered distributions for the first data set.

Here, we also applied likelihood ratio (LR) tests. The LR tests can be used for comparing

the EG-PL distribution with its sub-models. For example, the test of H0 : β = 1 against

H1 : β �= 1 is equivalent to comparing the EG-PL and EG-L distributions with each other. For

this test, the LR statistic can be calculated by the following relation

LR = 2
[
�
(
â, b̂, λ̂, β̂

)
− �
(
â∗, b̂∗, λ̂∗, 1

)]
,

where â∗, b̂∗ and λ̂∗ are the ML estimators of a, b and λ, respectively, that will be obtained

under H0. Under the regularity conditions and if H0 is assumed to be true, the LR test statistic

converges in distribution to a chi square with r degrees of freedom, where r equals the difference

between the number of parameters estimated underH0 and the number of parameters estimated

in general, (forH0 : β = 1, we have r = 1). Table 4 gives the LR statistics and the corresponding

p-values for the first data set.

From Table 4, we observe that the computed p-values are too small, so we reject all the

null hypotheses and conclude that the EG-PL fits the first data better than the considered

sub-models in the sense of the LR criterion.

We also plotted the fitted pdfs and cdfs of the considered models for the sake of visual

comparison, in Figure 6. Figure 6 suggests that the EG-PL fits the skewed data very well. In

addition, we presented the probability-probability (P-P) plots for the fitted models in Figure

7. These plots reveal that the EG-PL distribution has the best fit.
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Figure 7: The P-P plots of the fitted models for the first data set.

8.2 Second Application

The second data set consists of prices (×104 dollars) of 428 new cars and trucks (Kiplinger’s

Personal Finance, Dec 2003), see for details Oluyede et al. [20], page 299. Table 5 presents the

parameter ML estimates and their corresponding errors and the goodness-of-fit test statistics

for the second data. We see that the EG-PL distribution outperforms the considered models

according to the considered goodness-of-fit criteria. In addition, the plots of the profile log-

likelihood functions of the EG-PL distribution reveal that the likelihood equations of the EG-PL

distribution have solutions that are maximizers (the plots are not presented here).

The estimated asymptotic covariance matrix of the ML estimators of the EG-PL parameters

for the second data set is given by

⎛

⎜
⎜
⎜
⎝

0.20489890 1.1337013 −0.3604887122 −0.0109507550

1.13370131 135.2597012 1.8595302322 −0.6476292267

−0.36048871 1.8595302 0.7520200103 0.0009059048

−0.01095076 −0.6476292 0.0009059048 0.0036418419

⎞

⎟
⎟
⎟
⎠

.

The %95 asymptotic confidence intervals for a, b, λ and β are given by [1.024± 1.319],

[28.687± 6.684], [2.412± 1.825] and [0.593± 0.480], respectively. The LR test results for the

second data set are given in Table 6. The null hypotheses are all rejected in favor of the EG-PL

distribution since the p-values are less than 0.0001. We plotted the fitted pdfs and cdfs of the
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Table 5: The parameter ML estimates (standard errors in the parentheses) and the goodness-
of-fit test statistics for the second data set.

Models a b λ β A∗ W ∗ −� K-S p-value
EG-PL 1.024 28.687 2.412 0.593 0.481 0.055 747.995 0.086 0.897

(0.453) (11.630) (0.867) (0.060)

W-PL 0.994 30.163 1.071 0.039 9.305 1.481 821.780 0.101 <0.001
(0.013) (2.808) (0.002) (0.002)

EG-L 0.471 4.937 1.824 1 2.508 0.359 764.827 0.058 0.104
(0.023) (0.451) (0.023)

PL 1 1 0.277 1.480 8.563 1.347 812.019 0.091 0.001
(0.018) (0.043)

GL 1 4.464 0.955 1 2.825 0.409 767.799 0.061 0.076
(0.444) (0.039)

Lindley 1 1 0.507 1 5.344 0.812 878.145 0.222 <0.001
(0.017)

Table 6: The LR test results for the second data set.

Hypotheses LR p-value
EG-PL versus EG-L H0 : β = 1 33.664 <0.0001
EG-PL versus PL H0 : a = b = 1 128.048 <0.0001
EG-PL versus GL H0 : a = β = 1 39.608 <0.0001
EG-PL versus Lindley H0 : a = b = β = 1 260.300 <0.0001

considered models in Figure 8. In addition, the P-P plots of the fitted models are displayed in

Figure 9. Visual comparisons confirm the superiority of the EG-PL distribution.

§9 Concluding Remarks

In this article, we proposed a new generalization of the power Lindley distribution i.e. the

EG-PL distribution. We discussed several important properties of the new distribution. The

hazard rate function of the new model has the advantage of taking various forms depending

on the values of the parameters. We also discussed the estimation problem of the unknown

parameters of the new distribution using the ML and DWLS methods. A simulation study

was performed and we observed that both estimation methods worked rather well for most

considered cases. We analyzed two real data sets and observed that the new model fitted the

data sets better than the considered distributions in the sense of some well-known goodness of

fit criteria. Altogether, we may conclude that the new distribution can be a nice choice in real

situations for analyzing lifetime, engineering, economics and many other types of data sets.
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Figure 8: The fitted pdfs and cdfs of the considered distributions for the second data set.

Figure 9: The P-P plots of the fitted models for the second data set.



S.M.T.K. MirMostafaee et al. Exponentiated generalized power Lindley distribution 147

Acknowledgements

We would like to thank the referee for the valuable comments which led to this improved

version of our manuscript.

References

[1] M Alizadeh, S M T K MirMostafaee, E Altun, G Ozel, M Khan Ahmadi. The odd log-logistic

Marshall-Olkin power Lindley distribution: Properties and applications, J Stat Manag Syst, 2017,

20(6): 1065-1093.

[2] MAlizadeh, S M T K MirMostafaee, I Ghosh. A new extension of power Lindley distribution

for analyzing bimodal data, Chilean J Stat, 2017, 8(1): 67-86.

[3] T Andrade, H Rodrigues, M Bourguignon, G M Cordeiro. The exponentiated generalized Gumbel

distribution, Rev Colombiana Estad́ıst, 2015, 38(1): 123-143.

[4] G Aryal, I Elbatal. On the exponentiated generalized modified Weibull distribution, Commun Stat

Appl Methods, 2015, 22(4): 333-348.

[5] S K Ashour, M A Eltehiwy. Exponentiated power Lindley distribution, J Adv Res, 2015, 6(6):

895-905.

[6] M Bourguignon, R B Silva, G M Cordeiro. The Weibull-G family of probability distributions, J

Data Sci, 2014, 12(1): 53-68.

[7] G Chen, N Balakrishnan. A general purpose approximate goodness-of-fit test, J Qual Technol,

1995, 27(2): 154-161.

[8] R S Chhikara, J L Folks. The inverse Gaussian distribution as a lifetime model, Technometrics,

1977, 19(4): 461-468.

[9] G M Cordeiro, A J Lemonte. The exponentiated generalized Birnbaum-Saunders distribution,

Appl Math Comput, 2014, 247: 762-779.

[10] G M Cordeiro, E M M Ortega, D C C da Cunha. The exponentiated generalized class of

distributions, J Data Sci, 2013, 11(1): 1-27.

[11] R M Corless, G H Gonnet, D E G Hare, D J Jeffrey, D E Knuth. On the Lambert W function,

Adv Comput Math, 1996, 5(1): 329-359.

[12] M E Ghitany, B Atieh, S Nadarajah. Lindley distribution and its application, Math Comput

Simulation, 2008, 78(4): 493-506.

[13] M E Ghitany, D K Al-Mutairi, N Balakrishnan, L J Al-Enezi. Power Lindley distribution and

associated inference, Comput Statist Data Anal, 2013, 64: 20-33.



148 Appl. Math. J. Chinese Univ. Vol. 34, No. 2

[14] I S Gradshteyn, I M Ryzhik. Table of Integrals, Series, and Products, 6th ed., Corrected by A

Jeffrey, D Zwillinger, Academic Press, 2000, San Diego.

[15] B Hasselman. Solve systems of nonlinear equations, 2018, R package version 3.3.2.

https://cran.r-project.org/package=nleqslv.
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