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Perfect matchings on a type of lattices with toroidal

boundary

FENG Xing1 ZHANG Lian-zhu2 ZHANG Ming-zu3

Abstract. Enumeration of perfect matchings on graphs has a longstanding interest in com-

binatorial mathematics. In this paper, we obtain some explicit expressions of the number of

perfect matchings for a type of Archimedean lattices with toroidal boundary by applying Tesler’s

crossing orientations to obtain some Pfaffian orientations and enumerating their Pfaffians.

§1 Introduction

Let G = (V,E) be a graph. A perfect matching of G is a set of independent edges covering

every vertex of G exactly once. It is also called a close-packed dimer in statistical physics and a

Kekulé structure in organic chemistry. Lovász [8] pointed out that counting perfect matchings of

graphs not only is an intriguing mathematical problem but also has found plenty of applications

in physics and chemistry. And counting the number of perfect matchings in general graphs (even

in bipartite graphs) is #P-complete [15]. It makes sense to seek special classes for which the

problem can be solved exactly. Many mathematicians, physicists and chemists have given lots

of their attention to counting perfect matchings of graphs, as seen, for example, [2, 7, 11, 12,

17, 19, 20, 21, 23].

Kepler [4] proved only 11 Archimedean lattices in the nature. And the Archimedean lattices

have attracted the most attention in lattice perfect matchings statistics, such as the quadratic

lattice [3, 10, 13, 22], hexagonal lattice [5, 6], kagomé lattice [16], etc. with the different bound-

ary condition.

The 8.8.4 bulk lattice shown in Figure 1, denoted by G(m,n), is one type of Archimedean

lattices. It is obtained from an m × n quadratic lattice graph by replacing each vertex by a

quadrangle and two adjacent quadrangles connected with an edge such that all new finite faces

are 8-polygons. As shown in Figure 1, we label the vertices of G(m,n) with degree two by

ai, a
∗
i , bk and b∗k, i = 1, 2, · · · ,m and k = 1, 2, · · · , n. Denote by Gc(m,n) the 8.8.4 lattice
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Figure 1: A 8.8.4 lattice.

graph with cylindrical boundary condition, which is obtained from G(m,n) by adding extra

edges (bi, b
∗
i ) for 1 ≤ i ≤ n. For 0 ≤ r ≤ m − 1 , denote by Gk(m,n, r) the 8.8.4 lattice graph

with Klein bottle boundary condition, which is obtained from Gc(m,n) by adding extra edges

(ai, a
∗
m+1+r−i), where i = 1, 2, . . . ,m and m+ 1 + r− i is modulo m. And denote by Gt(m,n, r)

the 8.8.4 lattice graph with toroidal boundary condition, which is obtained from Gc(m,n) by

adding extra edges (ai, a
∗
i+r), where i = 1, 2, . . . ,m and i+ r is modulo m.

Yan, Yeh, Zhang [18] got some explicit expressions of the perfect matching number of the

bipartite Gc(2m,n). Lu et al. [9] have obtained explicit expressions of the perfect matching

number of Gk(m,n, 0) by enumerating 4-Pfaffians.

In this paper, we apply Tesler’s crossing orientation [14] to get some Pfaffian orientations

of some 8.8.4 lattice graphs with toroidal boundary condition. Furthermore, we obtain explicit

expressions of their perfect matching number by enumerating Pfaffians according to the Pfaffian

orientations.

§2 Pfaffian orientation

Let G be a graph with vertex set V (G) = {1, 2, · · · , 2p}. For an orientation
−→
G of G there

corresponds a 2p × 2p skew adjacent matrix A = [auv] of
−→
G , where auv = avu = 0 when uv

is not an edge in G, and otherwise auv = 1 if the edge uv is directed in
−→
G from u to v and

auv = −1 if the edge uv is directed in
−→
G from v to u. Let M = {{u1, v1}, · · · , {up, vp}} be a

perfect matching of G, define the signed weight of M as

w(M) = sgn

(
1 2 · · · 2p− 1 2p

u1 v1 · · · up vp

)
· au1v1 · · · aupvp ,

where sgn denotes the sign of the permutation expressed in 2-line notation. The Pfaffian of the

matrix A is defined as

Pf(A) =
∑
M

w(M).
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Lemma 2.1. [8]. If A is a skew symmetric matrix, then det(A) = (Pf(A))2.

Suppose M is a perfect matching of G. Define the sign of M relative to
−→
G as

ε−→
G

(M) = sgn

(
1 2 · · · 2p− 1 2p

u1 v1 · · · up vp

)
· (−1)] edges oriented (vk,uk) in

−→
G .

We call
−→
G a Pfaffian orientation if every perfect matching of G has the same sign relative to

−→
G . We say G is Pfaffian if it has a Pfaffian orientation. The significance of Pfaffian orientations

stems from the fact that if G has such an orientation, then the number of perfect matchings

of G (as well as other related problems) can be computed in polynomial time, namely |Pf(A)|
is equal to the number of perfect matchings of G for the Pfaffian orientation

−→
G [8], and by

Lemma 2.1, the number of perfect matchings of G can be computed efficiently.

It is easy to see that the torus can be obtained from a 4-polygon P with 4 sides p1, p2, p′1
and p′2 in order by passing p1 and p′1, p2 and p′2. A plane model of a graph G which can be

embedded on the torus is a drawing such that a planar subgraph of G containing all vertices

are drawn in P and remains two parts of edges, denoted by E1 and E2, where the edges in E1

are drawn through the sides p1 and p′1 and disjoint from each other, the edges in E2 are drawn

through the the sides p2 and p′2 and disjoint from each other.

Now, we draw the 8.8.4 lattice Gt(m,n, r) on torus in a plane model as shown in Figure

2. Firstly, we draw a planar subgraph of Gt(m,n, r) containing mn quadrangles in a 4-polygon

p1p2p
′
1p
′
2 which is constructed by dotted lines. For convenience, we label the mn quadrangles by

0, 1, 2, · · · ,mn−1, and label the four vertices of quadrangle i by 4i+1, 4i+2, 4i+3, 4i+4. Thus

the remain two parts of edges not in the 4-polygon are

E1 = {{4(in− 1), 4(in− 1) + 1}|i = 1, 2, · · · ,m} and

E2 = {{4i+ 2, 4[(m− 1)n+ i] + 3}|i = 0, 1, · · · , n− 1}
∪ {{4(j + 1)n, 4(m− r + j)n+ 1}|j = 0, 1, · · · , r − 1}.

The edges in Ei are drawn through the sides pi and p′i and disjoint from each other for i =

1, 2. Thus each edge of E1 has exactly one crossing with each edge of E2, where a crossing

means that two edges pass through the same non-vertex point in the drawing. Let M be a

perfect matching of Gt(m,n, r), and κ(M) be the crossing number in M . If M ∩ E1 = ∅ or

M ∩E2 = ∅, then κ(M)=0; if M ∩E1 6= ∅ and M ∩E2 6= ∅, then κ(M) = |M ∩E1| × |M ∩E2|.
For an orientation of a plane graph, we say a face (except out face) of the graph is clockwise

odd when its boundary has an odd number of edges pointing clockwise. Tesler [14] formed a

crossing orientation of such a plane model of G embedding on the torus as follows. Orient the

spanning planar subgraph in the 4-polygon so that all its faces are clockwise odd, and orient

each edge e ∈ Ei (i = 1, 2) such that the face formed by e and certain edges in the 4-polygon

along the boundary of the spanning plane subgraph is clockwise odd.

Tesler [14] also determined that if an orientation of a graph on torus is a crossing orientation,

then every perfect matching M has sign

ε(M) = ε0(−1)κ(M); (1)

where ε0 = ±1 is the sign of a perfect matching with no crossing edges (when such exists).
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For the plane model of Gt(m,n, r) as above, we construct a crossing orientation of it, which

is shown in Figure 2. Firstly, we orient the edges in the 4-polygon such that each face of the

quadrangles and octagons are clockwise odd. More specifically, orient the four edges of each

quadrangle i anticlockwise except edge {4i+ 2, 4i+ 4} such that every quadrangle is clockwise

odd, orient the edge in {{4i+3, 4(n+i)+2}|i = 0, 1, · · · , (m−1)n−1} from 4i+3 to 4(n+i)+2,

and orient each edge in {{4i, 4i + 1}|i = 1, 2, · · · , n − 2, n + 1, n + 2, · · · ,mn − 2} ∪ {{4in +

1, 4(r+ i+ 1)n}|i = 0, 1, · · · ,m− r− 1} from 4i to 4i+ 1 or from 4in+ 1 to 4(r+ i+ 1)n, such

that every octagon is clockwise odd.

Then, we orient the edges in E1. For an edge e = {4(in− 1), 4(in− 1) + 1} in E1. Let P be

the path 4(in−1), 4(in−1)+1, 4(in−1)+2, 4[(i−1)n−1]+3, 4[(i−1)n−1]+1, 4[(i−1)n−1]+

2, · · · , 4(n−1)+2, 4n, 4(n−1)+3, · · · , 4(r+1)n, 1, 2, 4, · · · , 4(n−1), 4(n−2)+3, · · · , 4(in−1)

along the boundary of the subgraph in the 4-polygon. In order to make the face with the

boundary cycle consisting of e and P clockwise odd, we orient the edge e from 4(in − 1) to

4(in− 1) + 1.

Finally, we orient the edges in E2. For an edge e in E2, if e ∈ {{4i+2, 4[(m−1)n+i]+3}|i =

0, 1, · · · , n − 1}, orient e from 4i + 2 to 4[(m − 1)n + i] + 3. Then the face with the boundary

cycle consisting of e and the path 4i+ 2, 4[(m− 1)n+ i] + 3, 4[(m− 1)n+ i] + 1, 4[(m− 1)n+

i], · · · , 4(m− 1)n+ 1, 4(m− 1)n+ 2, 4(m− 2)n+ 3, 4(m− 2)n+ 1, · · · , 4(m− r− 1)n+ 3, 4(m−
r − 1)n + 1, 4mn, 4mn − 1, 4mn − 3, · · · , 4n − 3, 4n − 2, 4n, 4n − 1, 4(2n − 1) + 2, · · · , 4(r +

1)n, 1, 2, 4, · · · , 4i + 2, along the boundary of the subgraph of in the 4-polygon, is clockwise

odd. For an edge e ∈ {{4(j + 1)n, 4(m− r + j)n + 1}|j = 0, 1, · · · , r − 1}, the orientation of e

is from 4(j + 1)n to 4(m− r + j)n+ 1, which is decided in a similar discussion.

Figure 2: A plane model and a crossing orientation of Gt(m,n, r)

It is well known in graph theory that a graph is bipartite if and only if every cycle has even
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length. Clearly, if a bipartite graph G with a vertex bipartition (X,Y ) has a perfect matching,

then |X| = |Y |. It easy to check that Gt(m,n, r) is non-bipartite if and only if m or n + r is

odd. In other words, either m+ n+ r is odd or both m and n+ r are odd.

Denote
−→
G the crossing orientation of Gt(m,n, r), and denote

−→
G←−
E 1

the orientation of

Gt(m,n, r) obtained from the crossing orientation
−→
G by reversing the orientation of all the

edges in E1.

Claim: (1) If m+ n+ r is odd, then the orientation
−→
G of Gt(m,n, r) is a Pfaffian

orientation;

(2) If both m and n+ r are odd, then the orientation
−→
G←−
E 1

of Gt(m,n, r) is a Pfaffian

orientation.

Proof. It suffices to show that all perfect matchings in
−→
G and

−→
G←−
E 1

have the same sign, respec-

tively.

The subgraph of Gt(m,n, r) obtained from it by deleting all edges in E1 ∪E2 is a bipartite

graph, since it contains no odd cycles. Denote the bipartite graph by (X,Y ). Noting that all

vertices of Gt(m,n, r) are covered by mn quadrangles and the combination of perfect matchings

of the quadrangles is a perfect matching of Gt(m,n, r). Hence, |X| = |Y |. For an edge e1 =

uv ∈ E1, the ends u and v of the edge e1 either both contained in X or both contained in Y

if and only if a u − v path in the bipartite graph (X,Y ) has even length, and if and only if

n+ r is odd. Similarly, for an edge e2 = wz ∈ E2, both ends w and z of the edge e2 either both

contained in X or both contained in Y if and only if m is odd. Let EX and EY be the sets of

edges with both ends in X and Y , respectively. Suppose M is a perfect matching of Gt(m,n, r),

then we have |M ∩ EX | = |M ∩ EY | since |X| = |Y |.
(1) If m + n + r is odd, we first consider the case for m is even and n + r is odd. Then

|M ∩E1| = |M ∩EX |+ |M ∩EY | = 2|M ∩EX |. Hence, the number of times edges in M cross

each other is

κ(M) = |M ∩ E1| · |M ∩ E2| = 2|M ∩ EX | · |M ∩ E2|.
By Equation (1), the sign of M of Gt(m,n, r) related to

−→
G is

ε(M) = ε0(−1)κ(M) = ε0.

Therefore, the signs of all perfect matchings of Gt(m,n, r) related to
−→
G are the same. For m is

odd and n+ r is even, it can be verified that all perfect matchings of Gt(m,n, r) related to
−→
G

have the same sign by a similar discussion as above.

(2) If both m and n + r are odd, then |M ∩ E1| + |M ∩ E2| = |M ∩ EX | + |M ∩ EY | =

2|M ∩ EX |. Therefore, the number of times edges in M cross each other is

κ(M) = |M ∩ E1| · |M ∩ E2| = |M ∩ E1| · (2|M ∩ EX | − |M ∩ E1|).
Thus, κ(M) + |M ∩E1| = 2|M ∩E1| · |M ∩EX | − (|M ∩E1| − 1) · |M ∩E1| is even. And note

that
−→
G←−
E 1

is obtained from the crossing orientation of Gt(m,n, r) by reversing the orientation

of all the edges in E1. By Equation (1) and the definition of the sign of a perfect matching, the

sign of M of Gt(m,n, r) related to
−→
G←−
E 1

is

ε(M) = ε0(−1)κ(M) · (−1)|M∩E1| = ε0.
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Therefore, the signs of all perfect matchings of Gt(m,n, r) related to
−→
G←−
E 1

are the same.

§3 The number of perfect matchings of Gt(m,n, r)

In the section, we enumerate the number of perfect matchings of the non-bipartiteGt(m,n, r)

according Pfaffian orientations of Gt(m,n, r) which is described in the Claim in section 2 by

enumerating their Pfaffians. For the 4mn vertices of Gt(m,n, r) labeled by 1, 2, · · · , 4mn as

shown in Figure 2, let X be the adjacency matrix of Gt(m,n, r) with the vertex labels and the

Pfafian orientation. In order to obtain our results, we introduce the following lemma. Denote

the skew block circulant matrix
V0 V1 V2 · · · Vm−1

−Vm−1 V0 V1 · · · Vm−2
...

...
. . .

. . .
...

−V1 −V2 · · · −Vm−1 V0

 ,
over the complex number field by scirc(V0, V1, · · · , Vm−1).

Lemma 3.1. [1]. Let V = scirc(V0, V1, · · · , Vm−1) be a skew block circulant matrix over the

complex number field, where all Vt are n× n matrices, t = 0, 1, · · · ,m− 1. Then

det(V ) =

m−1∏
t=0

det(Ft),

where Ft = V0 + V1εt + V2ε
2
t + · · ·+ Vm−1ε

m−1
t , and εt = cos (2t+1)π

m + i sin (2t+1)π
m .

Theorem 3.2. If m+n+ r is odd, then the number of perfect matchings of Gt(m,n, r) can be

expressed by

|M(Gt(m,n, r))| =
m−1∏
t=0

(
1

2n

[(
5 +

√
17− 4β2t

)n
+

(
5−

√
17− 4β2t

)n]
+ βnt βrt

) 1
2

,

where βkt = 2 cos (2t+1)kπ
m .

Proof. For convenience, we first introduce some notations. Let BT be the transpose of matrix

B. Define 4× 4 matrices

H1 =


0 1 −1 0

−1 0 0 −1

1 0 0 −1

0 1 1 0

 , H2 =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

 , H3 =


0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0


and n× n matrices

In =


1

1
. . .

1

 , Jn =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0

 .
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When m + n + r is odd, then the adjacency matrix X corresponding to
−→
G can be written

in the following form:

X = scirc(V0, V1, · · · , Vm−1),

where

Vi = [0]4n×4n, for i /∈ {0, 1, r,m− r,m− 1},

V0 = H1

⊗
In +H2

⊗
Jn −HT

2

⊗
JTn ,

V1 = V Tm−1 = H3

⊗
In,

Vr = V Tm−r =


0 · · · 0 1

0 · · · 0 0

0
...

...
...

0 · · · 0 0


4n×4n

,

and Vi represents the adjacent relations between the vertex set {4kn+1, 4k+2, · · · , 4(k+1)n}
and vertex set {4(k + i)n + 1, 4(k + i) + 2, · · · , 4(k + i + 1)n} for i = 0, 1, · · · , m− 1 and

0 ≤ k+ i ≤ m− 1, and −Vi represents the adjacent relations between vertex set {4kn+ 1, 4k+

2, · · · , 4(k+ 1)n} and vertex set {4(k+ i−m)n+ 1, 4(k+ i−m) + 2, · · · , 4(k+ i−m+ 1)n}
for i = 1, 2, m− 1 and m ≤ k + i ≤ 2m− 1. (In the others cases, the adjacency matrix X of

Gt(m,n, r) can be obtained in a similar way. We note the differences of X by boldface.) So by

Lemma 3.1, we have that

det(X) =

m−1∏
t=0

det(Ft),

where

det(Ft) = det(V0 + V1εt − V T1 ε−1t + Vrε
r
t − V Tr ε−rt )

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 −1 0 εrt
−1 0 −ε−1

t −1
1 εt 0 −1
0 1 1 0 1

−1
. . .

1

−1 0 1 −1 0

−1 0 −ε−1
t −1

1 εt 0 −1
−ε−r

t 0 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Partition matrix Ft into nine blocks by splitting the rows into three groups: the first row; the

middle 4n−2 rows; and the last row. Split the columns in the same way. And by the properties
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of the determinant, we have

det(Ft) :=

∣∣∣∣∣∣∣
0 S1 εrt
S2 S3 S4

−ε−rt S5 0

∣∣∣∣∣∣∣
4n×4n

=

∣∣∣∣∣∣∣
0 S1 0

S2 S3 S4

−ε−rt S5 0

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
0 0 εrt
S2 S3 S4

−ε−rt S5 0

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
0 S1 0

S2 S3 S4

0 S5 0

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
0 S1 0

0 S3 S4

−ε−rt S5 0

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
0 0 εrt
S2 S3 S4

0 S5 0

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
0 0 εrt
0 S3 S4

−ε−rt S5 0

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
0 S1 0

S2 S3 S4

0 S5 0

∣∣∣∣∣∣∣+ ε−rt

∣∣∣∣∣ S1 0

S3 S4

∣∣∣∣∣− εrt
∣∣∣∣∣ S2 S3

0 S5

∣∣∣∣∣+ |S3|.

Set An(t) =

∣∣∣∣∣∣∣
0 S1 0

S2 S3 S4

0 S5 0

∣∣∣∣∣∣∣, Bn(t) =

∣∣∣∣∣ S1 0

S3 S4

∣∣∣∣∣, Cn(t) =

∣∣∣∣∣ S2 S3

0 S5

∣∣∣∣∣ and Dn(t) = |S3|, then

we have

det(Ft) = An(t) + ε−rt Bn(t)− εrtCn(t) +Dn(t).

Let A′n(t) be the determinant of the matrix which is obtained from An(t) by deleting the first

row and the first column. Expand An(t) by the first four rows and A′n(t) by the first three

rows. We get a recurrences for An(t) and A′n(t) as follows:
An(t) = 4An−1(t) + (εt − ε−1t )A′n−1(t), for n ≥ 2,

A′n(t) = (ε−1t − εt)An−1(t) +A′n−1(t), for n ≥ 2,

A1(t) = 4, A′1(t) = ε−1t − εt.
(2)

By Equation (2), we have

An−1(t) = 4An−2(t) + (εt − ε−1t )A′n−2(t),

A′n−2(t) =
An−1(t)− 4An−2(t)

ε−1t − εt
,

A′n−1(t) = (ε−1t − εt)An−2(t) +A′n−2(t) =

[
(ε−1t − εt)An−2(t) +

An−1(t)− 4An−2(t)

ε−1t − εt

]
.

So we have {
An(t) = 5An−1(t)− (ε2t + ε−2t + 2)An−2(t), for n ≥ 3,

A1(t) = 4, A2(t) = 18− ε2t − ε−2t .
(3)

Let D′n−1(t) be the determinant of the matrix which obtained from Dn(t) by deleting the first

three rows and the first three columns. Expand Dn(t) by the first three rows, and D′n(t) by the

first four rows. We get a recurrence in Dn(t) and D′n(t) as follows:
Dn(t) = Dn−1(t) + (ε−1t − εt)D′n−1(t), for n ≥ 2,

D′n(t) = (εt − ε−1t )Dn−1(t) + 4D′n−1(t), for n ≥ 2,

D1(t) = 1, D′1(t) = εt − ε−1t .

(4)

By the same deduction on Equation (4) as Equation (2), we have{
Dn(t) = 5Dn−1(t)− (ε2t + ε−2t + 2)Dn−2(t), for n ≥ 3,

D1(t) = 1, D2(t) = 3− ε−2t − ε2t .
(5)
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Then the characteristic Equations of (3) and (5) are the same, i.e.

λ2 − 5λ+ (ε2t + ε−2t + 2) = 0. (6)

Hence λ =
5±
√

17−4ε2t−4ε
−2
t

2 are the characteristic values of Equation (6). Therefore

An(t) = a1

(
5+
√

17−4ε2t−4ε
−2
t

2

)n
+ a2

(
5−
√

17−4ε2t−4ε
−2
t

2

)n
,

Dn(t) = d1

(
5+
√

17−4ε2t−4ε
−2
t

2

)n
+ d2

(
5−
√

17−4ε2t−4ε
−2
t

2

)n
.

Since A1(t) = 4, A2(t) = 18 − ε2t − ε−2t , D1(t) = 1 and D2(t) = 3 − ε−2t − ε2t , we have that

a1 = d2 =
3+
√

17−4ε2t−4ε
−2
t

2
√

17−4ε2t−4ε
−2
t

and a2 = d1 =
−3+
√

17−4ε2t−4ε
−2
t

2
√

17−4ε2t−4ε
−2
t

. Thus,

An(t) =
1

2n+1
√

17− 4β2t

[(
3 +

√
17− 4β2t

)(
5 +

√
17− 4β2t

)n
+

(
− 3 +

√
17− 4β2t

)(
5−

√
17− 4β2t

)n]
,

Dn(t) =
1

2n+1
√

17− 4β2t

[(
− 3 +

√
17− 4β2t

)(
5 +

√
17− 4β2t

)n
+

(
3 +

√
17− 4β2t

)(
5−

√
17− 4β2t

)n]
,

where βkt = εkt + ε−kt = 2 cos k(2t+1)π
m .

Expanding Bn(t) and Cn(t) by the first four rows, we obtain these recurrences for Bn(t)

and Cn(t)as follows:{
Bn(t) = (εt + ε−1t )Bn−1(t), for n ≥ 2,

B1(t) = εt + ε−1t ,
(7){

Cn(t) = (εt + ε−1t )Cn−1(t), for n ≥ 2,

C1(t) = −(εt + ε−1t ).
(8)

And we can get the values of Bn(t) and Cn(t) by Equation (7) and (8), respectively, as following:

Bn(t) = −Cn(t) = βnt .

These implies that

det(Ft) =
1

2n

[(
5 +

√
17− 4β2t

)n
+

(
5−

√
17− 4β2t

)n]
+ βnt βrt,

where βkt = 2 cos (2t+1)kπ
m .

And so, by Lemma 2.1, Theorem 3.2 follows.

Theorem 3.3. If both m and n+r are odd, then the number of perfect matchings of Gt(m,n, r)

can be expressed by

|M(Gt(m,n, r))| =
m−1∏
t=0

(
1

2n

[(
5 +

√
17− 4β2t

)n
+

(
5−

√
17− 4β2t

)n]
+ βnt βrt

) 1
2

,

where βkt = 2 cos (2t+1)kπ
m .
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Proof. Let H1, H2, H3, In be the same matrices as in the proof of Theorem 3.2, and

Kn =



0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 −1

0 0 · · · 0 0

 .

When both m and n+ r are odd, then the adjacency matrix X corresponding to
−→
G←−
E 1

can

be written in the following form:

X = scirc(V0, V1, · · · , Vm−1),

where Vi is the same as the case in Theorem 3.2 except V0 = H1

⊗
In+H2

⊗
Kn−HT

2

⊗
KT

n .

So by Lemma 3.1, we always have that

det(X) =

m−1∏
t=0

det(Ft),

where

det (Ft) = det (V0 + V1εt − V T1 ε−1t + Vrε
r
t − V Tr ε−rt )

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 −1 0 εrt
−1 0 −ε−1

t −1
1 εt 0 −1
0 1 1 0 1

−1
. . .

−1
1 0 1 −1 0

−1 0 −ε−1
t −1

1 εt 0 −1
−ε−r

t 0 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By the same discussion as Theorem 3.2, we have

det(Ft) =
1

2n

[(
5 +

√
17− 4β2t

)n
+

(
5−

√
17− 4β2t

)n]
− βnt βrt,

where βkt = 2 cos (2t+1)kπ
m .

And so, by Lemma 2.1, Theorem 3.3 follows.

Remark. For bipartite graph Gt(m,n, r), it can be proved that they are not Pfaffian. By

now, we have not found an useful method to calculate the number of perfect matchings. By

Tesler’s method [14], we know that |M(Gt(m,n, r))| can be counting by a linear combination of 4

Pfaffians. However, the expansions of the methods of this paper that using a linear combination

of 4 Pfaffians does not work. Since we can get the values of |Pf(Xi)| by the same means as

we used in Theorem 3.2, but the sign of Pf(Xi) is uncertain. Hence, for a bipartite graph

Gt(m,n, r), |M(Gt(m,n, r))| is still open.
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