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Compactness for the commutators of multilinear singular

integral operators with non-smooth kernels

BU Rui1 CHEN Jie-cheng∗,2

Abstract. In this paper, the behavior for commutators of a class of bilinear singular integral

operators associated with non-smooth kernels on the product of weighted Lebesgue spaces is

considered. By some new maximal functions to control the commutators of bilinear singular

integral operators and CMO(Rn) functions, compactness for the commutators is proved.

§1 Introduction

In recent decades, the study of multilinear analysis becomes an active topic in harmonic

analysis. The first important work, among several pioneer papers, is the famous work by Coif-

man and Meyer in [8,9], where they established a bilinear multiplier theorem on the Lebesgue

spaces. Note that a multilinear multiplier actually is a convolution operator. Naturally one will

study the non-convolution operator

T (f1, . . . , fm)(x) =

∫
(Rn)m

K(x, y1, . . . , ym)f1(y1) · · · fm(ym)dy1 · · · dym, (1)

where K(x, y1, . . . , ym) is a locally integral function defined away from the diagonal x = y1 =

· · · = ym in (Rn)m+1, x /∈ ∩mj=1supp fj and f1, . . . , fm are bounded functions with compact

supports. Precisely,

T : S(Rn)× · · · × S(Rn) 7→ S ′(Rn)

is an m-linear operator associated with the kernel K(x, y1, . . . , ym). If there exist positive

constants A and γ ∈ (0, 1] such that K satisfies the size condition

|K(x, y1, . . . , ym)| ≤ A

(|x− y1|+ · · ·+ |x− ym|)mn
(2)
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for all (x, y1, . . . , ym) ∈ (Rn)m+1 with x 6= yj for some j ∈ {1, 2, . . . ,m}; and the smoothness

condition

|K(x, y1, . . . , ym)−K(x′, y1, . . . , ym)| ≤ A|x− x′|γ

(
∑m
i=1 |x− yi|)mn+γ

,

whenever |x− x′| ≤ 1
2 max1≤j≤m |x− yj | and also for each j,

|K(x, y1, . . . , yj , . . . , ym)−K(x, y1, . . . , y
′
j , . . . , ym)| ≤

A|yj − y′j |γ

(
∑m
i=1 |x− yi|)mn+γ

, (3)

whenever |yj − y′j | ≤ 1
2 max1≤j≤m |x − yj |, then we say that K is a Calderón-Zygmund kernel

and denote it by K ∈ m − CZK(A, γ). Also, T is called the multilinear Calderón-Zygmund

operator associated with the kernel K. In [16], Grafakos and Torres established the multilinear

T1 theorem, so that they obtained the strong type boundedness on product of Lp(Rn) spaces

and endpoint weak type estimates of operators T associated with kernels K ∈ m−CZK(A, γ).

Furthermore, the Ap(R
n) weights (see Definition 1.2) on the operator T and on the cor-

responding maximal operator were considered in [15]. After then, the study of multilinear

Calderón-Zygmund operator is fruitful. The readers can refer to [14-16,21,23,25-28,32] and the

references therein.

However, there are some multilinear singular integral operators, including the Calderón

commutator, whose kernels do not satisfy (3). Here, the Calderón commutator is defined by

Cm+1(f, a1, . . . , am)(x) =

∫
R

∏m
j=1(Aj(x)−Aj(y))

(x− y)m+1
f(y)dy,

where A′j = aj for all j ∈ {1, 2, · · · ,m}. This operator first appeared in the study of Cauchy

integral along Lipschitz curves and, in fact, led to the first proof of the L2-boundedness of the

latter. Moreover, the operator Cm+1 can be viewed as an (m+ 1)-linear operator. Define

e(x) =

{
1 : x > 0,

0 : x < 0.

Since A′j = aj , the (m+ 1)-linear operator Cm+1(f, a1, . . . , am) can be written as

Cm+1(f, a1, . . . , am)(x) =

∫
(R)m+1

K(x, y1, . . . , ym+1)a1(y1) · · · am(ym)f(ym+1)dy1 · · · dym+1,

where the kernel K is

K(x, y1, . . . , ym+1) =
(−1)e(ym+1−x)m

(x− ym+1)m+1

m∏
j=1

χ(min(x,ym+1),max(x,ym+1))(yj). (4)

In [11], the authors pointed out that the kernel K in (4) does not satisfy (3). In order

to discuss these operators whose kernels don’t satisfy (3), Duong et al. [10,11] introduced a

class of multilinear singular integral operators whose kernels satisfy the following assumptions

(H1),(H2) and (H3).

Let {At}t>0 be a class of integral operators, which play the role of an approximation to the

identity as in [12]. We always assume that the operators At are associated with kernels at(x, y)

in the sense that

Atf(x) =

∫
Rn

at(x, y)f(y)dy
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for all f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and the kernels at(x, y) satisfy

|at(x, y)| ≤ ht(x, y) = t−n/sh(
|x− y|
t1/s

), (5)

where s is a fixed positive constant and h is a bounded, positive, decreasing function satisfying

lim
r→∞

rn+ιh(rs) = 0 (6)

for some ι > 0.

Assumption (H1). Assume that for each j ∈ {1, 2, · · · ,m}, there exist operators {A(j)
t }t>0

with kernels a
(j)
t (x, y) that satisfy conditions (5) and (6) with constants s and ι, and there exist

kernels K
(j)
t (x, y1, · · · , ym) such that

< T (f1, · · · , A(j)
t fj , · · · , fm), g >=

∫
Rn

∫
(Rn)m

K
(j)
t (x, y1, · · · , ym)f1(y1) · · · fm(ym)g(x)d~ydx

for all f1, · · · , fm, g ∈ S(Rn) with ∩mj=1supp fj∩supp g = ∅, and there exist a function Φ ∈ C(R)

with suppΦ ⊂ [−1, 1] and a constant ε > 0 such that for all x, y1, · · · , ym ∈ Rn and t > 0, we

have

|K(x, y1, · · · , ym)−K(j)
t (x, y1, · · · , ym)| ≤ C

(|x− y1|+ · · ·+ |x− ym|)mn
m∑

k=1,k 6=j

Φ(
|yj − yk|
t1/s

)

+
Ctε/s

(|x− y1|+ · · ·+ |x− ym|)mn+ε

for some C > 0, whenever 2t1/s ≤ |x− yj |.

Kernels K satisfying condition (2) and assumption (H1) with parameters m,C, s, ι, ε are

called generalized Calderón-Zygmund kernels, and their collection is denoted by m−GCZK0(C,

s, ι, ε). It was proved in [11] that the assumption (H1) is weaker than condition (3). But it is

sufficient for the weak type endpoint estimate.

Recall that the j-th transpose T ∗j of T is defined via

< T ∗j(f1, · · · , fm), h >=< T (f1, · · · , fj−1, h, fj+1, · · · , fm), fj >

for all f1, · · · , fm, h ∈ S(Rn). It is easy to check that the kernel K∗j of T ∗j is related to the

kernel K of T via the identity

K∗j(x, y1, · · · , yj−1, yj , yj+1, · · · , ym) = K(yj , y1, · · · , yj−1, x, yj+1, · · · , ym).

Notice that if a multilinear operator T maps a product of Banach spaces X1 × · · · × Xm to

another Banach space X, then T ∗j maps the product of Banach spaces X1 × · · · × Xj−1 ×
X∗ ×Xj+1 × · · · ×Xm to Banach space X∗j . Moreover, the norms of T and T ∗j are equal. For

notational convenience, we may occasionally denote T by T ∗0 and K by K∗0.

Assumption (H2). Assume that for every i ∈ {1, · · · ,m}, there exist operators {A(i)
t }t>0

with kernels a
(i)
t (x, y) that satisfy conditions (5) and (6) with constants s and ι, and there also

exist kernels K
∗j,(i)
t (x, y1, · · · , ym) so that

< T ∗j(f1, · · · , A(i)
t fi, · · · , fm), g >=

∫
Rn

∫
(Rn)m

K
∗j,(i)
t (x, y1, · · · , ym)

m∏
k=1

fk(yk)g(x)d~ydx

for each j ∈ {0, 1, · · · ,m}, and all f1, · · · , fm ∈ S(Rn) with ∩mk=1supp fk ∩ supp g = ∅. Also

assume that there exist a function Φ ∈ C(R) with suppΦ ⊂ [−1, 1] and a constant ε > 0 so that



58 Appl. Math. J. Chinese Univ. Vol. 34, No. 1

for all x, y1, · · · , ym ∈ Rn, t > 0, each j ∈ {0, 1, · · · ,m}, and every i ∈ {1, · · · ,m}, we have

|K∗j(x, y1, · · · , ym)−K∗j,(i)t (x, y1, · · · , ym)| ≤ C

(|x− y1|+ · · ·+ |x− ym|)mn
m∑

k=1,k 6=i

Φ(
|yi − yk|
t1/s

)

+
Ctε/s

(|x− y1|+ · · ·+ |x− ym|)mn+ε
,

whenever 2t1/s ≤ |x− yi|.
Kernels K satisfying condition (2) and assumption (H2) with parameters m,C, s, ι, ε are

also called generalized Calderón-Zygmund kernels, and their collection is denoted by m −
GCZK(C, s, ι, ε). We say that T is of class m − GCZO(C, s, ι, ε) if the kernel of it is in

m − GCZK(C, s, ι, ε). In [11], the authors obtained the strong type boundedness on product

of Lp(Rn) spaces and endpoint weak type estimates of operators T ∈ m − GCZO(C, s, ι, ε).

Furthermore, they pointed out that the m-th order Calderón commutator Cm+1 is an (m+ 1)-

linear operator associated with a kernel K in (m+1)−GCZK(C, 1, 1, 1). In this way they first

proved that for p1, . . . , pm+1 ∈ [1,∞] and p ∈ (0,∞) with 1
p =

∑m+1
j=1

1
pj

,

‖Cm+1(f, a1, . . . , am)‖Lp,∞(R) ≤ C‖f‖Lpm+1 (R)

m∏
j=1

‖aj‖Lpj (R),

and if min1≤j≤m+1 pj > 1, then

‖Cm+1(f, a1, . . . , am)‖Lp(R) ≤ C‖f‖Lpm+1 (R)

m∏
j=1

‖aj‖Lpj (R).

Assumption (H3). Assume that there exist operators {Bt}t>0 with kernels bt(x, y) that satisfy

conditions (5) and (6) with constants s and ι, and there also exist kernels K
(0)
t (x, y1, · · · , ym)

such that

K
(0)
t (x, y1, · · · , ym) =

∫
Rn

K(z, y1, · · · , ym)bt(x, z)dz

for all x, y1, · · · , ym ∈ Rn. Also assume that there exist a function Φ ∈ C(R) with suppΦ ⊂
[−1, 1] and a constant ε > 0 so that for all x, y1, · · · , ym ∈ Rn and t > 0, we have

|K(x, y1, · · · , ym)−K(0)
t (x, y1, · · · , ym)| ≤ C

(|x− y1|+ · · ·+ |x− ym|)mn
m∑
k=1

Φ(
|x− yk|
t1/s

)

+
Ctε/s

(|x− y1|+ · · ·+ |x− ym|)mn+ε

for some C > 0, whenever 2t1/s ≤ max1≤j≤m |x−yj |. Moreover, assume that for all x, y1, · · · , ym
∈ Rn,

|K(0)
t (x, y1, · · · , ym)| ≤ C

(|x− y1|+ · · ·+ |x− ym|)mn
,

whenever 2t1/s ≤ min1≤j≤m |x− yj |, and for all x, x′, y1, · · · , ym ∈ Rn,

|K(0)
t (x, y1, · · · , ym)−K(0)

t (x′, y1, · · · , ym)| ≤ Ctε/s

(|x− y1|+ · · ·+ |x− ym|)mn+ε
,

whenever 2|x− x′| ≤ t1/s and 2t1/s ≤ min1≤j≤m |x− yj |.
In [10], under assumption (H2) and (H3), some weighted estimates of operator T are ob-

tained, and the authors also proved that the m-th order Calderón commutator Cm+1 satisfies
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assumption (H3). Furthermore, the weighted estimates, including the multiple weights, of the

maximal Calderón commutator were considered in [10] and [14]. Moreover, there are a large

amount of work related to singular integral operators with non-smooth kernels. The readers

may refer [12], [18] and [19], among many interesting works.

In this article, we are interested in the compactness for the commutators of multilinear

singular integral operators with non-smooth kernels and CMO(Rn) functions, where CMO(Rn)

denotes the closure of C∞c (Rn) in the BMO(Rn) topology. For the sake of convenience, we

will write out the case of compactness in a bilinear setting. In particular, We will study the

compactness for the commutator of T, where we assume that T is a bilinear singular integral

operator associated with kernel K in the sense of (1) and satisfying (2), and

(i) T is bounded from

L1(Rn)× L1(Rn)→ L1/2,∞(Rn); (7)

(ii) for x, x′, y1, y2 ∈ Rn with 8|x− x′| < min1≤j≤2 |x− yj |,

|K(x, y1, y2)−K(x′, y1, y2)| ≤ Dτγ

(|x− y1|+ |x− y2|)2n+γ
, (8)

where D is a constant and τ is a number such that 2|x− x′| < τ and 4τ < min1≤j≤2 |x− yj |.
It was pointed out in [20] that the condition (8) is weaker than, and indeed a consequence of,

assumption (H3). For b ∈ BMO(Rn), we consider commutators

T 1
b (f1, f2) = [b, T ]1(f1, f2) = bT (f1, f2)− T (bf1, f2),

T 2
b (f1, f2) = [b, T ]2(f1, f2) = bT (f1, f2)− T (f1, bf2).

For ~b = (b1, b2) ∈ BMO(Rn)× BMO(Rn), we consider the iterated commutator

T~b(f1, f2) = [b2, [b1, T ]1]2(f1, f2),

and, in the sense of (1),

[b, T ]1(f1, f2)(x) =

∫
Rn

∫
Rn

K(x, y1, y2)(b(x)− b(y1))f1(y1)f2(y2)dy1dy2,

[b, T ]2(f1, f2)(x) =

∫
Rn

∫
Rn

K(x, y1, y2)(b(x)− b(y2))f1(y1)f2(y2)dy1dy2,

T~b(f1, f2)(x) =

∫
Rn

∫
Rn

K(x, y1, y2)(b1(x)− b1(y1))(b2(x)− b2(y2))f1(y1)f2(y2)dy1dy2.

Our aim is to obtain the compactness for the above commutators. Before stating our

results, we briefly describe the background and our motivation. In [3], Calderón first proposed

the concept of compactness in the multilinear setting and Bényi and Torres put forward an

equivalent one in [2]. Bényi and Torres extended the result of compactness for linear singular

integrals by Uchiyama [30] to the bilinear setting and obtained that [b, T ]1, [b, T ]2, [b2, [b1, T ]1]2

are compact bilinear operators from Lp1(Rn)×Lp2(Rn) to Lp(Rn) when b, b1, b2 ∈ CMO(Rn),

1 < p1, p2 < ∞ and 1/p1 + 1/p2 = 1/p ≤ 1. Recently, Clop and Cruz [7] considered the

compactness for the linear commutator on weighted spaces. For the bilinear case, Bényi et al.

[1] extended the result of [2] to the weighted case, and they obtained that all [b, T ]1, [b, T ]2,

[b2, [b1, T ]1]2 are compact operators from Lp1(w1) × Lp2(w2) to Lp(ν~w) when 1 < p1, p2 < ∞,
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1/p1 + 1/p2 = 1/p < 1, ~w ∈ Ap(Rn)× Ap(Rn) and b, b1, b2 ∈ CMO(Rn). We note that in [1],

T is a Calderón-Zygmund operator with smooth kernel. Hence, in this article, we will consider

the same compactness for these commutators by assuming T is an operator associated with

non-smooth kernel. Although we will adopt the concept of compactness proposed in [2](The

reader can refer to [2] and [31] for more properties of compact and precompact) and some basic

ideas used in [2,4,5,6,20,22,24,28], our proof meet some special difficulties so that some new

ideas and estimates must be bought in. Particularly, some specific maximal functions will be

involved.

We denote the closed ball of radius r centered at the origin in the normed space X as

Br,X = {x ∈ X : ‖x‖ ≤ r}.

Definition 1.1. A bilinear operator T : X × Y 7→ Z is called compact if T (B1,X × B1,Y ) is

precompact in Z.

Definition 1.2. A weight w belongs to the class Ap(R
n), 1 < p <∞, if

sup
Q

(
1

|Q|

∫
Q

w(y)dy

)(
1

|Q|

∫
Q

w(y)1−p
′
dy

)p−1
<∞.

A weight w belongs to the class A1(Rn) if there is a constant C such that

1

|Q|

∫
Q

w(y)dy ≤ C inf
x∈Q

w(x).

Definition 1.3. Let ~p = (p1, p2) and 1/p = 1/p1 + 1/p2 with 1 ≤ p1, p2 < ∞. Given ~w =

(w1, w2), set ν~w =
∏2
j=1 w

p/pj
j . We say that ~w satisfies the A~p(R

2n) condition if

sup
Q

(
1

|Q|

∫
Q

ν~w

)1/p 2∏
j=1

(
1

|Q|

∫
Q

w
1−p′j
j

)1/p′j

<∞.

Here,
(

1
|Q|
∫
Q
w

1−p′j
j

)1/p′j
is understood as (infQ wj)

−1,when pj = 1.

The following two theorems are our main results:

Theorem 1.1. Let T be a bilinear operator satisfying condition (7) and its kernel K satisfies

(2), (8). Assume b ∈ CMO(Rn), p1, p2 ∈ (1,∞), p ∈ (1,∞) such that 1/p = 1/p1 + 1/p2

and ~w = (w1, w2) ∈ A~p(R2n) such that ν~w ∈ Ap(Rn). Then [b, T ]1, [b, T ]2 are compact from

Lp1(w1)× Lp2(w2) to Lp(ν~w).

In order to prove Theorem 1.1, we need the following result which has independent interest.

Theorem 1.2. Let T be a bilinear operator satisfying condition (7) and its kernel K satisfies

(2), (8). Assume b ∈ BMO(Rn), p1, p2 ∈ (1,∞), p ∈ (0,∞) such that 1/p = 1/p1 + 1/p2,

~w = (w1, w2) ∈ A~p(R2n). Then

‖[b, T ]1(f1, f2)‖Lp(ν~w), ‖[b, T ]2(f1, f2)‖Lp(ν~w) ≤ C‖b‖BMO(Rn)‖f1‖Lp1 (w1)‖f2‖Lp2 (w2).

Remark 1.1. Theorem 1.1, Theorem 1.2 are also true for the iterated commutator [b2, [b1, T ]1]2,

and their proofs are similar to the proofs of Theorem 1.1 and Theorem 1.2. We leave the details

to the interested readers.
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We make some conventions. In this paper, we always denote a positive constant by C which is

independent of the main parameters and its value may differ from line to line. We use the symbol

A . B to denote that there exists a positive constant C such that A ≤ CB. For a measurable

set E, χE denotes its characteristic function. For a fixed p with p ∈ [1,∞), p′ denotes the dual

index of p. We also denote ~f = (f1, · · · , fm) with scalar functions fj (j = 1, 2, ...,m). Given

α > 0 and a cube Q, `(Q) denotes the side length of Q, and αQ denotes the cube which is the

same center as Q and `(αQ) = α`(Q). fQ denotes the average of f over Q. Let M be the

standard Hardy-Littlewood maximal operator. For 0 < δ < ∞, Mδ is the maximal operator

defined by

Mδf(x) = M(|f |δ)1/δ(x) =

(
sup
Q3x

1

|Q|

∫
Q

|f(y)|δdy
)1/δ

,

M# is the sharp maximal operator defined by Fefferman and Stein [13],

M#f(x) = sup
Q3x

inf
c

1

|Q|

∫
Q

|f(y)− c|dy ≈ sup
Q3x

1

|Q|

∫
Q

|f(y)− fQ|dy,

and

M#
δ f(x) = M#(|f |δ)1/δ(x).

It is known that, when 0 < p, δ <∞, w ∈ A∞(Rn), there exists a constant C > 0 such that∫
Rn

(Mδf(x))pw(x)dx ≤ C
∫
Rn

(M#
δ f(x))pw(x)dx (9)

for any function f for which the left-hand side is finite.

§2 A multilinear maximal operator

We need some basic facts about Orlicz spaces, for more information about these spaces the

readers may consult [29]. For

Φ(t) = t(1 + log+ t)

and a cube Q in Rn, we define

‖f‖L(logL),Q = inf{λ > 0 :
1

|Q|

∫
Q

Φ

(
|f(x)|
λ

)
dx ≤ 1}.

It is obvious that ‖f‖L(logL),Q > 1 if and only if 1
|Q|
∫
Q

Φ(|f(x)|)dx > 1. The generalized Hölder

inequality in Orlicz space together with the John-Nirenberg inequality imply that
1

|Q|

∫
Q

|b(y)− bQ|f(y)dy ≤ C‖b‖BMO(Rn)‖f‖L(logL),Q.

Define the maximal operator ML(logL) by

ML(logL)(~f)(x) = sup
Q3x

2∏
j=1

‖fj‖L(logL),Q,

where the supremum is taken over all the cubes containing x. The following boundedness for

ML(logL)(~f) was proved in [22].

Lemma 2.1. If 1 < p1, p2 <∞, 1
p =

∑2
j=1

1
pj

, and ~w = (w1, w2) ∈ A~p(R2n), thenML(logL)(~f)

is bounded from Lp1(w1)× Lp2(w2) to Lp(ν~w).
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Lemma 2.1 is helpful in the proof of Theorem 1.2. Besides this maximal operator, we need

several other maximal operators in the following.

In [22], a maximal function M(~f) was introduced, and its definition is

M(~f)(x) = sup
Q3x

2∏
j=1

(
1

|Q|

∫
Q

|fj(yj)|dyj
)
,

where the supremum is taken over all cubes Q containing x. The boundedness of M(~f) on

weighted spaces was considered in [22, Theorem 3.3].

Furthermore, Grafakos, Liu, and Yang [14] introduced some new multilinear maximal oper-

ators:

M2,1(~f)(x) = sup
Q3x

∞∑
k=0

2−kn
(

1

|Q|

∫
Q

|f1(y1)|dy1
)(

1

|2kQ|

∫
2kQ

|f2(y2)|dy2
)
,

M2,2(~f)(x) = sup
Q3x

∞∑
k=0

2−kn
(

1

|Q|

∫
Q

|f2(y2)|dy2
)(

1

|2kQ|

∫
2kQ

|f1(y1)|dy1
)
,

where ~f = (f1, f2) and each fj (j ∈ {1, 2}) is a locally integrable function. The following

boundedness of M2,1 and M2,2 were proved in [14].

Lemma 2.2. Let 1 < p1, p2 < ∞, 1
p =

∑2
j=1

1
pj

, and ~w = (w1, w2) ∈ A~p(R2n). Then M2,1

and M2,2 are bounded from Lp1(w1)× Lp2(w2) to Lp(ν~w).

In addition, Hu [17] introduced another kind of bilinear maximal operators M1
β and M2

β

which was defined by

M1
β(~f)(x) = sup

Q3x

1

|Q|

∫
Q

|f1(y1)|dy1
∞∑
k=1

2−kn2kβ
1

|2kQ|

∫
2kQ

|f2(y2)|dy2,

M2
β(~f)(x) = sup

Q3x

1

|Q|

∫
Q

|f2(y2)|dy2
∞∑
k=1

2−kn2kβ
1

|2kQ|

∫
2kQ

|f1(y1)|dy1,

where β ∈ R and the supremum is taken over all cubes Q containing x. As it is well known, a

weight w ∈ A∞(Rn) implies that there exists a θ ∈ (0, 1) such that for all cubes Q and any set

E ⊂ Q,

w(E)

w(Q)
≤ C

(
|E|
|Q|

)θ
. (10)

For a fixed θ ∈ (0, 1), set

Rθ = {w ∈ A∞(Rn) : w satisfies (10)}.
In [17], the following boundedness of M1

β and M2
β were proved.

Lemma 2.3. Let 1 < p1, p2 < ∞, 1
p =

∑2
j=1

1
pj

, ~w = (w1, w2) ∈ A~p(R2n) and ν~w ∈ Rθ for

some θ such that β < nθmin{1/p1, 1/p2}. Then M1
β and M2

β are bounded from Lp1(w1) ×
Lp2(w2) to Lp(ν~w).
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§3 Proof of Theorem 1.2

The proof of Theorem 1.2 will depend on some pointwise estimates using sharp maximal

functions. The pointwise estimates are the following:

Lemma 3.1. Let T be a bilinear operator satisfying condition (7) and its kernel K satisfies

(2), (8). If 0 < δ < 1
2 , then for all ~f in any product of  Lpj (Rn) spaces with 1 < pj <∞,

M#
δ (T (~f))(x) ≤ CM(~f)(x) + C

2∑
i=1

M2,i(~f)(x).

The proof of this Lemma uses some ideas of [22, Theorem 3.2] and the following Lemma

3.2. Its proof is not difficult, so we omit.

Lemma 3.2. Let T be a bilinear operator satisfying condition (7) and its kernel K satisfies

(2), (8). If T 1
b , T 2

b be commutators with b ∈ BMO(Rn). For 0 < δ < ε with 0 < δ < 1/2, let

r > 1 and 0 < β < n. Then, there exists a constant C > 0, depending on δ and ε, such that
2∑
i=1

M#
δ (T ib (

~f))(x) ≤ C‖b‖BMO(Rn)

(
ML(logL)(~f)(x) +Mε(T (~f))(x) +

2∑
i=1

{Mi
β(fr1 , f

r
2 )(x)}1/r

)
for all ~f = (f1, f2) of bounded functions with compact support.

Proof. We only write out the estimate of M#
δ (T 1

b (~f))(x), since the other can be obtained

similarly. In our proof we will use some ideas of [28]. For a fixed x ∈ Rn, a cube Q centered at

x and constants c, λ, because 0 < δ < 1/2,

inf
c

(
1

|Q|

∫
Q

∣∣|T 1
b (~f)(z)|δ − |c|δ

∣∣dz)1/δ

≤ inf
c

(
1

|Q|

∫
Q

|T 1
b (~f)(z)− c|δdz

)1/δ

≤ inf
c

(
C

|Q|

∫
Q

|(b(z)− λ)T (f1, f2)(z)− T ((b− λ)f1, f2)(z)− c|δdz
)1/δ

≤
(
C

|Q|

∫
Q

|(b(z)− λ)T (f1, f2)(z)|δdz
)1/δ

+ inf
c

(
C

|Q|

∫
Q

|T ((b− λ)f1, f2)(z)− c|δdz
)1/δ

= I1 + I2.

Let Q∗ = 8nQ, λ = bQ∗ . The estimate of the first part I1 is the same as [28, Theorem 3.1].

Therefore, we omit the proof, and from [28, Theorem 3.1], we obtain that

I1 ≤ C‖b‖BMO(Rn)Mε(T (f1, f2))(x).

Now, we turn our attention to I2. We decompose f1, f2 as

f1 = f11 + f21 = f1(x)χQ∗ + f1(x)χRn\Q∗ ,

f2 = f12 + f22 = f2(x)χQ∗ + f2(x)χRn\Q∗ .



64 Appl. Math. J. Chinese Univ. Vol. 34, No. 1

Let c = c1 + c2 + c3 and

c1 = T ((b− λ)f11 , f
2
2 )(x),

c2 = T ((b− λ)f21 , f
1
2 )(x),

c3 = T ((b− λ)f21 , f
2
2 )(x).

Therefore,

I2 ≤
(
C

|Q|

∫
Q

|T ((b− λ)f11 , f
1
2 )(z)|δdz

)1/δ

+

(
C

|Q|

∫
Q

|T ((b− λ)f11 , f
2
2 )(z)− c1|δdz

)1/δ

+

(
C

|Q|

∫
Q

|T ((b− λ)f21 , f
1
2 )(z)− c2|δdz

)1/δ

+

(
C

|Q|

∫
Q

|T ((b− λ)f21 , f
2
2 )(z)− c3|δdz

)1/δ

= I12 + I22 + I32 + I42 .

We choose 1 < q < 1/(2δ). By Hölder’s inequality and the fact that T satisfies condition (7),

we have

I12 ≤
(
C

|Q|

∫
Q

|T ((b− λ)f11 , f
1
2 )(z)|qδdz

)1/qδ

≤ C‖T ((b− λ)f11 , f
1
2 )‖L1/2,∞(Q, dz

|Q| )

≤ C
(

1

|Q|

∫
Q

|(b(z)− λ)f11 (z)|dz
)(

1

|Q|

∫
Q

|f12 (z)|dz
)

≤ C‖b‖BMO(Rn)‖f1‖L(logL),Q‖f2‖L(logL),Q
≤ C‖b‖BMO(Rn)ML(logL)(f1, f2)(x).

For I22 , by generalized Jensen’s inequality, we get

|T ((b− λ)f11 , f
2
2 )(z)− T ((b− λ)f11 , f

2
2 )(x)|

≤
∫
R2n

|K(z, y1, y2)||(b− λ)f11 (y1)||f22 (y2)|dy1dy2

+

∫
R2n

|K(x, y1, y2)||(b− λ)f11 (y1)||f22 (y2)|dy1dy2

.
∫
R2n

1

(|z − y1|+ |z − y2|)2n
|(b− λ)f11 (y1)||f22 (y2)|dy1dy2

+

∫
R2n

1

(|x− y1|+ |x− y2|)2n
|(b− λ)f11 (y1)||f22 (y2)|dy1dy2
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.
∫
Q∗
|(b− λ)f11 (y1)|dy1

∫
Rn\Q∗

1

|z − y2|2n
|f22 (y2)|dy2

+

∫
Q∗
|(b− λ)f11 (y1)|dy1

∫
Rn\Q∗

1

|x− y2|2n
|f22 (y2)|dy2

.
∫
Q∗
|(b− λ)f11 (y1)|dy1

∞∑
k=1

∫
2kQ∗\2k−1Q∗

1

|z − y2|2n
|f22 (y2)|dy2

+

∫
Q∗
|(b− λ)f11 (y1)|dy1

∞∑
k=1

∫
2kQ∗\2k−1Q∗

1

|x− y2|2n
|f22 (y2)|dy2

. ‖b‖BMO(Rn)‖f1‖L(logL),Q∗
∞∑
k=1

2−kn

(
1

|2kQ∗|

∫
2kQ∗

|f22 (y2)|dy2

)

. ‖b‖BMO(Rn)‖f1‖L(logL),Q∗
∞∑
k=1

2−kn‖f2‖L(logL),2kQ∗

. ‖b‖BMO(Rn)

(
1

|Q∗|

∫
Q∗
|f1(y1)|rdy1

) 1
r
∞∑
k=1

2−kn

(
1

|2kQ∗|

∫
2kQ∗

|f2(y2)|rdy2

) 1
r

. ‖b‖BMO(Rn){M1
β(fr1 , f

r
2 )(x)} 1

r ,

where r > 1. Based on the above estimates, we deduce that

I22 . ‖b‖BMO(Rn){M1
β(fr1 , f

r
2 )(x)} 1

r .

For I32 , we obtain that

|T ((b− λ)f21 , f
1
2 )(z)− T ((b− λ)f21 , f

1
2 )(x)|

.
∫
R2n

1

(|z − y1|+ |z − y2|)2n
|(b− λ)f21 (y1)||f12 (y2)|dy1dy2

+

∫
R2n

1

(|x− y1|+ |x− y2|)2n
|(b− λ)f21 (y1)||f12 (y2)|dy1dy2

.
∫
Q∗
|f12 (y2)|dy2

∞∑
k=1

∫
2kQ∗\2k−1Q∗

|(b− λ)f21 (y1)|
|z − y1|2n

dy1

+

∫
Q∗
|f12 (y2)|dy2

∞∑
k=1

∫
2kQ∗\2k−1Q∗

|(b− λ)f21 (y1)|
|x− y1|2n

dy1

.
1

|Q∗|

∫
Q∗
|f12 (y2)|dy2

∞∑
k=1

2−kn
1

|2kQ∗|

∫
2kQ∗

|(b− λ)f21 (y1)|dy1

.
1

|Q∗|

∫
Q∗
|f12 (y2)|dy2

∞∑
k=1

2−kn
1

|2kQ∗|

∫
2kQ∗

|(b− b2kQ∗)f21 (y1)|dy1

+
1

|Q∗|

∫
Q∗
|f12 (y2)|dy2

∞∑
k=1

2−kn
1

|2kQ∗|

∫
2kQ∗

|(b2kQ∗ − bQ∗)f21 (y1)|dy1

. ‖b‖BMO(Rn)‖f2‖L(logL),Q∗
∞∑
k=1

2−kn‖f1‖L(logL),2kQ∗
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+ ‖b‖BMO(Rn)‖f2‖L(logL),Q∗
∞∑
k=1

2−knk‖f1‖L(logL),2kQ∗

. ‖b‖BMO(Rn)

(
1

|Q∗|

∫
Q∗
|f2(y2)|rdy2

) 1
r
∞∑
k=1

2−kn

(
1

|2kQ∗|

∫
2kQ∗

|f1(y1)|rdy1

) 1
r

+ ‖b‖BMO(Rn)

(
1

|Q∗|

∫
Q∗
|f2(y2)|rdy2

) 1
r
∞∑
k=1

2−knk

(
1

|2kQ∗|

∫
2kQ∗

|f1(y1)|rdy1

) 1
r

. ‖b‖BMO(Rn){M2
β(fr1 , f

r
2 )(x)} 1

r ,

where r > 1. This implies that

I32 . ‖b‖BMO(Rn){M2
β(fr1 , f

r
2 )(x)} 1

r .

Finally, we use condition (8) to estimate I42 . Note that for any x, z ∈ Q and y1, y2 ∈ Rn \Q∗,

|x− z| ≤ n`(Q) ≤ 1

8
min{|z − y1|, |z − y2|}.

So, it is easy to verify that,

|T ((b− λ)f21 , f
2
2 )(z)− T ((b− λ)f21 , f

2
2 )(x)|

≤
∫
R2n

|K(z, y1, y2)−K(x, y1, y2)||(b− λ)f21 (y1)||f22 (y2)|dy1dy2

.
∫
Rn\Q∗

∫
Rn\Q∗

`(Q)γ

(|z − y1|+ |z − y2|)2n+γ
|(b− λ)f21 (y1)||f22 (y2)|dy1dy2

.
∞∑
k=1

∫
2k`(Q)<|z−y1|+|z−y2|<2k+1`(Q)

`(Q)γ |(b− λ)f21 (y1)|
(|z − y1|+ |z − y2|)2n+γ

|f22 (y2)|dy1dy2

.
∞∑
k=1

`(Q)γ

(2k`(Q))2n+γ

(∫
2k+2Q∗

|(b− λ)f21 (y1)|dy1
)(∫

2k+2Q∗
|f22 (y2)|dy2

)

.
∞∑
k=1

2−kγ
(

1

|2k+2Q∗|

∫
2k+2Q∗

|(b− λ)f21 (y1)|dy1
)(

1

|2k+2Q∗|

∫
2k+2Q∗

|f22 (y2)|dy2
)

. ‖b‖BMO(Rn)ML(logL)(~f)(x).

Therefore,

I42 . ‖b‖BMO(Rn)ML(logL)(~f)(x).

Combining the estimates for I12 , I22 , I32 and I42 , lead to that

I2 . ‖b‖BMO(Rn)(ML(logL)(~f)(x) +

2∑
i=1

{Mi
β(fr1 , f

r
2 )(x)}1/r).

The proof is completed.

Now, we are ready to prove Theorem 1.2.

Proof. For the sake of brevity, we only write out the proof of the boundedness of T 1
b , and the

other can be got in the same method. By [22, Lemma 6.1], we know that for every ~w ∈ A~p(R2n),

there exists a finite constant 1 < r0 < min{p1, p2} such that ~w ∈ A~p/r0(R2n). From Lemma

2.3, for ~w ∈ A~p/r0(R2n), there exists a β0 > 0 satisfies that
∑2
i=1Mi

β0
(fr01 , fr02 )(x) is bounded



BU Rui, CHEN Jie-cheng. Compactness for the commutators of singular integral operators 67

from Lp1/r0(w1)× Lp2/r0(w2) to Lp/r0(ν~w). Hence,
2∑
i=1

‖{Mi
β0

(fr01 , fr02 )(x)}
1
r0 ‖Lp(ν~w) =

2∑
i=1

‖{Mi
β0

(fr01 , fr02 )(x)}‖1/r0
Lp/r0 (ν~w)

≤ C‖fr01 ‖
1/r0
Lp1/r0 (w1)

‖fr02 ‖
1/r0
Lp2/r0 (w2)

= C‖f1‖Lp1 (w1)‖f2‖Lp2 (w2).

Because ν~w ∈ A2p(R
n) ⊂ A∞(Rn), using inequality (9) and Lemma 3.2, we deduce that

‖T 1
b (~f)‖Lp(ν~w) ≤ ‖Mδ(T

1
b (~f))‖Lp(ν~w)

≤ C‖M#
δ (T 1

b (~f))‖Lp(ν~w)

≤ C‖b‖BMO(Rn)‖ML(logL)(~f)(x) +Mε(T (~f))(x) +

2∑
i=1

{Mi
β0

(fr01 , fr02 )(x)}
1
r0 ‖Lp(ν~w)

≤ C‖b‖BMO(Rn)

(
‖ML(logL)(~f)(x)‖Lp(ν~w) + ‖Mε(T (~f))(x)‖Lp(ν~w)

+ ‖
2∑
i=1

{Mi
β0

(fr01 , fr02 )(x)}1/r0‖Lp(ν~w)

)
.

By Lemma 3.1, we have

‖Mε(T (~f))‖Lp(ν~w) ≤ ‖M#
ε (T (~f))‖Lp(ν~w)

≤ C‖M(~f)‖Lp(ν~w) + C‖
2∑
i=1

M2,i(~f)(x)‖Lp(ν~w)

≤ C‖ML(logL)(~f)‖Lp(ν~w) + C‖
2∑
i=1

M2,i(~f)(x)‖Lp(ν~w).

Now the desired result follows from Lemma 2.1, Lemma 2.2 and Lemma 2.3 directly.

In the above proof, we note that when using the inequality (9) we need to explain that

‖Mε(T (~f))‖Lp(ν~w) and ‖Mδ(T
1
b (~f))‖Lp(ν~w) are finite. A detailed proof was given in page 33 of

[22], and the proof can also be applied here owing to the boundedness of T which was given in

[20, Theorem 2].

§4 Proof of Theorem 1.1

The idea of using truncated operators to prove compactness results in the linear setting

can trace back to [21], and this method was adopted in [7]. Recently, Bényi et al. (see [1])

introduced a new smooth truncation to simplify the computations. We will use this technique

to prove Theorem 1.1.

Let ϕ = ϕ(x, y1, y2) be a non-negative function in C∞c (R3n), and it satisfy

suppϕ ⊂ {(x, y1, y2) : max(|x|, |y1|, |y2|) < 1},∫
R3n

ϕ(u)du = 1.

For δ > 0, let χδ = χδ(x, y1, y2) be the characteristic function of the set {(x, y1, y2) : max(|x−
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y1|, |x− y2|) ≥ 3δ/2}, and let

ψδ = ϕδ ∗ χδ,
where

ϕδ(x, y1, y2) = (δ/4)−3nϕ(4x/δ, 4y1/δ, 4y2/δ).

By an easy calculation, we get that ψδ ∈ C∞(R3n), ‖ψδ‖L∞(R3n) ≤ 1,

suppψδ ⊂ {(x, y1, y2) : max(|x− y1|, |x− y2|) ≥ δ},
and ψδ(x, y1, y2) = 1 if max(|x− y1|, |x− y2|) ≥ 2δ.

We define the truncated kernel

Kδ(x, y1, y2) = ψδ(x, y1, y2)K(x, y1, y2),

where K(x, y1, y2) is the kernel of the bilinear singular integral operator T considered in Theo-

rem 1.1. It’s easy to verify that Kδ also satisfies condition (2) and (8). Let T δ be the bilinear

operator that associated with kernel Kδ in the sense of (1). The following Lemma was proved

in [1]:

Lemma 4.1. For all x ∈ Rn, b, b1, b2 ∈ C∞c (Rn), if ~w = (w1, w2) ∈ A~p(R2n), then

lim
δ→0
‖[b, T δ]1 − [b, T ]1‖Lp1 (w1)×Lp2 (w2)→Lp(ν~w) = 0,

lim
δ→0
‖[b, T δ]2 − [b, T ]2‖Lp1 (w1)×Lp2 (w2)→Lp(ν~w) = 0,

lim
δ→0
‖[b2, [b1, T δ]1]2 − [b2, [b1, T ]1]2‖Lp1 (w1)×Lp2 (w2)→Lp(ν~w) = 0.

By condition (2), Lemma 4.1 can be proved by the argument used in [1].

Lemma 4.2. Suppose that T is as in Theorem 1.1. Then, for all ζ > 0, there exists a positive

constant C such that for all ~f in the product of Lpj (Rn) with 1 < pj <∞ and all x ∈ Rn,

T ∗(~f)(x) ≤ C
(
Mζ(T (~f))(x) +

2∑
i=1

M2,i(~f)(x) +M(~f)(x)
)
,

where T ∗(~f) is the maximal truncated bilinear singular integral operator defined as

T ∗(f1, f2)(x) = sup
η>0

∣∣∣∣ ∫ ∫
max(|x−y1|,|x−y2|)>η

K(x, y1, y2)f1(y1)f2(y2)dy1dy2

∣∣∣∣.
The proof of the Lemma 4.2 is similar to the proof of [15, Theorem 1], so we leave it to the

interested reader.

Lemma 4.3. Let 1 < p <∞, w ∈ Ap(Rn) and H ⊂ Lp(w). If

(i) H is bounded in Lp(w);

(ii) lim
A→∞

∫
|x|>A |f(x)|pw(x)dx = 0 uniformly for f ∈ H;

(iii) lim
t→0
‖f(·+ t)− f(·)‖Lp(w) = 0 uniformly for f ∈ H.

Then H is precompact in Lp(w).
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This Lemma was given in [7].

Now, we are ready to prove Theorem 1.1.

Proof. We will work with the commutator [b, T ]1 first, and the proof of the commutator [b, T ]2

can be get similarly. From Lemma 4.1, we only need to prove the compactness for [b, T δ]1 for

any fixed δ ≤ 1/8. By Theorem 1.2, it suffices to show the result for b ∈ C∞c (Rn). Suppose

f1, f2 belong to

B1(Lp1(w1))×B1(Lp2(w2)) = {(f1, f2) : ‖f1‖Lp1 (w1), ‖f2‖Lp2 (w2) ≤ 1},
where ~w ∈ A~p(Rn). We need to prove that the following three conditions hold:

(i) [b, T δ]1(B1(Lp1(w1))×B1(Lp2(w2))) is bounded in Lp(ν~w);

(ii) lim
A→∞

∫
|x|>A |[b, T

δ]1(f1, f2)(x)|pν~w(x)dx = 0;

(iii) Given 0 < ξ < 1/8, there exists a sufficiently small t0(t0 = t0(ξ)) such that for all

0 < |t| < t0, we have

‖[b, T δ]1(f1, f2)(·)− [b, T δ]1(f1, f2)(·+ t)‖Lp(ν~w) ≤ Cξ. (11)

It is easy to find that the condition (i) holds because of the boundedness of [b, T ]1 in Theorem

1.2 and Lemma 4.1. Now, we prove the condition (ii) using some ideas in [17]. Let R > 0 be

large enough such that supp b ⊂ B(0, R) and let A ≥ max(2R, 1), l be a nonnegative integer.

For any |x| > A, denote

V 0
R(x) =

∫
|y2|≤|x|

∫
|y1|≤R

|Kδ(x, y1, y2)|
2∏
j=1

|fj(yj)|dy1dy2,

and

V lR(x) =

∫
2l−1|x|≤|y2|≤2l|x|

∫
|y1|≤R

|Kδ(x, y1, y2)|
2∏
j=1

|fj(yj)|dy1dy2,

where l > 0. From condition (2), we deduce that

V lR(x) ≤ C
∫
2l−1|x|≤|y2|≤2l|x|

∫
|y1|≤R

1

(|x− y1|+ |x− y2|)2n
|f1(y1)||f2(y2)|dy1dy2

≤ C
∫
2l−1|x|≤|y2|≤2l|x|

∫
|y1|≤R

|f1(y1)||f2(y2)|
(|x|+ |x− y2|)2n

dy1dy2

≤ C 1

(2l−1|x|)2n

∫
2l−1|x|≤|y2|≤2l|x|

∫
|y1|≤R

|f1(y1)||f2(y2)|dy1dy2

≤ C 1

(2l−1|x|)2n

(∫
B(0,R)

w
− 1

p1−1

1 (y1)dy1

)1− 1
p1
(∫

B(0,2l|x|)
w
− 1

p2−1

2 (y2)dy2

)1− 1
p2

.

The same estimate can be got for V 0
R(x). Note that w

− 1
p1−1

1 ∈ A∞(Rn), so there exists a

constant θ1 ∈ (0, 1) such that∫
B(0,R)

w
− 1

p1−1

1 (y1)dy1 ≤ C(2−(j+l)RA−1)nθ1
∫
B(0,2l+jA)

w
− 1

p1−1

1 (y1)dy1.
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Since p > 1, it follows that(∫
2j−1A≤|x|≤2jA

|[b, T δ]1(f1, f2)(x)|pν~w(x)dx

)1/p

≤ C
∞∑
l=0

(∫
2j−1A≤|x|≤2jA

|V lR(x)|pν~w(x)dx

)1/p

≤ C
∞∑
l=0

(∫
2j−1A≤|x|≤2jA

1

(2l−1|x|)2np
ν~w(x)dx

)1/p

×
(∫

B(0,R)

w
− 1

p1−1

1 (y1)dy1

)1−1/p1(∫
B(0,2l+jA)

w
− 1

p2−1

2 (y2)dy2

)1−1/p2

≤ C
∞∑
l=0

(2l+j−2A)−2n(2−(j+l)RA−1)nθ1(1−1/p1)
(∫

B(0,2jA)

ν~w(x)dx

)1/p

×
(∫

B(0,2l+jA)

w
− 1

p1−1

1 (y1)dy1

)1−1/p1(∫
B(0,2l+jA)

w
− 1

p2−1

2 (y2)dy2

)1−1/p2

≤ C
∞∑
l=0

(2l+jA)−2n(2−(j+l)RA−1)nθ1(1−1/p1)(2j+lA)2n

≤ C
∞∑
l=0

2l(−nθ1(1−1/p1))2j(−nθ1(1−1/p1))(R/A)nθ1(1−1/p1)

≤ C2j(−nθ1(1−1/p1))(R/A)nθ1(1−1/p1).

Thus, (∫
|x|>A

|[b, T δ]1(f1, f2)(x)|pν~w(x)dx

)1/p

≤ C(R/A)nθ1(1−1/p1) → 0,

as A→∞.

So, it suffices to verify condition (iii). We denote

E = {(x, y1, y2) : min(|x− y1|, |x− y2|) > η},

F = {(x, y1, y2) : max(|x− y1|, |x− y2|) > 2δ},

G = {(x, y1, y2) : max(|x− y1|, |x− y2|) > η},

H = {(x, y1, y2) : δ < max(|x− y1|, |x− y2|) < 2δ}.
To prove (11), we decompose the expression inside the Lp(ν~w) norm as follows:

[b, T δ]1(f1, f2)(x)− [b, T δ]1(f1, f2)(x+ t)

=

∫ ∫
E

Kδ(x, y1, y2)(b(x)− b(x+ t))

2∏
j=1

fj(yj)dy1dy2

+

∫ ∫
E

(Kδ(x, y1, y2)−Kδ(x+ t, y1, y2))(b(x+ t)− b(y1))

2∏
j=1

fj(yj)dy1dy2

+

∫ ∫
Ec

Kδ(x, y1, y2)(b(x)− b(y1))

2∏
j=1

fj(yj)dy1dy2
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+

∫ ∫
Ec

Kδ(x+ t, y1, y2)(b(y1)− b(x+ t))

2∏
j=1

fj(yj)dy1dy2

= A(x) +B(x) + C(x) +D(x),

where 0 < η < 1 and the choice of η will be specified later. It is obvious that Kδ(x, y1, y2) =

K(x, y1, y2) on F . Consequently,∣∣∣∣ ∫ ∫
E

Kδ(x, y1, y2)f1(y1)f2(y2)dy1dy2 −
∫ ∫

G

K(x, y1, y2)f1(y1)f2(y2)dy1dy2

∣∣∣∣
=

∣∣∣∣ ∫ ∫
(E∩F )∪(E∩H)

Kδ(x, y1, y2)f1(y1)f2(y2)dy1dy2

−
∫ ∫

(E∩F )∪(G\(E∩F ))

K(x, y1, y2)f1(y1)f2(y2)dy1dy2

∣∣∣∣
≤
∣∣∣∣ ∫ ∫

E∩H
Kδ(x, y1, y2)f1(y1)f2(y2)dy1dy2

∣∣∣∣
+

∫ ∫
G∩Ec

|K(x, y1, y2)f1(y1)f2(y2)|dy1dy2

+

∫ ∫
G∩F c∩E

|K(x, y1, y2)f1(y1)f2(y2)|dy1dy2

+

∫ ∫
G∩F c∩Ec

|K(x, y1, y2)f1(y1)f2(y2)|dy1dy2.

Now, we estimate the above four parts. From condition (2), we have∣∣∣∣ ∫ ∫
E∩H

Kδ(x, y1, y2)f1(y1)f2(y2)dy1dy2

∣∣∣∣ ≤ ∫ ∫
H

|f1(y1)||f2(y2)|
(|x− y1|+ |x− y2|)2n

dy1dy2

≤ CM(f1, f2)(x),

and ∫ ∫
G∩Ec

|K(x, y1, y2)f1(y1)f2(y2)|dy1dy2

≤
∫
|x−y1|<η

∫
|x−y2|>η

|f1(y1)||f2(y2)|
(|x− y1|+ |x− y2|)2n

dy1dy2

≤
∫
|x−y1|<η

|f1(y1)|dy1
∞∑
k=1

∫
2k−1η<|x−y2|<2kη

|f2(y2)|
|x− y2|2n

dy2

≤ C
∞∑
k=1

2−kn
1

|B(x, η)|

∫
B(x,η)

|f1(y1)|dy1
1

|B(x, 2kη)|

∫
B(x,2kη)

|f2(y2)|dy2

≤ C
2∑
i=1

M2,i(f1, f2)(x),

where the set G∩Ec includes {(x, y1, y2) : |x−y1| < η, |x−y2| > η} and {(x, y1, y2) : |x−y1| >
η, |x− y2| < η}. Since the estimates on these two regions are similar, we omit the latter. This

method will be used several times in the following.
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Because η < |x− y1| < 2δ, η < |x− y2| < 2δ when (x, y1, y2) ∈ G ∩ F c ∩ E. Hence,∫ ∫
G∩F c∩E

|K(x, y1, y2)f1(y1)f2(y2)|d~y ≤ 4δ

∫ ∫
G

|f1(y1)||f2(y2)|
(|x− y1|+ |x− y2|)2n+1

d~y

≤ C δ
η
M(f1, f2)(x),

and∫ ∫
G∩F c∩Ec

|K(x, y1, y2)f1(y1)f2(y2)|d~y ≤
∫
|x−y1|<η

∫
|x−y2|>η

|f1(y1)||f2(y2)|
(|x− y1|+ |x− y2|)2n

d~y

≤ C
2∑
i=1

M2,i(f1, f2)(x).

In summary, we get

|A(x)| ≤ C|t|‖∇b‖L∞(Rn)

∣∣∣∣ ∫ ∫
E

Kδ(x, y1, y2)f1(y1)f2(y2)d~y

∣∣∣∣
≤ C|t|

∣∣∣∣ ∫ ∫
E

Kδ(x, y1, y2)f1(y1)f2(y2)d~y −
∫ ∫

G

K(x, y1, y2)f1(y1)f2(y2)d~y

∣∣∣∣
+ C|t|T ∗(f1, f2)(x)

≤ C|t|
(
T ∗(f1, f2)(x) +

1

η
M(f1, f2)(x) +

2∑
i=1

M2,i(f1, f2)(x)

)
.

This, along with Lemma 2.2, Lemma 3.1, Lemma 4.2 and [22, Theorem 3.7], leads to that

‖A(x)‖Lp(ν~w) ≤ C|t|(1 + 1/η). (12)

In order to estimate B(x), by a consequence of condition (8), we have

|K(x, y1, y2)−K(x′, y1, y2)| ≤ D|x− x′|γ

(|x− y1|+ |x− y2|)2n+γ

when |x− x′| ≤ 1
8 min{|x− y1|, |x− y2|}. Then

|B(x)| ≤ C‖b‖L∞(Rn)

∫ ∫
E

|Kδ(x, y1, y2)−Kδ(x+ t, y1, y2)||f1(y1)||f2(y2)|d~y

≤ C|t|γ
∫ ∫

G

|f1(y1)||f2(y2)|
(|x− y1|+ |x− y2|)2n+γ

d~y

≤ C |t|
γ

ηγ
M(f1, f2)(x).

Therefore,

‖B(x)‖Lp(ν~w) ≤ C
|t|γ

ηγ
. (13)

For any 0 < β < 1, we have |b(x) − b(y1)| ≤ |x − y1|β . Thus, from the size condition (2) and

the property of the support of Kδ(x, y1, y2), we can estimate C(x):
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|C(x)| ≤ C‖∇b‖L∞(Rn)η

∫
|x−y1|<η

∫
|x−y2|>η

|f1(y1)||f2(y2)|
(|x− y1|+ |x− y2|)2n

dy1dy2

+ C

∫
|x−y1|>η

∫
|x−y2|<η

|f1(y1)||f2(y2)|
(|x− y1|+ |x− y2|)2n−β

dy1dy2

≤ CηM2,1(~f)(x) + C

∫
|x−y2|<η

|f2(y2)|dy2
∞∑
k=1

∫
2k−1η<|x−y1|<2kη

|f1(y1)|
|x− y1|2n−β

dy1

≤ CηM2,1(~f)(x) + CηβM2
β(~f)(x),

provided η < δ. From Lemma 2.2 and Lemma 2.3, we deduce that

‖C(x)‖Lp(ν~w) ≤ Cη, (14)

when we take sufficiently small β.

Finally, for the last part D(x) we proceed in a similar way, by replacing x with x+ t and the

region of integration Ec with a larger one {(x, y1, y2) : min(|x+ t− y1|, |x+ t− y2|) < η + |t|}.
By the fact that x ∈ B(x+ t, η + |t|), where B(x+ t, η + |t|) denote the ball centered at x+ t

and with radius η + |t|, we obtain

‖D(x)‖Lp(ν~w) ≤ C(|t|+ η). (15)

Now, let us define t0 = ξ2 and for each 0 < |t| < t0, choose η = |t|/ξ. Then inequalities

(12)-(15) imply (11), and in this way, we can conclude that [b, T ]1 is compact. By symmetry,

[b, T ]2 is also compact.
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