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A note on the perturbed monomial mapping

QU Cheng-qin1 ZHU Zhi-wei2 ZHOU Zuo-ling3

Abstract. In this paper, we present a necessary and sufficient condition that the perturbed

monomial mapping is ergodic on a sphere Sp−1(1), which is in a combination with Anashin’s

earlier results about the perturbed monomial ergodic mappings on a sphere Sp−r (1), r > 1, com-

pletely solve a problem posed by A. Khrennikov about the ergodicity of a perturbed monomial

mapping on a sphere.

§1 Introduction

The p-adic ergodic theorey is now in the focus of international research activities due to

its theoretical significance and applied value in different areas, e.g., in mathematical physics,

computer science, automata theorey, numerical analysis, cryptography, quantitative biology,

genetics, etc.([1], [9]). Some of these cognitive models are described by random dynamical

systems in the fields of p-adic numbers, see [5], [11]. In this paper we say that the function

f : Zp → Zp is ergodic whenever f ergodic with respect to the Haar measure µp, which is

normalized so that the measure of the whole space is 1. Earlier in [7] ergodicity of monomial

mappings x → xl on spheres Sp−r (1) of a radius p−r with a center at 1 was studied: It was

shown that for odd p and r > 1 the mapping is ergodic iff l is a generator of the group (Z/p2Z)∗.

The following problem was put at the 2nd Intl Conference on p-adic Mathematical Physics by

Professor Andrei Khrennikov (see also [7], [8], and [10]):

We know for which l and p the dynamical system f(x) = xl is ergodic on the sphere Sp−r (1).

Let us consider the ergodicity of a perturbed system f(x) = xl + q(x) for some polynomial

q(x) ∈ Zp[x] such that all coefficients of q(x) are p-adicaly smaller than pr. This condition is

necessary in order to guarantee that Sp−r (1) is invariant. For such a system to be ergodic, it is

necessary that l is a generator of (Z/p2Z)∗. Is this a sufficient condition?

Anashin’s general result on smooth dynamics on p-adic spheres [2] implies affirmative answer

to the above problem when r > 1(see [2]), that is:
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Theorem 1. The perturbed monomial mapping f(x) = xl + q(x), where q(x) = pr+1u(x) for

some function u ∈ B (e.g., for a polynomial u(x) ∈ Zp[x]) is ergodic on the sphere Sp−r (1)

(where r > 1) if and only if l is primitive modulo p2.

However, if r = 1, the above question is not answered using Anashin’s methods. In this

note we use a method to study the structures on Z/pnZ inductively in desJardins and Zieve [3]

and Fan and Liao [6], and prove the following theorem, which give an affirmative answer for

the above problem if the radius p−1, i.e., when r = 1.

Our main result is

Theorem 2. The perturbed monomial mapping f(x) = xl + q(x), where q(x) = p2u(x) for

some polynomial u(x) ∈ Zp[x] is ergodic on the sphere Sp−1(1) if and only if l is a generator of

(Z/p2Z)∗.

Remark. Theorem 1 together with Theorem 2 completely solve the problem posed by A.

Khrennikov more than 15 years ago.

§2 Proof of Theorem

Let p ≥ 3 be a prime and let f ∈ Zp[x] be a polynomial with coefficients in Zp. The

dynamics of f on Zp is determined by those of its induced finite dynamics on Z/pnZ ([3, 6]).

The idea to study these finite dynamics inductively comes from DesJardins and Zieve [3]. It

allows Fan and Liao [6] to give the decomposition theorem for any polynomial in Zp[x]. Let

us briefly recall some basic definitions and facts which are useful in proving our main theorem.

For details, see [3] or [6]. Let n ≥ 1 be a positive integer. Denote by fn the induced mapping

of f on Z/pnZ, i.e.,

fn(x (mod pn)) = f(x) (mod pn)

The dynamical behaviors of f are linked to those of fn. One is the following.

Theorem 2.1 ([3], [6]). Let f ∈ Zp[x] and E ⊂ Zp be a compact f−invariant set. Then

f : E → E is minimal if and only if fn : E/pnZp → E/pnZp is minimal for each n ≥ 1.

Assume that σ = (x1, · · · , xk) ⊂ Z/pnZ is a cycle of fn of length k (also called k−cycle),

i.e.,

fn(x1) = x2, · · · , fn(xi) = xi+1, · · · , fn(xk) = x1.

Let X :=
⋃k
i=1Xi, where

Xi := {xi + pnt; t = 0, · · · , p− 1} ⊂ Z/pn+1Z.

Then

fn+1(Xi) ⊂ Xi+1(1 ≤ i ≤ k − 1), fn+1(Xk) ⊂ X1.

In the following we shall study the behavior of the finite dynamics fn+1 on the fn+1−invariant

set X and determine all cycles in X of fn+1, which will be called lifts of σ. Remark that the

length of any lift σ̃ of σ is a multiple of k.

Let g := fk be the k-th iterate of f . Then, any point in σ is fixed by gn, the n-th induced



78 Appl. Math. J. Chinese Univ. Vol. 34, No. 1

map of g. For x ∈ σ, denote

an(x) := g′(x) =

k−1∏
j=0

f ′(f j(x)). (2.1)

bn(x) :=
g(x)− x

pn
=
fk(x)− x

pn
. (2.2)

The coefficient an(x) (mod p) is always constant on Xi and the coefficient bn(x) (mod p) is

also constant on Xi but under the condition an(x) ≡ 1 (mod p). For simplicity, sometimes

we shall write an and bn without mentioning x. The values on the cycle σ = (x1, · · · , xk) of

the functions an and bn are important for our purpose. Using an and bn, we can show that

gn+1 : Xi → Xi is conjugate to a linear map. If an ≡ 1 (mod p) and bn 6= 0 (mod p), then fn+1

restricted to X preserves a single cycle of length pk. In this case we say σ grows. According to

1) and 2) of Proposition 2.5 of [6], we have

Theorem 2.2 ([6]). Assume that n ≥ 2, if σ = (x1, · · · , xk) ⊂ Z/pnZ grows, then its lift also

grows, and the lift of the lift will grow and so on.

So, the clopen set

X =

k⋃
i=1

(xi + pnZp)

is a minimal set.

Let g(x) = xl, we have the following conclusion:

Theorem 2.3 ([3], [6]). Let p ≥ 3 and r ≥ 1. Then, the monomial dynamical system g(x) = xl

is minimal on the circle Sp−r (1) if and only if l is a generator of (Z/p2Z)∗.

Assume that f(x) = xl + q(x), where q(x) = p2u(x) for some polynomial u(x) ∈ Zp[x]. Let

x0 = 1 + p ∈ Sp−1(1)/p2Z and xi = f i(x0), i = 1, · · · , p − 1, then xi ∈ Sp−1(1)/p2Z for all

i = 1, · · · , p− 1, and denote σ = (x0, · · · , xp−1) ⊂ Z/p2Z. In order to show main theorem, we

need the following lemmas.

Lemma 2.1 ([7]). l is a generator of (Z/p2Z)∗ if and only if l is a generator of (Z/pZ)∗.

Lemma 2.2. If l is a generator of (Z/p2Z)∗, then σ ⊂ Sp−1(1)/p2Z is a cycle of f2 of length

p.

Proof. By a simple calculation, we get

f(1 + p) ≡ (1 + p)l (mod p2) ≡ 1 + lp (mod p2),

f2(1 + p) ≡ (1 + p)l
2

(mod p2) ≡ 1 + l2p (mod p2),

f3(1 + p) ≡ (1 + p)l
3

(mod p2) ≡ 1 + l3p (mod p2),

· · ·

fp−1(1 + p) ≡ (1 + p)l
p−1

(mod p2) ≡ 1 + lp−1p (mod p2).

By Lemma 2.1 we know that the set

{l, l2, l3, · · · , lp−1} (mod p)

is a cyclic permutation of {1, 2, 3, · · · , p− 1}, which means that σ ⊂ Sp−1(1)/p2Z is a cycle of

f2. This completes the proof of Lemma 2.2.
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Lemma 2.3. If l is a generator of (Z/p2Z)∗, then

a2(x) ≡ 1 (mod p), b2(x) 6= 0 (mod p)

for all x ∈ σ.
Proof. By Lemma 2.1 we know that l is a generator of (Z/pZ)∗, which implies

l 6= 1 (mod p), lp−1 = 1 + τp(τ 6= 0). (2.3)

lp ≡ 1 (mod p), lp ≡ 1 (mod p2), (2.4)

and

lp−1 + lp−2 + · · ·+ l + 1 ≡ 0 (mod p). (2.5)

Taking x0 = 1 + p ∈ Sp−1(1)/p2Z, we have

a2(x0) ≡
p−1∏
j=0

f ′(f j(1 + p)) (mod p2)

≡ lp
p−1∏
j=0

(f j(1 + p))l−1 (mod p2)

≡ lp
p−1∏
j=0

(1 + ljp))l−1 (mod p2)

≡ lp(1 + (lp−1 + lp−2 + · · ·+ l + 1)p)l−1 (mod p2)

≡ lp (mod p2) ≡ 1 (mod p2).

On the other hand, we have u(1 + p) ≡ u(1) (mod p). By a direct calculation, we can get

f(1 + p) ≡ (1 + p)l + p2u(1) (mod p3),

f2(1 + p) ≡ (1 + p)l
2

+ (l + 1)p2u(1) (mod p3),

f3(1 + p) ≡ (1 + p)l
3

+ (l2 + l + 1)p2u(1) (mod p3),

· · ·

fp−1(1 + p) ≡ (1 + p)l
p−1

+ (lp−1 + · · ·+ l2 + l + 1)p2u(1) (mod p3).

Therefore, we have

b2(x0) = fp−1(x0)−(x0)
p2

≡ (1+p)l
p−1
−(1+p)

p2 (mod p)

≡ lp−1−1
p + lp−1(lp−1−1)

2 (mod p).

(2.6)

According to (2.4) and (2.5),we have

lp−1 − 1

p
= τ,

lp−1(lp−1 − 1)

2
=

(1 + τp)τ

2
p, (2.7)

where (1+τp)τ
2 ∈ Z. It follows from (2.6) and (2.7) that

b2(x0) ≡ τ 6= 0 (mod p).

Finally, from [3] and [6] we know that an(x) (mod p) is always constant on the cycle σ =

(x1, · · · , xk) and the bn(x) (mod p) is also constant on the cycle σ = (x1, · · · , xk) under the

condition an(x) ≡ 1 (mod p), therefore

a2(x) ≡ 1 (mod p), b2(x) 6= 0 (mod p)
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for all x ∈ σ, this completes the proof of Lemma 2.3.

According to Theorem 3.2 of [4], we have

Lemma 2.4([4]). A compatible mapping f : Zp → Zp is ergodic on the sphere Sp−r (y) if and

only if it induces the residue ring Z/pr+1Z a mapping which acts on the subset

Sp−r (y) (mod pk+1) = {y + prs+ pr+1Z : s = 1, 2, · · · , p− 1} ⊂ Z/pk+1Z

as a permutation with a single cycle, for all k = r, r + 1, · · · .
Proof of Theorem 2. By Lemma 2.1-2.4 we obtain Theorem 2. This completes the proof of

Theorem 2.
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