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Reductivity and bundle shifts

XU An-jian†

Abstract. For the Hardy space H2
E(R) over a flat unitary vector bundle E on a finitely con-

nected domain R, let TE be the bundle shift as [3]. If B is a reductive algebra containing every

operator ψ(TE) for any rational function ψ with poles outside of R, then B is self adjoint.

§1 Introduction

In this paper, let H be a complex separable Hilbert space, and B(H) the algebra of all

bounded linear operators on H. A unital subalgebra A of B(H) is called transitive if it has

only trivial invariant subspaces. The transitive algebra problem ask if every transitive alge-

bra A ⊂ B(H) is strongly dense in B(H). An operator is called transitive if every operator

algebra containing it is transitive. It is Arveson [5] who stated explicitly the problem first,

and he developed a main tool for studying the transitive algebra problem. In the same paper,

Arveson proved that the unilateral shift with multiplicity one is transitive. Richter [13] proved

that Dirichlet shift is transitive. And Nordgren [10] generalized Arveson’s result to unilateral

shifts with finite multiplicities. Cheng, Guo and Wang [7] proved the coordinate multiplication

operators on functional Hilbert spaces with complete Nevanlinna-Pick kernels are transitive.

The invariant subspace problem ask if a singly generated algebra acing on a Hilbert space H is

transitive.

A weakly closed subalgebra B of B(H) is called reductive if all of its invariant subspaces are

reducing. An operator is called reductive if every operator algebra containing it is reductive.

The reductive algebra problem raised firstly in [12] asks if every reductive algebra A ⊂ B(H) is

self adjoint. An affirmative answer to this problem would imply a positive answer to the transi-

tive algebra problem [12]. Nordgren and Rosenthal [11] proved that a unilateral shift with finite

multiplicity is reductive. Cheng, Guo and Wang [7] showed that the coordinate multiplication

operators on functional Hilbert spaces with complete Nevanlinna-Pick kernels are reductive.
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Both the transitive algebra problem and the reductive algebra problem are still unsolved.

Let R be a finite-connected bounded domain in the complex plane C whose boundary ∂R

consists of n + 1 nonintersecting analytic Jordan curves. The Hardy space H2(R) over R is

defined to be the space of all analytic functions f on R such that the subharmonic functions

|f |2 are majorized by harmonic functions u. For a fixed point t ∈ R, there is a norm ‖ · ‖ on

H2(R) defined by

‖f‖ = inf
u
{u(t)

1
2 },

where u is a harmonic majorant of |f |2. Let m be the harmonic measure for the point t and

L2(∂R) be the square integrable complex-valued measurable function on ∂R defined with respect

to m. H2(∂R) is defined to be the set of function f ∈ L2(∂R) such that
∫
∂R
f(z)g(z)dz = 0 for

every g that is analytic in a neighborhood of the closure of R. H2(∂R) is a reproducing kernel

Hilbert space, let kλ be the reproducing kernel at λ ∈ R. As the case R = D, H2(R) can be iden-

tified with H2(∂R) by non-tangential limits. We define an operator Tz on H2(R) by Tzf = zf

for every f ∈ H2(R), and an operator N on L2(∂R) by the same formula Nf(z) = zf(z). It

is easy to see that Tz is a pure subnormal operator and N is the minimal normal extension of Tz.

Similarly, for a Hilbert space H, we can define an H-valued Hardy space, H2
H(R), which is

the space of all H-valued analytic functions f : R → H such that the subharmonic functions

‖f(z)‖2H are majorized by harmonic functions u on R. We define two corresponding operators,

(THf)(z) = zf(z) for f ∈ H2
H(R) and z ∈ R, and NH on LH(∂R), (NHf)(z) = zf(z) for

f ∈ L2
H(∂R) and z ∈ ∂R. Now H2

H(R) is a reproducing kernel Hilbert space, and we use

kHλ ∈ B(H) to represent the reproducing kernel at λ ∈ R; that is, 〈f(λ), h〉H = 〈f, kHλ h〉H2
H(R)

for f ∈ H2
H(R) and h ∈ H. For more information about function theory on finitely connected

domains, one can see [1,14,15].

Let E be a Hermitian holomorphic vector bundle over R. A section of E is a holomor-

phic function f from R into E such that p(f(z)) = z for all z ∈ R, where p : E → R is the

projection map [9]. The set of all holomorphic sections of E is denoted by Γa(E) where the

subscript “a” represents “analytic”. A unitary coordinate cover for E is a covering {Us, ϕs}
with ϕs : Us × Cn → E|Us

such that for each s and z ∈ Us, the fiber map ϕzs : Cn → Ez,

is unitary. The unitary coordinate cover {Us, ϕs} is said to be flat if the transition functions,

ϕst = ϕ−1
s ϕt on Us ∩ Ut for all s and t, are constant. A flat unitary vector bundle is a vector

bundle with a flat unitary coordinate covering.

If E is a flat unitary vector bundle over the finitely-connected domain R with fiber E and

coordinate covering {Us, ϕs} and f is a holomorphic section of E, then for z ∈ Us ∩ Ut, the

operator (ϕzt )
−1ϕzs is unitary so that ‖(ϕzt )−1f(z)‖ = ‖(ϕzs)−1f(z)‖. This means that there

is a function on R defined by hEf (z) = ‖(ϕzs)−1f(z)‖E , where z ∈ Us. One defines H2
E(R) to

be the space of holomorphic sections f of E such that (hEf (z))2 is majorized by a harmonic

function, then H2
E(R) is a Hilbert space. H2

E(R) is invariant under multiplication by any
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bounded analytic function on R. The operator TE on H2
E(R), defined by (TEf)(z) = zf(z) for

z ∈ R, is called a bundle shift over R. These objects are studied by Abrahamse and Douglas [3].

In the paper, they proved a Beurling-type theorem for a bundle shift over a multiply-connected

domain.

Lemma 1 ([3]). Let TE is a bundle shift on H2
E(R). A closed subspaceM of HE(R) is invariant

for Rat(TE) if and only if M = ΘH2
F (R), where F is a flat unitary bundle over R and Θ, is an

inner bundle map from F to E. Moreover, two subspaces Θ1H
2
F1

(R) and Θ2H
2
F2

(R) are equal

if and only if F1 and F2 are equivalent flat unitary bundles over R and there exists a bundle

map Φ from F1 onto F2 that establishes the equivalence and satisfies Θ1 = Θ2Φ.

Let Rat(TE) denote the algebra of all r(TE), where r is a holomorphic rational function on

R with poles outside of R. It is proved in [2,8] that Rat(TE) is reductive.

Finally, let JE be the subalgebra of B(H2
E(R)) of all operators TΦ, where every Φ is a bundle

map on E which extends to an open set containing the closure of R.

§2 Main results and proofs

Let H denote an infinite dimensional Hilbert space, and B(H) be the algebra of bounded

linear operators on H. Let A be a subalgebra of B(H), and let n be a positive integer.

Lemma 2 ([11]). If B(n) is a reductive algebra for every positive integer n, then B is self

adjoint.

Definition 1. A closed linear manifolds M ⊂ H(n) is called an invariant graph subspace for

B(n) if it is invariant for B(n) and there exist (n-1) linear transformations T1, · · · , Tn−1 on a

linear manifold D of H distinct from {0}, such that

M = {(x, T1x, · · · , Tn−1x) : x ∈ D},
where H(n) denotes the direct sum of n copies of H. A linear transformation T is called a graph

transformation for B if for some n, T is one of the Ti’s in an invariant graph subspace for B(n).

The study of the reductivity of B(n) reduces to the study invariant graph subspaces.

Definition 2. A linear transformation T is said to have a compression spectrum if there exists

λ ∈ C such that the range of T − λ is not dense in H.

Lemma 3. Every densely defined invariant graph transformation T for Rat(TE) on H2
E(R)

has a compression spectrum.

Proof. Only one thing needs to be observed after noticing that the bundles R × Cn and

E extend to a trivial and a flat unitary bundle over the closure of R and these extensions are

similar [3]. If Φ is a bundle map from clos(R) × Cn to the extension of E, establishing the

similarity of TH and TE , then Φ induces a module isomorphism denoted by Φ̃ from H2
Cn(R) to

H2
E(R) conjugating JE(R) and JR×Cn(R). Thus the similarity not only takes TCn to TE , but

also a linear transformation T̃ on TCn to a linear transformation T on TE , and JE(R)⊗Mn(C)



30 Appl. Math. J. Chinese Univ. Vol. 34, No. 1

to JE(R). If M is invariant for TE , then Φ̃−1M denoted by M̃ is invariant for TCn . T has a

compression spectrum if and only if T̃ has a compression spectrum since Φ̃ maps a densely set

to a densely set. So we need only to prove that every densely defined graph transformation T̃

on H2
Cn(R) has a compression spectrum, this is a result in the proof of the second Lemma in

[10].

Remark 1. The above lemma shows that operator algebras containing bundle shifts are strong-

ly dense in B(H2
E(R)).

Lemma 4 ([11]). If B is a reductive algebra and T is a closed linear transformation commuting

with B such that the range of T is contained in the direct sum of the kernel of T and the

orthogonal complement of its domain, then T commutes with B∗.

Lemma 5. T is a closed linear transformation with a dense domain D in H2
E(R). If T com-

mutes with TE, then there are invertible bundle maps Θ and Γ such that ΘH2
E(R) ⊂ D and

Tf = Θ−1Γf for f ∈ D. On the other side, the operator defined by Tf = Θ−1Γf commutes

with TE and is closable, furthermore, its closure commutes with Rat(TE) also.

Proof. M = {(f, Tf)|f ∈ D} is invariant under the action of (TE , TE) defined by (S, S)(f, Tf) =

(Sf, STf) since T commutes with TE . So there exist a flat unitary bundle F over R and an

inner bundle map from F to E such that M = ΘH2
F (R). It follows that there exist bundle

maps Θ1,Θ2 such that for every f ∈ D, there is a unique f1 ∈ H2
F (R) satisfying

f ⊕ Tf = Θf1 = Θ1f1 ⊕Θ2f1.

The density of D implies that F and E are equivalent flat unitary vector bundles over R, and

so we can take F = E.

The density of the range of Θ1 shows that Θ1 is a surjective bundle map and the fibre of

the bundle is finitely dimensional, so it is invertible, i.e., there exists a bundle map Θ−1
1 from

E to F such that Θ1Θ−1
1 = IE and Θ−1

1 Θ1 = IF , hence D ⊃ Θ−1
1 H2

F (R). Then Tf = Θ−1Γf .

It is clear that whenever a closable linear transformation commutes with a bounded operator

A, then its closure also commutes with A.

It is obvious that the operator defined by Tf = Θ−1Γf for f ∈ D commutes with Rat(TE).

The left is to prove T is closable. Let {fn} be a sequence in D that converges to 0 such that

{Tfn} converges. We must show that lim
n→∞

Tfn = 0. By choosing an appropriate subsequence,

so we can assume that {fn} and {Tfn} both converge pointwise a.e. on the boundary of R.

Now Θ−1Γ has a radial limit at almost every point of R. For almost every z ∈ R,

lim
n→∞

Tfn(z) = lim
n→∞

Θ−1(z)Γ(z)f(z) = Θ−1(z)Γ(z) lim
n→∞

fn(z) = 0.

Hence lim
n→∞

Tfn(z) = 0, and T is closable. The graph of T is a subspace invariant under

TE ⊕ TE , it implies the closure of T commutes with Rat(TE).

The quotient representation and the closability property are very important in the transitive

algebra problem and the reductive algebra problem. The quotient representation of a function

f ∈ H2(D) by two bounded analytic functions [4] is the key to prove the reductive algebra

problem for the shift in [5]. The closability property was studied in [6].
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Lemma 6. If U is a reductive algebra on H2
E(R) containing the bundle shift TE,M = {(x, Tx) :

x ∈ D} is a nonzero invariant graph subspace for U (2). Then M contains a nonzero reducing

subspace of U (2).

Proof. It is clear that T commutes with U . There exists λ ∈ C such that the range

Ran(T − λ) of T − λ is not dense in H2
E(R) by Lemma 3. Ran(T − λ) is invariant under U ,

so is its closure Ran(T − λ). The orthogonal completement Ran(T − λ)
⊥

of Ran(T − λ) in

H2
E(R) is also invariant under U and so TE since U is reductive. Then there is a flat unitary

bundle F over R and an inner bundle map from F to E such that Ran(T − λ)
⊥

= ΘH2
F (R).

D0 = D ∩Ran(T − λ)
⊥

is dense in Ran(T − λ)
⊥

by Lemma 1. So D0 is nonzero.

Now define M0 = {(x, Tx) : x ∈ D0}. It is clear that M0 is a closed subspace of M and

invariant under U (2). Furthermore, (T − λ)|D0
is closed linear transformation commuting with

U whose range is orthogonal to D0. So (T − λ)|D0
commutes with U∗. M0 is invariant under

(U∗)(2) and so reduces U (2).

Theorem 1. If B is a reductive algebra on H2
E(R) containing RatE(R), then B(2) is a reductive

algebra on (H2
E(R))(2).

Proof. Let M be an invariant subspace of B(2), and N be the closed linear span of all

reducing subspace of B(2) contained inM. Then it is clear that N ⊂M is a reducing subspace

of B(2) also. The left is to showM = N . If it is not true, letM0 be the orthogonal complement

of N in M, which is nontrivial. M0 is an invariant subspace of B(2) also. Moreover, if

(0, f) ∈M0, then f = 0. So M0 is the graph of a linear transformation T on H2
E(R), i.e.,

M0 = {(f, Tf) : f ∈ D0}.
It follows that M0 contains a nontrivial reducing subspace of B(2) by Lemma 6, which contra-

dicts that M0 contains no reducing subspace of B(2).

Theorem 2. If B is a reductive algebra on H2
E(R) containing RatE(R), then B is self adjoint.

Proof. B(2) is reductive by Theorem 1, and so B(4) is reductive also. It follows that B(2n) is

reductive by Theorem 1, which shows B(n) is reductive for any positive integer n, and so B is

self adjoint by Lemma 2.
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