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Finite Determinacy of High Codimension Smooth

Function Germs

GAN Wen-liang 1,2 PEI Dong-he 1,∗ LI Qiang 3 GAO Rui-mei 4

Abstract. Mather gave the necessary and sufficient conditions for the finite determinacy s-

mooth function germs with no more than codimension 4. The theorem is very effective on

determining low codimension smooth function germs. In this paper, the concept of right equiva-

lent for smooth function germs ring generated by two ideals finitely is defined. The containment

relationships of function germs still satisfy finite k-determinacy under sufficiently small distur-

bance which are discussed in orbit tangent spaces. Furthermore, the methods in judging the

right equivalency of Arnold function family with codimension 5 are presented.

§1 Introduction

Finite determinacy of smooth function germs has always been a very active project in the

research of singularity theory. Its core idea is taking the jet of function germs, approximating

the infinite terms by its finite terms and getting the same topology properties. In recent years,

there are a large number of literatures on the study of finite determinacy problem of smooth

function germs. For example, Wall showed the necessary and sufficient conditions for the finite

determinacy of smooth mapping germs in [14]. Kushner and Leme [5] and Sun and Wilson [12]

gave the relationship between the mapping germs of relative stability and the finite relative

determinacy. In addition, Liu, Shi and Li provided the definitions and determination methods

of finite determinacy and infinite relative determinacy for smooth function germs with certain

boundary conditions in [7, 10, 11]. This theory has numerous applications in mathematics and

the natural sciences, see [2–4,6, 13].

The necessary and sufficient conditions, for the finite determinacy of the function germs

which are not more than codimension 4, were given by Mather in [9]. The characteristics of
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finite determinacy for smooth function germs are established. His theorem is quite effective on

determining low codimension germs. This work is a foundation of the study on the theory of

finite determinacy. However, his theorem does not work well on high codimension germs, even

such the Arnold function family Nt(x, y) = xy(x− ty), t ∈ (1,+∞) (see [1]).

Our work here is a valuable supplement to the previous work mentioned above. We define

the concept of right equivalent of two ideals which are finitely generated in the smooth function

germ ring (Definition 2.1). And we discuss the containment relationship of function germs

which still satisfy finite k-determinacy under sufficiently small disturbance in orbit tangent

spaces (Theorem 3.1). Furthermore, we present the judging methods of right equivalency for

Arnold function family with codimension 5 (Theorem 3.4 and Example 4.1).

This paper will highlight that not only is our proof the improving and complementary of

Mather’s finite k-determinacy theorem, but also the idea and methods provided in the proof

are more significant. Our works improve the applicability of Mather’s finite k-determinacy

theorem.

The structure of this paper is as follows. In Section 2, we present some basic notations and

preliminaries. In Section 3, the theorems of finite determinacy for smooth function germs with

high codimension are established. As an application of the main results, the right equivalency

for Arnold function family is presented in Section 4.

All undefined terms and symbols could be found in [8].

§2 The basic concepts and preliminaries

Let En be a ring of C∞ smooth function germs at 0 ∈ Rn, Mn be the only maximal ideal

in En, Mk
n be the k-th power of Mn, J(f) = 〈 ∂f∂x1

, ∂f∂x2
, . . . , ∂f∂xn

〉En
be the Jacobian ideal of the

smooth function germ f . Here (t, x)=(t, x1, x2, . . . , xn) ∈ R× Rn .

Definition 2.1. Let I1 = 〈f1, f2, . . . , fr〉En and I2 = 〈g1, g2, . . . , gr〉En be finitely generated

ideals in En. Two ideals I1 and I2 are R-equivalent, if there exists an invertible matrix [uij ]r×r

in En, such that 
f1

f2

...

fr

 = [uij ]r×r


g1

g2

...

gr

 .

Definition 2.2. Let f, g ∈ En. Two function germs f and g are said to be isomorphic(i.e., right

equivalence) if there exists a local diffeomorphism germ Φ : (Rn, 0)→ Rn such that g = f ◦ Φ.

Definition 2.3. Let f : (Rn, 0)→ R be a C∞ real function germ and k be a positive integer.

We say f is k-determined if all the Taylor polynomial germs which have the same order k with

f in En are right equivalent to f .

In order to prove Theorem 3.4, we will introduce a proposition.
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Proposition 2.4. [3] Let

X =
∂

∂t
+

n∑
i=1

Xi(x)
∂

∂xi

be a C∞ vector field on an open neighborhood of R× {0} ⊂ R× Rn, t ∈ [0, 1]. There exists an

open set U containing [0, 1]× {0}, in which the following system of differential equations has a

unique solution. 

dΦ1(t,x)
dt = X1(Φ1(t, x), . . . ,Φn(t, x))

dΦ2(t,x)
dt = X2(Φ1(t, x), . . . ,Φn(t, x))

...
dΦn(t,x)

dt = Xn(Φ1(t, x), . . . ,Φn(t, x)),

with the initial condition 
Φ1(0, x)

Φ2(0, x)
...

Φn(0, x)

 =


x1

x2

...

xn

.

Here, Φt : (U0, x)→ (Ut,Φ(t, x)) is a local diffeomorphism.

§3 Finite determinacy of high codimension smooth function germs

In this section, we present our main results and proofs.

Theorem 3.1. Let h(x) ∈ Mk
n be sufficiently small, then Mk

n ⊂ Mn · J(f) if and only if

Mk
n ⊂Mn · J(f + τh), where τ ∈ [0, 1].

Proof. We have

Mn · J(f)

= 〈x1, x2, . . . , xn〉En · 〈
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn
〉En

= 〈x1 ·
∂f

∂x1
, . . . , x1 ·

∂f

∂xn
, x2 ·

∂f

∂x1
, . . . , x2 ·

∂f

∂xn
, . . . , xn ·

∂f

∂x1
, . . . , xn ·

∂f

∂xn
〉En

.

Mn · J(f + τh)

= 〈x1, x2, . . . , xn〉En · 〈
∂(f + τh)

∂x1
,
∂(f + τh)

∂x2
, . . . ,

∂(f + τh)

∂xn
〉En

= 〈x1 ·
∂(f + τh)

∂x1
, . . . , x1 ·

∂(f + τh)

∂xn
, x2 ·

∂(f + τh)

∂x1
, . . . , x2 ·

∂(f + τh)

∂xn
,

. . . , xn ·
∂(f + τh)

∂x1
, . . . , xn ·

∂(f + τh)

∂xn
〉En

= 〈x1 ·
∂f

∂x1
+ x1 ·

∂(τh)

∂x1
, . . . , x1 ·

∂f

∂xn
+ x1 ·

∂(τh)

∂xn
, x2 ·

∂f

∂x1
+ x2 ·

∂(τh)

∂x1
,

. . . , x2 ·
∂f

∂xn
+ x2 ·

∂(τh)

∂xn
, . . . , xn ·

∂f

∂x1
+ xn ·

∂(τh)

∂x1
, . . . , xn ·

∂f

∂xn
+ xn ·

∂(τh)

∂xn
〉En

.
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Denote that

x1 ·
∂(τh)

∂x1
= τ · η1(x), x1 ·

∂(τh)

∂x2
= τ · η2(x), . . . , x1 ·

∂(τh)

∂xn
= τ · ηn(x),

x2 ·
∂(τh)

∂x1
= τ ·ηn+1(x), . . . , xi ·

∂(τh)

∂xj
= τ ·η(i−1)·n+j(x), . . . , xn ·

∂(τh)

∂xn
= τ ·ηn2(x) = τ ·ηr(x),

where r = n2, (i, j = 1, 2, . . . , n). Then

Mn · J(f) = 〈g1(x), g2(x), . . . , gr(x)〉En
,

Mn · J(f + τh) = 〈w1(x), w2(x), . . . , wr(x)〉En
,

where

xi ·
∂f

∂xj
= g(i−1)·n+j(x), xi ·

∂(f + τh)

∂xj
= w(i−1)·n+j(x), (i, j = 1, 2, . . . , r).

Notice that h(x) ∈Mk
n , then ηi(x) ∈Mk

n , thus ηi(x) ∈Mk
n ⊂Mn · J(f). And

Mn · J(f) = 〈g1(x), g2(x), . . . , gr(x)〉En ,

then there exists aij(x) ∈ En, (i, j = 1, 2, . . . , r), such that

ηi(x) =

r∑
j=1

aij · gj(x). (1)

Because h(x) ∈ Mk
n is sufficiently small, we have xi · ∂(τh)

∂xj
∈ Mk

n is sufficiently small for all

τ ∈ [0, 1]. It means that: in (3.1), for each i, aij(x) is also small enough. That is, aij(0) is

sufficiently small (i, j = 1, 2, . . . , r). Since

wi(x) = gi(x) + τhi(x), (i, j = 1, 2, . . . , r), (2)

we have

wi(x) = gi(x) + τ

r∑
j=1

aij(x) · gj(x), (i, j = 1, 2, . . . , r).

This is the matrix equation
w1(x)

w2(x)
...

wr(x)

 = [I + τ(aij(x))]r×r ·


g1(x)

g2(x)
...

gr(x)

 .

Here the matrix Ir×r satisfies detIr×r = 1 6= 0 , since aij(x) is sufficiently small, we have

τ · aij(x) is sufficiently small for all τ ∈ [0, 1], then aij(0) is sufficiently small,

det[Ir×r + τ · (aij(0))]r×r 6= 0, (i, j = 1, 2, . . . , r).

The matrix [I + τ · (aij(x))]r×r is reversible. According to Definition 2.1,

〈w1(x), w2(x), . . . , wr(x)〉En
= 〈g1(x), g2(x), . . . , gr(x)〉En

,

Mn · J(f + τh) = Mn · J(f).

Then Mk
n ⊂Mn · J(f) if and only if Mk

n ⊂Mn · J(f + τh).

By Theorem 3.1, we can get the following corollary.
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Corollary 3.2. Let Mk
n ⊂ Mn · J(f). If h(x) ∈ Mk

n is sufficiently small, then the algebraic

equation

−h(x) =

n∑
i=1

Xi(x) · (∂f(x)

∂xi
+ t · ∂h(x)

∂xi
)

is solvable, where Xi(x) ∈Mn, i = 1, 2, . . . , n, t ∈ [0, 1].

Proof. For t ∈ [0, 1], t ·h(x) is sufficiently small since h(x) ∈Mk
n is sufficiently small. According

to Theorem 3.1, there exist h(x) ∈Mk
n ⊂Mn · J(f) and Xi(x) ∈Mn(i = 1, 2, . . . , n), such that

−h(x) =

n∑
i=1

Xi(x) · (∂f(x)

∂xi
+ t · ∂h(x)

∂xi
) ∈Mn · J(f + t · h).

That is, the algebraic equation

−h(x) =

n∑
i=1

Xi(x) · (∂f(x)

∂xi
+ t · ∂h(x)

∂xi
), Xi(x) ∈Mn, i = 1, 2, . . . , n, t ∈ [0, 1]

has a solution.

Lemma 3.3. Let F (t, x) = f(x) + t · h(x) be a function germ, where t ∈ [0, 1], h(x) ∈Mk
n and

h(x) is sufficiently small. Then there exists a vector field

X =
∂

∂t
+

n∑
i=1

Xi(x) · ∂

∂xi
,

such that X · F = 0.

Proof. By Corollary 3.2, there exist Xi(x) ∈ Mn(i = 1, 2, . . . , n) satisfying the following alge-

braic equation

−h(x) =

n∑
i=1

Xi(x) · (∂f(x)

∂xi
+ t · ∂h(x)

∂xi
).

Hence, for F (t, x) = f(x) + t · h(x), if t ∈ [0, 1] and h(x) ∈Mk
n is sufficiently small, there exist

a vector field

X =
∂

∂t
+

n∑
i=1

Xi(x) · ∂

∂xi
,

such that

X · F =
∂F

∂t
+

n∑
i=1

Xi(x) · ∂F
∂xi

=
∂(f(x) + t · h(x))

∂t
+

n∑
i=1

Xi(x) · ∂(f(x) + t · h(x))

∂xi

= h(x) +

n∑
i=1

Xi(x) · (∂f(x)

xi
+ t · ∂h(x)

∂xi
) = 0.

.

Theorem 3.4. Let f ∈ En and Mk
n ⊂Mn · J(f). Then the function germ g is right equivalent

to function germ f , if g − f ∈Mk
n , and jkg − jkf ∈ P kn are sufficiently small.

Proof. Let g − f = h ∈ Mk
n and F (t, x) = f(x) + t · h(x), t ∈ [0, 1]. For sufficiently small

h(x) ∈Mk
n and Mk

n ⊂Mn · J(f), by Lemma 3.3, there exists a vector field

X =
∂

∂t
+

n∑
i=1

Xi(x) · ∂

∂xi
,
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such that X · F = 0. That is,

∂F

∂t
+

n∑
i=1

Xi(x) · ∂F
∂xi

= 0.

By Proposition 2.4, we have

∂F

∂t
+

n∑
i=1

dΦi(t, x)

dt
· ∂F
∂xi

= 0,

that means
d

dt
(F ◦ Φ(t, x)) = 0.

That is to say no matter what value t is, the derivative on t is 0, so the value of F ◦Φ(t, x)

on t is a constant. Thus, for any t1, t2 ∈ [0, 1] and t1 6= t2, we have F ◦ Φ(t1, x) = F ◦ Φ(t2, x).

Especially, when t1 = 0, t2 = 1, we have F (0,Φ(0, x)) = F (1,Φ(1, x)). By F (t, x) = f(x) + t ·
h(x), then F (0, x) = f(x), F (1, x) = f(x) + h(x) = g(x). Hence, g = f ◦ Φ(1, x). This implies

that g is isomorphic (right equivalence) to f .

§4 Example

As an application of Theorem 3.4, we illustrate the following example.

Example 4.1. Let Nt(x, y) = xy(x − ty) be a two variable function family, t ∈ (1,+∞). For

all t0, t1 ∈ (1,+∞) , t0 6= t1, Nt1(x, y) is right equivalent to Nt0(x, y).

Proof. Since

M2 = 〈x, y〉En , M
3
2 = 〈x3, x2y, xy2, y3〉E2 = 〈g1, g2, g3, g4〉E2

and Nt0 = x2y − t0xy2, we have J(Nt0) = 〈2xy − t0y2, x2 − 2t0xy〉E2+1
and

M2 · J(Nt0)

= 〈x, y〉E2
· 〈2xy − t0y2, x2 − 2t0xy〉E2+1

= 〈2x2y − t0xy2, x3 − 2t0x
2y, 2xy2 − t0y3, x2y − 2t0xy

2〉E2+1
.

Let

M2 · J(Nt0)

= 〈2x2y − t0xy2, x3 − 2t0x
2y, 2xy2 − t0y3, x2y − 2t0xy

2〉E2+1

= 〈x3 − 2t0x
2y, 2x2y − t0xy2, x2y − 2t0xy

2, 2xy2 − t0y3〉E2+1

= 〈f1, f2, f3, f4〉E2+1 ,

M3
2 = 〈x3, x2y, xy2, y3〉E2

= 〈g1, g2, g3, g4〉E2
.

This means 
g1 = x3 = f1 + 2t0x

2y = f1 + 2t0g2

g2 = x2y = 1
2f2 + 1

2 t0xy
2 = 1

2f2 + 1
2 t0g3

g3 = xy2 = f3 + 2t0xy
2 = f3 + 2t0g3

g4 = y3 = − 1
t0
f4 + 2

t0
xy2 = − 1

t0
f4 + 2

t0
g3.

That is ,
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
g1 − 2t0g2 = f1

g2 − 1
2 t0g3 = 1

2f2

g3 − 2t0g3 = f3

g4 − 2
t0
g3 = − 1

t0
f4.

Therefore, 
f1 = g1 − 2t0g2

f2 = 2g2 − t0g3

f3 = g3 − 2t0g3

f4 = 2g3 − t0g4.

The matrix representation of the above equations are


f1

f2

f3

f4

 =


1 −2t0 0 0

0 2 −t0 0

0 0 1− 2t0 0

0 0 2 −t0




g1

g2

g3

g4

.

For t0 ∈ (1,+∞), ∣∣∣∣∣∣∣∣∣
1 −2t0 0 0

0 2 −t0 0

0 0 1− 2t0 0

0 0 2 −t0

∣∣∣∣∣∣∣∣∣ = 2t0(2t0 − 1) 6= 0.

Thus, the matrix


1 −2t0 0 0

0 2 −t0 0

0 0 1− 2t0 0

0 0 2 −t0

 is invertible. By Definition 2.1, we have

Mn · J(Nt0) = M3
n.

Therefore, we can draw the conclusion that Nt0(x, y) = xy(x− t0y) is 3-determinacy for any

t0 ∈ (1,+∞) by Mather’s theorem. That is, g(x, y) ∈ E2 and g(x, y) − Nt0(x, y) ∈ M3
2 , then

g is right equivalent to Nt0 . But we can not draw the conclusion that Nt0 and Nt1 are right

equivalent for all t0, t1 ∈ (1,+∞), t0 6= t1. However, according to Theorem 3.4, we can show

that Nt0(x, y) is right equivalent to Nt1(x, y) for the family of functions Nt(x, y) = xy(x− ty),

t ∈ (1,+∞), t0, t1 ∈ (1,+∞), and t0 6= t1.

In fact, for any t0, t1 ∈ (1,+∞), t0 6= t1, if |t0 − t1| is small enough, then

j3Nt1(x, y)− j3Nt0(x, y) = Nt1(x, y)−Nt0(x, y) = xy2(t0 − t1) ∈ P 3
2

is sufficiently small. We have Nt1(x, y) is right equivalent to Nt0(x, y) by Theorem 3.4.
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